xref: /openbmc/linux/arch/m68k/kernel/head.S (revision 8a10bc9d)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in autoconf.h.
200 *
201 * CONSOLE:	There is support for head.S console in this file.  This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU:	This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine.  The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
212 *		machines.  At that point the underlying logic will be
213 *		believed to be solid enough to be trusted, and TEST_MMU
214 *		can be dropped.  Do note that that will clean up the
215 *		head.S code significantly as large blocks of #if/#else
216 *		clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work.  A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT:	There is a routine built into head.S that can display the
223 * MMU data structures.  It outputs its result through the serial_putc
224 * interface.  So where ever that winds up driving data, that's where the
225 * mmu struct will appear.  On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG:	There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console.  This constant determines whether those
230 * are used.
231 *
232 * DEBUG:	This is the standard DEBUG flag that can be set for building
233 *		the kernel.  It has the effect adding additional tests into
234 *		the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 *		In theory these could be determined at run time or handed
240 *		over by the booter.  But, let's be real, it's a fine hard
241 *		coded value.  (But, you will notice the code is run-time
242 *		flexible!)  A pointer to the font's struct font_desc
243 *		is kept locally in Lconsole_font.  It is used to determine
244 *		font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER:	Use the printer port for serial debug.
248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
255 */
256
257#include <linux/linkage.h>
258#include <linux/init.h>
259#include <asm/bootinfo.h>
260#include <asm/bootinfo-amiga.h>
261#include <asm/bootinfo-atari.h>
262#include <asm/bootinfo-hp300.h>
263#include <asm/bootinfo-mac.h>
264#include <asm/bootinfo-q40.h>
265#include <asm/bootinfo-vme.h>
266#include <asm/setup.h>
267#include <asm/entry.h>
268#include <asm/pgtable.h>
269#include <asm/page.h>
270#include <asm/asm-offsets.h>
271
272#ifdef CONFIG_MAC
273
274#include <asm/machw.h>
275
276#ifdef CONFIG_FRAMEBUFFER_CONSOLE
277#define CONSOLE
278#define CONSOLE_PENGUIN
279#endif
280
281#ifdef CONFIG_EARLY_PRINTK
282#define SERIAL_DEBUG
283#else
284#undef SERIAL_DEBUG
285#endif
286
287#else /* !CONFIG_MAC */
288
289#define SERIAL_DEBUG
290
291#endif /* !CONFIG_MAC */
292
293#undef MMU_PRINT
294#undef MMU_NOCACHE_KERNEL
295#undef DEBUG
296
297/*
298 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
299 * The 8x8 font is harder to read but fits more on the screen.
300 */
301#define FONT_8x8	/* default */
302/* #define FONT_8x16 */	/* 2nd choice */
303/* #define FONT_6x11 */	/* 3rd choice */
304
305.globl kernel_pg_dir
306.globl availmem
307.globl m68k_pgtable_cachemode
308.globl m68k_supervisor_cachemode
309#ifdef CONFIG_MVME16x
310.globl mvme_bdid
311#endif
312#ifdef CONFIG_Q40
313.globl q40_mem_cptr
314#endif
315
316CPUTYPE_040	= 1	/* indicates an 040 */
317CPUTYPE_060	= 2	/* indicates an 060 */
318CPUTYPE_0460	= 3	/* if either above are set, this is set */
319CPUTYPE_020	= 4	/* indicates an 020 */
320
321/* Translation control register */
322TC_ENABLE = 0x8000
323TC_PAGE8K = 0x4000
324TC_PAGE4K = 0x0000
325
326/* Transparent translation registers */
327TTR_ENABLE	= 0x8000	/* enable transparent translation */
328TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
329TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
330TTR_USERMODE	= 0x0000	/* only user mode access */
331TTR_CI		= 0x0400	/* inhibit cache */
332TTR_RW		= 0x0200	/* read/write mode */
333TTR_RWM		= 0x0100	/* read/write mask */
334TTR_FCB2	= 0x0040	/* function code base bit 2 */
335TTR_FCB1	= 0x0020	/* function code base bit 1 */
336TTR_FCB0	= 0x0010	/* function code base bit 0 */
337TTR_FCM2	= 0x0004	/* function code mask bit 2 */
338TTR_FCM1	= 0x0002	/* function code mask bit 1 */
339TTR_FCM0	= 0x0001	/* function code mask bit 0 */
340
341/* Cache Control registers */
342CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
343CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
344CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
345CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
346CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
347CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
348CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
349CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
350CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
351CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
352CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
353CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
354CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
355CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
356CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
357CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
358CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
359CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
360CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
361CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
362CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
363CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
364
365/* Miscellaneous definitions */
366PAGESIZE	= 4096
367PAGESHIFT	= 12
368
369ROOT_TABLE_SIZE	= 128
370PTR_TABLE_SIZE	= 128
371PAGE_TABLE_SIZE	= 64
372ROOT_INDEX_SHIFT = 25
373PTR_INDEX_SHIFT  = 18
374PAGE_INDEX_SHIFT = 12
375
376#ifdef DEBUG
377/* When debugging use readable names for labels */
378#ifdef __STDC__
379#define L(name) .head.S.##name
380#else
381#define L(name) .head.S./**/name
382#endif
383#else
384#ifdef __STDC__
385#define L(name) .L##name
386#else
387#define L(name) .L/**/name
388#endif
389#endif
390
391/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
392#ifndef __INITDATA
393#define __INITDATA	.data
394#define __FINIT		.previous
395#endif
396
397/* Several macros to make the writing of subroutines easier:
398 * - func_start marks the beginning of the routine which setups the frame
399 *   register and saves the registers, it also defines another macro
400 *   to automatically restore the registers again.
401 * - func_return marks the end of the routine and simply calls the prepared
402 *   macro to restore registers and jump back to the caller.
403 * - func_define generates another macro to automatically put arguments
404 *   onto the stack call the subroutine and cleanup the stack again.
405 */
406
407/* Within subroutines these macros can be used to access the arguments
408 * on the stack. With STACK some allocated memory on the stack can be
409 * accessed and ARG0 points to the return address (used by mmu_engage).
410 */
411#define	STACK	%a6@(stackstart)
412#define ARG0	%a6@(4)
413#define ARG1	%a6@(8)
414#define ARG2	%a6@(12)
415#define ARG3	%a6@(16)
416#define ARG4	%a6@(20)
417
418.macro	func_start	name,saveregs,stack=0
419L(\name):
420	linkw	%a6,#-\stack
421	moveml	\saveregs,%sp@-
422.set	stackstart,-\stack
423
424.macro	func_return_\name
425	moveml	%sp@+,\saveregs
426	unlk	%a6
427	rts
428.endm
429.endm
430
431.macro	func_return	name
432	func_return_\name
433.endm
434
435.macro	func_call	name
436	jbsr	L(\name)
437.endm
438
439.macro	move_stack	nr,arg1,arg2,arg3,arg4
440.if	\nr
441	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
442	movel	\arg1,%sp@-
443.endif
444.endm
445
446.macro	func_define	name,nr=0
447.macro	\name	arg1,arg2,arg3,arg4
448	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
449	func_call	\name
450.if	\nr
451	lea	%sp@(\nr*4),%sp
452.endif
453.endm
454.endm
455
456func_define	mmu_map,4
457func_define	mmu_map_tt,4
458func_define	mmu_fixup_page_mmu_cache,1
459func_define	mmu_temp_map,2
460func_define	mmu_engage
461func_define	mmu_get_root_table_entry,1
462func_define	mmu_get_ptr_table_entry,2
463func_define	mmu_get_page_table_entry,2
464func_define	mmu_print
465func_define	get_new_page
466#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
467func_define	set_leds
468#endif
469
470.macro	mmu_map_eq	arg1,arg2,arg3
471	mmu_map	\arg1,\arg1,\arg2,\arg3
472.endm
473
474.macro	get_bi_record	record
475	pea	\record
476	func_call	get_bi_record
477	addql	#4,%sp
478.endm
479
480func_define	serial_putc,1
481func_define	console_putc,1
482
483func_define	console_init
484func_define	console_put_stats
485func_define	console_put_penguin
486func_define	console_plot_pixel,3
487func_define	console_scroll
488
489.macro	putc	ch
490#if defined(CONSOLE) || defined(SERIAL_DEBUG)
491	pea	\ch
492#endif
493#ifdef CONSOLE
494	func_call	console_putc
495#endif
496#ifdef SERIAL_DEBUG
497	func_call	serial_putc
498#endif
499#if defined(CONSOLE) || defined(SERIAL_DEBUG)
500	addql	#4,%sp
501#endif
502.endm
503
504.macro	dputc	ch
505#ifdef DEBUG
506	putc	\ch
507#endif
508.endm
509
510func_define	putn,1
511
512.macro	dputn	nr
513#ifdef DEBUG
514	putn	\nr
515#endif
516.endm
517
518.macro	puts		string
519#if defined(CONSOLE) || defined(SERIAL_DEBUG)
520	__INITDATA
521.Lstr\@:
522	.string	"\string"
523	__FINIT
524	pea	%pc@(.Lstr\@)
525	func_call	puts
526	addql	#4,%sp
527#endif
528.endm
529
530.macro	dputs	string
531#ifdef DEBUG
532	puts	"\string"
533#endif
534.endm
535
536#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
537#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
538#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
539#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
540#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
541#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
542#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
543#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
544#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
545#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
546#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
547#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
548#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
549
550#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
551			jeq 42f; \
552			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
553			jne lab ;\
554		42:\
555
556#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
557#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
558#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
559#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
560#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
561#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
562#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
563
564/* On the HP300 we use the on-board LEDs for debug output before
565   the console is running.  Writing a 1 bit turns the corresponding LED
566   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
567.macro	leds	mask
568#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
569	hasnt_leds(.Lled\@)
570	pea	\mask
571	func_call	set_leds
572	addql	#4,%sp
573.Lled\@:
574#endif
575.endm
576
577__HEAD
578ENTRY(_stext)
579/*
580 * Version numbers of the bootinfo interface
581 * The area from _stext to _start will later be used as kernel pointer table
582 */
583	bras	1f	/* Jump over bootinfo version numbers */
584
585	.long	BOOTINFOV_MAGIC
586	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
587	.long	MACH_ATARI, ATARI_BOOTI_VERSION
588	.long	MACH_MVME147, MVME147_BOOTI_VERSION
589	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
590	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
591	.long	MACH_MAC, MAC_BOOTI_VERSION
592	.long	MACH_Q40, Q40_BOOTI_VERSION
593	.long	MACH_HP300, HP300_BOOTI_VERSION
594	.long	0
5951:	jra	__start
596
597.equ	kernel_pg_dir,_stext
598
599.equ	.,_stext+PAGESIZE
600
601ENTRY(_start)
602	jra	__start
603__INIT
604ENTRY(__start)
605/*
606 * Setup initial stack pointer
607 */
608	lea	%pc@(_stext),%sp
609
610/*
611 * Record the CPU and machine type.
612 */
613	get_bi_record	BI_MACHTYPE
614	lea	%pc@(m68k_machtype),%a1
615	movel	%a0@,%a1@
616
617	get_bi_record	BI_FPUTYPE
618	lea	%pc@(m68k_fputype),%a1
619	movel	%a0@,%a1@
620
621	get_bi_record	BI_MMUTYPE
622	lea	%pc@(m68k_mmutype),%a1
623	movel	%a0@,%a1@
624
625	get_bi_record	BI_CPUTYPE
626	lea	%pc@(m68k_cputype),%a1
627	movel	%a0@,%a1@
628
629	leds	0x1
630
631#ifdef CONFIG_MAC
632/*
633 * For Macintosh, we need to determine the display parameters early (at least
634 * while debugging it).
635 */
636
637	is_not_mac(L(test_notmac))
638
639	get_bi_record	BI_MAC_VADDR
640	lea	%pc@(L(mac_videobase)),%a1
641	movel	%a0@,%a1@
642
643	get_bi_record	BI_MAC_VDEPTH
644	lea	%pc@(L(mac_videodepth)),%a1
645	movel	%a0@,%a1@
646
647	get_bi_record	BI_MAC_VDIM
648	lea	%pc@(L(mac_dimensions)),%a1
649	movel	%a0@,%a1@
650
651	get_bi_record	BI_MAC_VROW
652	lea	%pc@(L(mac_rowbytes)),%a1
653	movel	%a0@,%a1@
654
655#ifdef SERIAL_DEBUG
656	get_bi_record	BI_MAC_SCCBASE
657	lea	%pc@(L(mac_sccbase)),%a1
658	movel	%a0@,%a1@
659#endif
660
661#if 0
662	/*
663	 * Clear the screen
664	 */
665	lea	%pc@(L(mac_videobase)),%a0
666	movel	%a0@,%a1
667	lea	%pc@(L(mac_dimensions)),%a0
668	movel	%a0@,%d1
669	swap	%d1		/* #rows is high bytes */
670	andl	#0xFFFF,%d1	/* rows */
671	subl	#10,%d1
672	lea	%pc@(L(mac_rowbytes)),%a0
673loopy2:
674	movel	%a0@,%d0
675	subql	#1,%d0
676loopx2:
677	moveb	#0x55, %a1@+
678	dbra	%d0,loopx2
679	dbra	%d1,loopy2
680#endif
681
682L(test_notmac):
683#endif /* CONFIG_MAC */
684
685
686/*
687 * There are ultimately two pieces of information we want for all kinds of
688 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
689 * and is converted here from a booter type definition to a separate bit
690 * number which allows for the standard is_0x0 macro tests.
691 */
692	movel	%pc@(m68k_cputype),%d0
693	/*
694	 * Assume it's an 030
695	 */
696	clrl	%d1
697
698	/*
699	 * Test the BootInfo cputype for 060
700	 */
701	btst	#CPUB_68060,%d0
702	jeq	1f
703	bset	#CPUTYPE_060,%d1
704	bset	#CPUTYPE_0460,%d1
705	jra	3f
7061:
707	/*
708	 * Test the BootInfo cputype for 040
709	 */
710	btst	#CPUB_68040,%d0
711	jeq	2f
712	bset	#CPUTYPE_040,%d1
713	bset	#CPUTYPE_0460,%d1
714	jra	3f
7152:
716	/*
717	 * Test the BootInfo cputype for 020
718	 */
719	btst	#CPUB_68020,%d0
720	jeq	3f
721	bset	#CPUTYPE_020,%d1
722	jra	3f
7233:
724	/*
725	 * Record the cpu type
726	 */
727	lea	%pc@(L(cputype)),%a0
728	movel	%d1,%a0@
729
730	/*
731	 * NOTE:
732	 *
733	 * Now the macros are valid:
734	 *	is_040_or_060
735	 *	is_not_040_or_060
736	 *	is_040
737	 *	is_060
738	 *	is_not_060
739	 */
740
741	/*
742	 * Determine the cache mode for pages holding MMU tables
743	 * and for supervisor mode, unused for '020 and '030
744	 */
745	clrl	%d0
746	clrl	%d1
747
748	is_not_040_or_060(L(save_cachetype))
749
750	/*
751	 * '040 or '060
752	 * d1 := cacheable write-through
753	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
754	 * but we have been using write-through since at least 2.0.29 so I
755	 * guess it is OK.
756	 */
757#ifdef CONFIG_060_WRITETHROUGH
758	/*
759	 * If this is a 68060 board using drivers with cache coherency
760	 * problems, then supervisor memory accesses need to be write-through
761	 * also; otherwise, we want copyback.
762	 */
763
764	is_not_060(1f)
765	movel	#_PAGE_CACHE040W,%d0
766	jra	L(save_cachetype)
767#endif /* CONFIG_060_WRITETHROUGH */
7681:
769	movew	#_PAGE_CACHE040,%d0
770
771	movel	#_PAGE_CACHE040W,%d1
772
773L(save_cachetype):
774	/* Save cache mode for supervisor mode and page tables
775	 */
776	lea	%pc@(m68k_supervisor_cachemode),%a0
777	movel	%d0,%a0@
778	lea	%pc@(m68k_pgtable_cachemode),%a0
779	movel	%d1,%a0@
780
781/*
782 * raise interrupt level
783 */
784	movew	#0x2700,%sr
785
786/*
787   If running on an Atari, determine the I/O base of the
788   serial port and test if we are running on a Medusa or Hades.
789   This test is necessary here, because on the Hades the serial
790   port is only accessible in the high I/O memory area.
791
792   The test whether it is a Medusa is done by writing to the byte at
793   phys. 0x0. This should result in a bus error on all other machines.
794
795   ...should, but doesn't. The Afterburner040 for the Falcon has the
796   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
797   another test to distinguish Medusa and AB040. This is a
798   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
799   (+AB040), but is in the range where the Medusa always asserts DTACK.
800
801   The test for the Hades is done by reading address 0xb0000000. This
802   should give a bus error on the Medusa.
803 */
804
805#ifdef CONFIG_ATARI
806	is_not_atari(L(notypetest))
807
808	/* get special machine type (Medusa/Hades/AB40) */
809	moveq	#0,%d3 /* default if tag doesn't exist */
810	get_bi_record	BI_ATARI_MCH_TYPE
811	tstl	%d0
812	jbmi	1f
813	movel	%a0@,%d3
814	lea	%pc@(atari_mch_type),%a0
815	movel	%d3,%a0@
8161:
817	/* On the Hades, the iobase must be set up before opening the
818	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
819	moveq	#0,%d0
820	cmpl	#ATARI_MACH_HADES,%d3
821	jbne	1f
822	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
8231:	lea     %pc@(L(iobase)),%a0
824	movel   %d0,%a0@
825
826L(notypetest):
827#endif
828
829#ifdef CONFIG_VME
830	is_mvme147(L(getvmetype))
831	is_bvme6000(L(getvmetype))
832	is_not_mvme16x(L(gvtdone))
833
834	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
835	 * versions of VMELILO and TFTPLILO do this.  We have to do this
836	 * early so we know how to handle console output.  If the tag
837	 * doesn't exist then we use the Bug for output on MVME16x.
838	 */
839L(getvmetype):
840	get_bi_record	BI_VME_TYPE
841	tstl	%d0
842	jbmi	1f
843	movel	%a0@,%d3
844	lea	%pc@(vme_brdtype),%a0
845	movel	%d3,%a0@
8461:
847#ifdef CONFIG_MVME16x
848	is_not_mvme16x(L(gvtdone))
849
850	/* Need to get the BRD_ID info to differentiate between 162, 167,
851	 * etc.  This is available as a BI_VME_BRDINFO tag with later
852	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
853	 */
854	get_bi_record	BI_VME_BRDINFO
855	tstl	%d0
856	jpl	1f
857
858	/* Get pointer to board ID data from Bug */
859	movel	%d2,%sp@-
860	trap	#15
861	.word	0x70		/* trap 0x70 - .BRD_ID */
862	movel	%sp@+,%a0
8631:
864	lea	%pc@(mvme_bdid),%a1
865	/* Structure is 32 bytes long */
866	movel	%a0@+,%a1@+
867	movel	%a0@+,%a1@+
868	movel	%a0@+,%a1@+
869	movel	%a0@+,%a1@+
870	movel	%a0@+,%a1@+
871	movel	%a0@+,%a1@+
872	movel	%a0@+,%a1@+
873	movel	%a0@+,%a1@+
874#endif
875
876L(gvtdone):
877
878#endif
879
880#ifdef CONFIG_HP300
881	is_not_hp300(L(nothp))
882
883	/* Get the address of the UART for serial debugging */
884	get_bi_record	BI_HP300_UART_ADDR
885	tstl	%d0
886	jbmi	1f
887	movel	%a0@,%d3
888	lea	%pc@(L(uartbase)),%a0
889	movel	%d3,%a0@
890	get_bi_record	BI_HP300_UART_SCODE
891	tstl	%d0
892	jbmi	1f
893	movel	%a0@,%d3
894	lea	%pc@(L(uart_scode)),%a0
895	movel	%d3,%a0@
8961:
897L(nothp):
898#endif
899
900/*
901 * Initialize serial port
902 */
903	jbsr	L(serial_init)
904
905/*
906 * Initialize console
907 */
908#ifdef CONFIG_MAC
909	is_not_mac(L(nocon))
910#ifdef CONSOLE
911	console_init
912#ifdef CONSOLE_PENGUIN
913	console_put_penguin
914#endif	/* CONSOLE_PENGUIN */
915	console_put_stats
916#endif	/* CONSOLE */
917L(nocon):
918#endif	/* CONFIG_MAC */
919
920
921	putc	'\n'
922	putc	'A'
923	leds	0x2
924	dputn	%pc@(L(cputype))
925	dputn	%pc@(m68k_supervisor_cachemode)
926	dputn	%pc@(m68k_pgtable_cachemode)
927	dputc	'\n'
928
929/*
930 * Save physical start address of kernel
931 */
932	lea	%pc@(L(phys_kernel_start)),%a0
933	lea	%pc@(_stext),%a1
934	subl	#_stext,%a1
935	addl	#PAGE_OFFSET,%a1
936	movel	%a1,%a0@
937
938	putc	'B'
939
940	leds	0x4
941
942/*
943 *	mmu_init
944 *
945 *	This block of code does what's necessary to map in the various kinds
946 *	of machines for execution of Linux.
947 *	First map the first 4 MB of kernel code & data
948 */
949
950	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
951		%pc@(m68k_supervisor_cachemode)
952
953	putc	'C'
954
955#ifdef CONFIG_AMIGA
956
957L(mmu_init_amiga):
958
959	is_not_amiga(L(mmu_init_not_amiga))
960/*
961 * mmu_init_amiga
962 */
963
964	putc	'D'
965
966	is_not_040_or_060(1f)
967
968	/*
969	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
970	 */
971	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
972	/*
973	 * Map the Zorro III I/O space with transparent translation
974	 * for frame buffer memory etc.
975	 */
976	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
977
978	jbra	L(mmu_init_done)
979
9801:
981	/*
982	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
983	 */
984	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
985	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
986
987	jbra	L(mmu_init_done)
988
989L(mmu_init_not_amiga):
990#endif
991
992#ifdef CONFIG_ATARI
993
994L(mmu_init_atari):
995
996	is_not_atari(L(mmu_init_not_atari))
997
998	putc	'E'
999
1000/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1001   the last 16 MB of virtual address space to the first 16 MB (i.e.
1002   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1003   needed. I/O ranges are marked non-cachable.
1004
1005   For the Medusa it is better to map the I/O region transparently
1006   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1007   accessible only in the high area.
1008
1009   On the Hades all I/O registers are only accessible in the high
1010   area.
1011*/
1012
1013	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1014	moveq	#0,%d0
1015	movel	%pc@(atari_mch_type),%d3
1016	cmpl	#ATARI_MACH_MEDUSA,%d3
1017	jbeq	2f
1018	cmpl	#ATARI_MACH_HADES,%d3
1019	jbne	1f
10202:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10211:	movel	%d0,%d3
1022
1023	is_040_or_060(L(spata68040))
1024
1025	/* Map everything non-cacheable, though not all parts really
1026	 * need to disable caches (crucial only for 0xff8000..0xffffff
1027	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1028	 * isn't really used, except for sometimes peeking into the
1029	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1030	 * this. */
1031	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1032
1033	jbra	L(mmu_init_done)
1034
1035L(spata68040):
1036
1037	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1038
1039	jbra	L(mmu_init_done)
1040
1041L(mmu_init_not_atari):
1042#endif
1043
1044#ifdef CONFIG_Q40
1045	is_not_q40(L(notq40))
1046	/*
1047	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1048	 * non-cached serialized etc..
1049	 * this includes master chip, DAC, RTC and ISA ports
1050	 * 0xfe000000-0xfeffffff is for screen and ROM
1051	 */
1052
1053	putc    'Q'
1054
1055	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1056	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1057
1058	jbra	L(mmu_init_done)
1059
1060L(notq40):
1061#endif
1062
1063#ifdef CONFIG_HP300
1064	is_not_hp300(L(nothp300))
1065
1066	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1067	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1068	 * The ROM mapping is needed because the LEDs are mapped there too.
1069	 */
1070
1071	is_040(1f)
1072
1073	/*
1074	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1075	 */
1076	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1077
1078	jbra	L(mmu_init_done)
1079
10801:
1081	/*
1082	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1083	 */
1084	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1085
1086	jbra	L(mmu_init_done)
1087
1088L(nothp300):
1089#endif /* CONFIG_HP300 */
1090
1091#ifdef CONFIG_MVME147
1092
1093	is_not_mvme147(L(not147))
1094
1095	/*
1096	 * On MVME147 we have already created kernel page tables for
1097	 * 4MB of RAM at address 0, so now need to do a transparent
1098	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1099	 * so we can access on-board i/o areas.
1100	 */
1101
1102	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1103
1104	jbra	L(mmu_init_done)
1105
1106L(not147):
1107#endif /* CONFIG_MVME147 */
1108
1109#ifdef CONFIG_MVME16x
1110
1111	is_not_mvme16x(L(not16x))
1112
1113	/*
1114	 * On MVME16x we have already created kernel page tables for
1115	 * 4MB of RAM at address 0, so now need to do a transparent
1116	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1117	 * Supervisor only access, so transparent mapping doesn't
1118	 * clash with User code virtual address space.
1119	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1120	 * mapping is needed to allow 167Bug to run.
1121	 * IO is in the range 0xfff00000 to 0xfffeffff.
1122	 * PROM is 0xff800000->0xffbfffff and SRAM is
1123	 * 0xffe00000->0xffe1ffff.
1124	 */
1125
1126	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1127
1128	jbra	L(mmu_init_done)
1129
1130L(not16x):
1131#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1132
1133#ifdef CONFIG_BVME6000
1134
1135	is_not_bvme6000(L(not6000))
1136
1137	/*
1138	 * On BVME6000 we have already created kernel page tables for
1139	 * 4MB of RAM at address 0, so now need to do a transparent
1140	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1141	 * so we can access on-board i/o areas.
1142	 * Supervisor only access, so transparent mapping doesn't
1143	 * clash with User code virtual address space.
1144	 */
1145
1146	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1147
1148	jbra	L(mmu_init_done)
1149
1150L(not6000):
1151#endif /* CONFIG_BVME6000 */
1152
1153/*
1154 * mmu_init_mac
1155 *
1156 * The Macintosh mappings are less clear.
1157 *
1158 * Even as of this writing, it is unclear how the
1159 * Macintosh mappings will be done.  However, as
1160 * the first author of this code I'm proposing the
1161 * following model:
1162 *
1163 * Map the kernel (that's already done),
1164 * Map the I/O (on most machines that's the
1165 * 0x5000.0000 ... 0x5300.0000 range,
1166 * Map the video frame buffer using as few pages
1167 * as absolutely (this requirement mostly stems from
1168 * the fact that when the frame buffer is at
1169 * 0x0000.0000 then we know there is valid RAM just
1170 * above the screen that we don't want to waste!).
1171 *
1172 * By the way, if the frame buffer is at 0x0000.0000
1173 * then the Macintosh is known as an RBV based Mac.
1174 *
1175 * By the way 2, the code currently maps in a bunch of
1176 * regions.  But I'd like to cut that out.  (And move most
1177 * of the mappings up into the kernel proper ... or only
1178 * map what's necessary.)
1179 */
1180
1181#ifdef CONFIG_MAC
1182
1183L(mmu_init_mac):
1184
1185	is_not_mac(L(mmu_init_not_mac))
1186
1187	putc	'F'
1188
1189	is_not_040_or_060(1f)
1190
1191	moveq	#_PAGE_NOCACHE_S,%d3
1192	jbra	2f
11931:
1194	moveq	#_PAGE_NOCACHE030,%d3
11952:
1196	/*
1197	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1198	 *	     we simply map the 4MB that contains the videomem
1199	 */
1200
1201	movel	#VIDEOMEMMASK,%d0
1202	andl	%pc@(L(mac_videobase)),%d0
1203
1204	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1205	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1206	mmu_map_eq	#0x40000000,#0x02000000,%d3
1207	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1208	mmu_map_eq	#0x50000000,#0x03000000,%d3
1209	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1210	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1211
1212	jbra	L(mmu_init_done)
1213
1214L(mmu_init_not_mac):
1215#endif
1216
1217#ifdef CONFIG_SUN3X
1218	is_not_sun3x(L(notsun3x))
1219
1220	/* oh, the pain..  We're gonna want the prom code after
1221	 * starting the MMU, so we copy the mappings, translating
1222	 * from 8k -> 4k pages as we go.
1223	 */
1224
1225	/* copy maps from 0xfee00000 to 0xff000000 */
1226	movel	#0xfee00000, %d0
1227	moveq	#ROOT_INDEX_SHIFT, %d1
1228	lsrl	%d1,%d0
1229	mmu_get_root_table_entry	%d0
1230
1231	movel	#0xfee00000, %d0
1232	moveq	#PTR_INDEX_SHIFT, %d1
1233	lsrl	%d1,%d0
1234	andl	#PTR_TABLE_SIZE-1, %d0
1235	mmu_get_ptr_table_entry		%a0,%d0
1236
1237	movel	#0xfee00000, %d0
1238	moveq	#PAGE_INDEX_SHIFT, %d1
1239	lsrl	%d1,%d0
1240	andl	#PAGE_TABLE_SIZE-1, %d0
1241	mmu_get_page_table_entry	%a0,%d0
1242
1243	/* this is where the prom page table lives */
1244	movel	0xfefe00d4, %a1
1245	movel	%a1@, %a1
1246
1247	movel	#((0x200000 >> 13)-1), %d1
1248
12491:
1250	movel	%a1@+, %d3
1251	movel	%d3,%a0@+
1252	addl	#0x1000,%d3
1253	movel	%d3,%a0@+
1254
1255	dbra	%d1,1b
1256
1257	/* setup tt1 for I/O */
1258	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1259	jbra	L(mmu_init_done)
1260
1261L(notsun3x):
1262#endif
1263
1264#ifdef CONFIG_APOLLO
1265	is_not_apollo(L(notapollo))
1266
1267	putc	'P'
1268	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1269
1270L(notapollo):
1271	jbra	L(mmu_init_done)
1272#endif
1273
1274L(mmu_init_done):
1275
1276	putc	'G'
1277	leds	0x8
1278
1279/*
1280 * mmu_fixup
1281 *
1282 * On the 040 class machines, all pages that are used for the
1283 * mmu have to be fixed up. According to Motorola, pages holding mmu
1284 * tables should be non-cacheable on a '040 and write-through on a
1285 * '060. But analysis of the reasons for this, and practical
1286 * experience, showed that write-through also works on a '040.
1287 *
1288 * Allocated memory so far goes from kernel_end to memory_start that
1289 * is used for all kind of tables, for that the cache attributes
1290 * are now fixed.
1291 */
1292L(mmu_fixup):
1293
1294	is_not_040_or_060(L(mmu_fixup_done))
1295
1296#ifdef MMU_NOCACHE_KERNEL
1297	jbra	L(mmu_fixup_done)
1298#endif
1299
1300	/* first fix the page at the start of the kernel, that
1301	 * contains also kernel_pg_dir.
1302	 */
1303	movel	%pc@(L(phys_kernel_start)),%d0
1304	subl	#PAGE_OFFSET,%d0
1305	lea	%pc@(_stext),%a0
1306	subl	%d0,%a0
1307	mmu_fixup_page_mmu_cache	%a0
1308
1309	movel	%pc@(L(kernel_end)),%a0
1310	subl	%d0,%a0
1311	movel	%pc@(L(memory_start)),%a1
1312	subl	%d0,%a1
1313	bra	2f
13141:
1315	mmu_fixup_page_mmu_cache	%a0
1316	addw	#PAGESIZE,%a0
13172:
1318	cmpl	%a0,%a1
1319	jgt	1b
1320
1321L(mmu_fixup_done):
1322
1323#ifdef MMU_PRINT
1324	mmu_print
1325#endif
1326
1327/*
1328 * mmu_engage
1329 *
1330 * This chunk of code performs the gruesome task of engaging the MMU.
1331 * The reason its gruesome is because when the MMU becomes engaged it
1332 * maps logical addresses to physical addresses.  The Program Counter
1333 * register is then passed through the MMU before the next instruction
1334 * is fetched (the instruction following the engage MMU instruction).
1335 * This may mean one of two things:
1336 * 1. The Program Counter falls within the logical address space of
1337 *    the kernel of which there are two sub-possibilities:
1338 *    A. The PC maps to the correct instruction (logical PC == physical
1339 *       code location), or
1340 *    B. The PC does not map through and the processor will read some
1341 *       data (or instruction) which is not the logically next instr.
1342 *    As you can imagine, A is good and B is bad.
1343 * Alternatively,
1344 * 2. The Program Counter does not map through the MMU.  The processor
1345 *    will take a Bus Error.
1346 * Clearly, 2 is bad.
1347 * It doesn't take a wiz kid to figure you want 1.A.
1348 * This code creates that possibility.
1349 * There are two possible 1.A. states (we now ignore the other above states):
1350 * A. The kernel is located at physical memory addressed the same as
1351 *    the logical memory for the kernel, i.e., 0x01000.
1352 * B. The kernel is located some where else.  e.g., 0x0400.0000
1353 *
1354 *    Under some conditions the Macintosh can look like A or B.
1355 * [A friend and I once noted that Apple hardware engineers should be
1356 * wacked twice each day: once when they show up at work (as in, Whack!,
1357 * "This is for the screwy hardware we know you're going to design today."),
1358 * and also at the end of the day (as in, Whack! "I don't know what
1359 * you designed today, but I'm sure it wasn't good."). -- rst]
1360 *
1361 * This code works on the following premise:
1362 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1363 * then create a mapping for the kernel at logical 0x8000.0000 to
1364 * the physical location of the pc.  And, create a transparent
1365 * translation register for the first 16 Meg.  Then, after the MMU
1366 * is engaged, the PC can be moved up into the 0x8000.0000 range
1367 * and then the transparent translation can be turned off and then
1368 * the PC can jump to the correct logical location and it will be
1369 * home (finally).  This is essentially the code that the Amiga used
1370 * to use.  Now, it's generalized for all processors.  Which means
1371 * that a fresh (but temporary) mapping has to be created.  The mapping
1372 * is made in page 0 (an as of yet unused location -- except for the
1373 * stack!).  This temporary mapping will only require 1 pointer table
1374 * and a single page table (it can map 256K).
1375 *
1376 * OK, alternatively, imagine that the Program Counter is not within
1377 * the first 16 Meg.  Then, just use Transparent Translation registers
1378 * to do the right thing.
1379 *
1380 * Last, if _start is already at 0x01000, then there's nothing special
1381 * to do (in other words, in a degenerate case of the first case above,
1382 * do nothing).
1383 *
1384 * Let's do it.
1385 *
1386 *
1387 */
1388
1389	putc	'H'
1390
1391	mmu_engage
1392
1393/*
1394 * After this point no new memory is allocated and
1395 * the start of available memory is stored in availmem.
1396 * (The bootmem allocator requires now the physicall address.)
1397 */
1398
1399	movel	L(memory_start),availmem
1400
1401#ifdef CONFIG_AMIGA
1402	is_not_amiga(1f)
1403	/* fixup the Amiga custom register location before printing */
1404	clrl	L(custom)
14051:
1406#endif
1407
1408#ifdef CONFIG_ATARI
1409	is_not_atari(1f)
1410	/* fixup the Atari iobase register location before printing */
1411	movel	#0xff000000,L(iobase)
14121:
1413#endif
1414
1415#ifdef CONFIG_MAC
1416	is_not_mac(1f)
1417	movel	#~VIDEOMEMMASK,%d0
1418	andl	L(mac_videobase),%d0
1419	addl	#VIDEOMEMBASE,%d0
1420	movel	%d0,L(mac_videobase)
1421#if defined(CONSOLE)
1422	movel	%pc@(L(phys_kernel_start)),%d0
1423	subl	#PAGE_OFFSET,%d0
1424	subl	%d0,L(console_font)
1425	subl	%d0,L(console_font_data)
1426#endif
1427#ifdef SERIAL_DEBUG
1428	orl	#0x50000000,L(mac_sccbase)
1429#endif
14301:
1431#endif
1432
1433#ifdef CONFIG_HP300
1434	is_not_hp300(2f)
1435	/*
1436	 * Fix up the iobase register to point to the new location of the LEDs.
1437	 */
1438	movel	#0xf0000000,L(iobase)
1439
1440	/*
1441	 * Energise the FPU and caches.
1442	 */
1443	is_040(1f)
1444	movel	#0x60,0xf05f400c
1445	jbra	2f
1446
1447	/*
1448	 * 040: slightly different, apparently.
1449	 */
14501:	movew	#0,0xf05f400e
1451	movew	#0x64,0xf05f400e
14522:
1453#endif
1454
1455#ifdef CONFIG_SUN3X
1456	is_not_sun3x(1f)
1457
1458	/* enable copro */
1459	oriw	#0x4000,0x61000000
14601:
1461#endif
1462
1463#ifdef CONFIG_APOLLO
1464	is_not_apollo(1f)
1465
1466	/*
1467	 * Fix up the iobase before printing
1468	 */
1469	movel	#0x80000000,L(iobase)
14701:
1471#endif
1472
1473	putc	'I'
1474	leds	0x10
1475
1476/*
1477 * Enable caches
1478 */
1479
1480	is_not_040_or_060(L(cache_not_680460))
1481
1482L(cache680460):
1483	.chip	68040
1484	nop
1485	cpusha	%bc
1486	nop
1487
1488	is_060(L(cache68060))
1489
1490	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1491	/* MMU stuff works in copyback mode now, so enable the cache */
1492	movec	%d0,%cacr
1493	jra	L(cache_done)
1494
1495L(cache68060):
1496	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1497	/* MMU stuff works in copyback mode now, so enable the cache */
1498	movec	%d0,%cacr
1499	/* enable superscalar dispatch in PCR */
1500	moveq	#1,%d0
1501	.chip	68060
1502	movec	%d0,%pcr
1503
1504	jbra	L(cache_done)
1505L(cache_not_680460):
1506L(cache68030):
1507	.chip	68030
1508	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1509	movec	%d0,%cacr
1510
1511	jra	L(cache_done)
1512	.chip	68k
1513L(cache_done):
1514
1515	putc	'J'
1516
1517/*
1518 * Setup initial stack pointer
1519 */
1520	lea	init_task,%curptr
1521	lea	init_thread_union+THREAD_SIZE,%sp
1522
1523	putc	'K'
1524
1525	subl	%a6,%a6		/* clear a6 for gdb */
1526
1527/*
1528 * The new 64bit printf support requires an early exception initialization.
1529 */
1530	jbsr	base_trap_init
1531
1532/* jump to the kernel start */
1533
1534	putc	'\n'
1535	leds	0x55
1536
1537	jbsr	start_kernel
1538
1539/*
1540 * Find a tag record in the bootinfo structure
1541 * The bootinfo structure is located right after the kernel
1542 * Returns: d0: size (-1 if not found)
1543 *          a0: data pointer (end-of-records if not found)
1544 */
1545func_start	get_bi_record,%d1
1546
1547	movel	ARG1,%d0
1548	lea	%pc@(_end),%a0
15491:	tstw	%a0@(BIR_TAG)
1550	jeq	3f
1551	cmpw	%a0@(BIR_TAG),%d0
1552	jeq	2f
1553	addw	%a0@(BIR_SIZE),%a0
1554	jra	1b
15552:	moveq	#0,%d0
1556	movew	%a0@(BIR_SIZE),%d0
1557	lea	%a0@(BIR_DATA),%a0
1558	jra	4f
15593:	moveq	#-1,%d0
1560	lea	%a0@(BIR_SIZE),%a0
15614:
1562func_return	get_bi_record
1563
1564
1565/*
1566 *	MMU Initialization Begins Here
1567 *
1568 *	The structure of the MMU tables on the 68k machines
1569 *	is thus:
1570 *	Root Table
1571 *		Logical addresses are translated through
1572 *	a hierarchical translation mechanism where the high-order
1573 *	seven bits of the logical address (LA) are used as an
1574 *	index into the "root table."  Each entry in the root
1575 *	table has a bit which specifies if it's a valid pointer to a
1576 *	pointer table.  Each entry defines a 32KMeg range of memory.
1577 *	If an entry is invalid then that logical range of 32M is
1578 *	invalid and references to that range of memory (when the MMU
1579 *	is enabled) will fault.  If the entry is valid, then it does
1580 *	one of two things.  On 040/060 class machines, it points to
1581 *	a pointer table which then describes more finely the memory
1582 *	within that 32M range.  On 020/030 class machines, a technique
1583 *	called "early terminating descriptors" are used.  This technique
1584 *	allows an entire 32Meg to be described by a single entry in the
1585 *	root table.  Thus, this entry in the root table, contains the
1586 *	physical address of the memory or I/O at the logical address
1587 *	which the entry represents and it also contains the necessary
1588 *	cache bits for this region.
1589 *
1590 *	Pointer Tables
1591 *		Per the Root Table, there will be one or more
1592 *	pointer tables.  Each pointer table defines a 32M range.
1593 *	Not all of the 32M range need be defined.  Again, the next
1594 *	seven bits of the logical address are used an index into
1595 *	the pointer table to point to page tables (if the pointer
1596 *	is valid).  There will undoubtedly be more than one
1597 *	pointer table for the kernel because each pointer table
1598 *	defines a range of only 32M.  Valid pointer table entries
1599 *	point to page tables, or are early terminating entries
1600 *	themselves.
1601 *
1602 *	Page Tables
1603 *		Per the Pointer Tables, each page table entry points
1604 *	to the physical page in memory that supports the logical
1605 *	address that translates to the particular index.
1606 *
1607 *	In short, the Logical Address gets translated as follows:
1608 *		bits 31..26 - index into the Root Table
1609 *		bits 25..18 - index into the Pointer Table
1610 *		bits 17..12 - index into the Page Table
1611 *		bits 11..0  - offset into a particular 4K page
1612 *
1613 *	The algorithms which follows do one thing: they abstract
1614 *	the MMU hardware.  For example, there are three kinds of
1615 *	cache settings that are relevant.  Either, memory is
1616 *	being mapped in which case it is either Kernel Code (or
1617 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1618 *	option also describes the kernel.  Or, I/O is being mapped
1619 *	in which case it has its own kind of cache bits.  There
1620 *	are constants which abstract these notions from the code that
1621 *	actually makes the call to map some range of memory.
1622 *
1623 *
1624 *
1625 */
1626
1627#ifdef MMU_PRINT
1628/*
1629 *	mmu_print
1630 *
1631 *	This algorithm will print out the current MMU mappings.
1632 *
1633 *	Input:
1634 *		%a5 points to the root table.  Everything else is calculated
1635 *			from this.
1636 */
1637
1638#define mmu_next_valid		0
1639#define mmu_start_logical	4
1640#define mmu_next_logical	8
1641#define mmu_start_physical	12
1642#define mmu_next_physical	16
1643
1644#define MMU_PRINT_INVALID		-1
1645#define MMU_PRINT_VALID			1
1646#define MMU_PRINT_UNINITED		0
1647
1648#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1649
1650func_start	mmu_print,%a0-%a6/%d0-%d7
1651
1652	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1653	lea	%pc@(L(mmu_print_data)),%a0
1654	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1655
1656	is_not_040_or_060(mmu_030_print)
1657
1658mmu_040_print:
1659	puts	"\nMMU040\n"
1660	puts	"rp:"
1661	putn	%a5
1662	putc	'\n'
1663#if 0
1664	/*
1665	 * The following #if/#endif block is a tight algorithm for dumping the 040
1666	 * MMU Map in gory detail.  It really isn't that practical unless the
1667	 * MMU Map algorithm appears to go awry and you need to debug it at the
1668	 * entry per entry level.
1669	 */
1670	movel	#ROOT_TABLE_SIZE,%d5
1671#if 0
1672	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1673	subql	#1,%d5			| they (might) work
1674#endif
16751:	tstl	%d5
1676	jbeq	mmu_print_done
1677	subq	#1,%d5
1678	movel	%a5@+,%d7
1679	btst	#1,%d7
1680	jbeq	1b
1681
16822:	putn	%d7
1683	andil	#0xFFFFFE00,%d7
1684	movel	%d7,%a4
1685	movel	#PTR_TABLE_SIZE,%d4
1686	putc	' '
16873:	tstl	%d4
1688	jbeq	11f
1689	subq	#1,%d4
1690	movel	%a4@+,%d7
1691	btst	#1,%d7
1692	jbeq	3b
1693
16944:	putn	%d7
1695	andil	#0xFFFFFF00,%d7
1696	movel	%d7,%a3
1697	movel	#PAGE_TABLE_SIZE,%d3
16985:	movel	#8,%d2
16996:	tstl	%d3
1700	jbeq	31f
1701	subq	#1,%d3
1702	movel	%a3@+,%d6
1703	btst	#0,%d6
1704	jbeq	6b
17057:	tstl	%d2
1706	jbeq	8f
1707	subq	#1,%d2
1708	putc	' '
1709	jbra	91f
17108:	putc	'\n'
1711	movel	#8+1+8+1+1,%d2
17129:	putc	' '
1713	dbra	%d2,9b
1714	movel	#7,%d2
171591:	putn	%d6
1716	jbra	6b
1717
171831:	putc	'\n'
1719	movel	#8+1,%d2
172032:	putc	' '
1721	dbra	%d2,32b
1722	jbra	3b
1723
172411:	putc	'\n'
1725	jbra	1b
1726#endif /* MMU 040 Dumping code that's gory and detailed */
1727
1728	lea	%pc@(kernel_pg_dir),%a5
1729	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1730	movel	#0x00000000,%a4		/* logical address */
1731	moveql	#0,%d0
173240:
1733	/* Increment the logical address and preserve in d5 */
1734	movel	%a4,%d5
1735	addil	#PAGESIZE<<13,%d5
1736	movel	%a0@+,%d6
1737	btst	#1,%d6
1738	jbne	41f
1739	jbsr	mmu_print_tuple_invalidate
1740	jbra	48f
174141:
1742	movel	#0,%d1
1743	andil	#0xfffffe00,%d6
1744	movel	%d6,%a1
174542:
1746	movel	%a4,%d5
1747	addil	#PAGESIZE<<6,%d5
1748	movel	%a1@+,%d6
1749	btst	#1,%d6
1750	jbne	43f
1751	jbsr	mmu_print_tuple_invalidate
1752	jbra	47f
175343:
1754	movel	#0,%d2
1755	andil	#0xffffff00,%d6
1756	movel	%d6,%a2
175744:
1758	movel	%a4,%d5
1759	addil	#PAGESIZE,%d5
1760	movel	%a2@+,%d6
1761	btst	#0,%d6
1762	jbne	45f
1763	jbsr	mmu_print_tuple_invalidate
1764	jbra	46f
176545:
1766	moveml	%d0-%d1,%sp@-
1767	movel	%a4,%d0
1768	movel	%d6,%d1
1769	andil	#0xfffff4e0,%d1
1770	lea	%pc@(mmu_040_print_flags),%a6
1771	jbsr	mmu_print_tuple
1772	moveml	%sp@+,%d0-%d1
177346:
1774	movel	%d5,%a4
1775	addq	#1,%d2
1776	cmpib	#64,%d2
1777	jbne	44b
177847:
1779	movel	%d5,%a4
1780	addq	#1,%d1
1781	cmpib	#128,%d1
1782	jbne	42b
178348:
1784	movel	%d5,%a4			/* move to the next logical address */
1785	addq	#1,%d0
1786	cmpib	#128,%d0
1787	jbne	40b
1788
1789	.chip	68040
1790	movec	%dtt1,%d0
1791	movel	%d0,%d1
1792	andiw	#0x8000,%d1		/* is it valid ? */
1793	jbeq	1f			/* No, bail out */
1794
1795	movel	%d0,%d1
1796	andil	#0xff000000,%d1		/* Get the address */
1797	putn	%d1
1798	puts	"=="
1799	putn	%d1
1800
1801	movel	%d0,%d6
1802	jbsr	mmu_040_print_flags_tt
18031:
1804	movec	%dtt0,%d0
1805	movel	%d0,%d1
1806	andiw	#0x8000,%d1		/* is it valid ? */
1807	jbeq	1f			/* No, bail out */
1808
1809	movel	%d0,%d1
1810	andil	#0xff000000,%d1		/* Get the address */
1811	putn	%d1
1812	puts	"=="
1813	putn	%d1
1814
1815	movel	%d0,%d6
1816	jbsr	mmu_040_print_flags_tt
18171:
1818	.chip	68k
1819
1820	jbra	mmu_print_done
1821
1822mmu_040_print_flags:
1823	btstl	#10,%d6
1824	putZc(' ','G')	/* global bit */
1825	btstl	#7,%d6
1826	putZc(' ','S')	/* supervisor bit */
1827mmu_040_print_flags_tt:
1828	btstl	#6,%d6
1829	jbne	3f
1830	putc	'C'
1831	btstl	#5,%d6
1832	putZc('w','c')	/* write through or copy-back */
1833	jbra	4f
18343:
1835	putc	'N'
1836	btstl	#5,%d6
1837	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18384:
1839	rts
1840
1841mmu_030_print_flags:
1842	btstl	#6,%d6
1843	putZc('C','I')	/* write through or copy-back */
1844	rts
1845
1846mmu_030_print:
1847	puts	"\nMMU030\n"
1848	puts	"\nrp:"
1849	putn	%a5
1850	putc	'\n'
1851	movel	%a5,%d0
1852	andil	#0xfffffff0,%d0
1853	movel	%d0,%a0
1854	movel	#0x00000000,%a4		/* logical address */
1855	movel	#0,%d0
185630:
1857	movel	%a4,%d5
1858	addil	#PAGESIZE<<13,%d5
1859	movel	%a0@+,%d6
1860	btst	#1,%d6			/* is it a table ptr? */
1861	jbne	31f			/* yes */
1862	btst	#0,%d6			/* is it early terminating? */
1863	jbeq	1f			/* no */
1864	jbsr	mmu_030_print_helper
1865	jbra	38f
18661:
1867	jbsr	mmu_print_tuple_invalidate
1868	jbra	38f
186931:
1870	movel	#0,%d1
1871	andil	#0xfffffff0,%d6
1872	movel	%d6,%a1
187332:
1874	movel	%a4,%d5
1875	addil	#PAGESIZE<<6,%d5
1876	movel	%a1@+,%d6
1877	btst	#1,%d6			/* is it a table ptr? */
1878	jbne	33f			/* yes */
1879	btst	#0,%d6			/* is it a page descriptor? */
1880	jbeq	1f			/* no */
1881	jbsr	mmu_030_print_helper
1882	jbra	37f
18831:
1884	jbsr	mmu_print_tuple_invalidate
1885	jbra	37f
188633:
1887	movel	#0,%d2
1888	andil	#0xfffffff0,%d6
1889	movel	%d6,%a2
189034:
1891	movel	%a4,%d5
1892	addil	#PAGESIZE,%d5
1893	movel	%a2@+,%d6
1894	btst	#0,%d6
1895	jbne	35f
1896	jbsr	mmu_print_tuple_invalidate
1897	jbra	36f
189835:
1899	jbsr	mmu_030_print_helper
190036:
1901	movel	%d5,%a4
1902	addq	#1,%d2
1903	cmpib	#64,%d2
1904	jbne	34b
190537:
1906	movel	%d5,%a4
1907	addq	#1,%d1
1908	cmpib	#128,%d1
1909	jbne	32b
191038:
1911	movel	%d5,%a4			/* move to the next logical address */
1912	addq	#1,%d0
1913	cmpib	#128,%d0
1914	jbne	30b
1915
1916mmu_print_done:
1917	puts	"\n"
1918
1919func_return	mmu_print
1920
1921
1922mmu_030_print_helper:
1923	moveml	%d0-%d1,%sp@-
1924	movel	%a4,%d0
1925	movel	%d6,%d1
1926	lea	%pc@(mmu_030_print_flags),%a6
1927	jbsr	mmu_print_tuple
1928	moveml	%sp@+,%d0-%d1
1929	rts
1930
1931mmu_print_tuple_invalidate:
1932	moveml	%a0/%d7,%sp@-
1933
1934	lea	%pc@(L(mmu_print_data)),%a0
1935	tstl	%a0@(mmu_next_valid)
1936	jbmi	mmu_print_tuple_invalidate_exit
1937
1938	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1939
1940	putn	%a4
1941
1942	puts	"##\n"
1943
1944mmu_print_tuple_invalidate_exit:
1945	moveml	%sp@+,%a0/%d7
1946	rts
1947
1948
1949mmu_print_tuple:
1950	moveml	%d0-%d7/%a0,%sp@-
1951
1952	lea	%pc@(L(mmu_print_data)),%a0
1953
1954	tstl	%a0@(mmu_next_valid)
1955	jble	mmu_print_tuple_print
1956
1957	cmpl	%a0@(mmu_next_physical),%d1
1958	jbeq	mmu_print_tuple_increment
1959
1960mmu_print_tuple_print:
1961	putn	%d0
1962	puts	"->"
1963	putn	%d1
1964
1965	movel	%d1,%d6
1966	jbsr	%a6@
1967
1968mmu_print_tuple_record:
1969	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1970
1971	movel	%d1,%a0@(mmu_next_physical)
1972
1973mmu_print_tuple_increment:
1974	movel	%d5,%d7
1975	subl	%a4,%d7
1976	addl	%d7,%a0@(mmu_next_physical)
1977
1978mmu_print_tuple_exit:
1979	moveml	%sp@+,%d0-%d7/%a0
1980	rts
1981
1982mmu_print_machine_cpu_types:
1983	puts	"machine: "
1984
1985	is_not_amiga(1f)
1986	puts	"amiga"
1987	jbra	9f
19881:
1989	is_not_atari(2f)
1990	puts	"atari"
1991	jbra	9f
19922:
1993	is_not_mac(3f)
1994	puts	"macintosh"
1995	jbra	9f
19963:	puts	"unknown"
19979:	putc	'\n'
1998
1999	puts	"cputype: 0"
2000	is_not_060(1f)
2001	putc	'6'
2002	jbra	9f
20031:
2004	is_not_040_or_060(2f)
2005	putc	'4'
2006	jbra	9f
20072:	putc	'3'
20089:	putc	'0'
2009	putc	'\n'
2010
2011	rts
2012#endif /* MMU_PRINT */
2013
2014/*
2015 * mmu_map_tt
2016 *
2017 * This is a specific function which works on all 680x0 machines.
2018 * On 030, 040 & 060 it will attempt to use Transparent Translation
2019 * registers (tt1).
2020 * On 020 it will call the standard mmu_map which will use early
2021 * terminating descriptors.
2022 */
2023func_start	mmu_map_tt,%d0/%d1/%a0,4
2024
2025	dputs	"mmu_map_tt:"
2026	dputn	ARG1
2027	dputn	ARG2
2028	dputn	ARG3
2029	dputn	ARG4
2030	dputc	'\n'
2031
2032	is_020(L(do_map))
2033
2034	/* Extract the highest bit set
2035	 */
2036	bfffo	ARG3{#0,#32},%d1
2037	cmpw	#8,%d1
2038	jcc	L(do_map)
2039
2040	/* And get the mask
2041	 */
2042	moveq	#-1,%d0
2043	lsrl	%d1,%d0
2044	lsrl	#1,%d0
2045
2046	/* Mask the address
2047	 */
2048	movel	%d0,%d1
2049	notl	%d1
2050	andl	ARG2,%d1
2051
2052	/* Generate the upper 16bit of the tt register
2053	 */
2054	lsrl	#8,%d0
2055	orl	%d0,%d1
2056	clrw	%d1
2057
2058	is_040_or_060(L(mmu_map_tt_040))
2059
2060	/* set 030 specific bits (read/write access for supervisor mode
2061	 * (highest function code set, lower two bits masked))
2062	 */
2063	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2064	movel	ARG4,%d0
2065	btst	#6,%d0
2066	jeq	1f
2067	orw	#TTR_CI,%d1
2068
20691:	lea	STACK,%a0
2070	dputn	%d1
2071	movel	%d1,%a0@
2072	.chip	68030
2073	tstl	ARG1
2074	jne	1f
2075	pmove	%a0@,%tt0
2076	jra	2f
20771:	pmove	%a0@,%tt1
20782:	.chip	68k
2079	jra	L(mmu_map_tt_done)
2080
2081	/* set 040 specific bits
2082	 */
2083L(mmu_map_tt_040):
2084	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2085	orl	ARG4,%d1
2086	dputn	%d1
2087
2088	.chip	68040
2089	tstl	ARG1
2090	jne	1f
2091	movec	%d1,%itt0
2092	movec	%d1,%dtt0
2093	jra	2f
20941:	movec	%d1,%itt1
2095	movec	%d1,%dtt1
20962:	.chip	68k
2097
2098	jra	L(mmu_map_tt_done)
2099
2100L(do_map):
2101	mmu_map_eq	ARG2,ARG3,ARG4
2102
2103L(mmu_map_tt_done):
2104
2105func_return	mmu_map_tt
2106
2107/*
2108 *	mmu_map
2109 *
2110 *	This routine will map a range of memory using a pointer
2111 *	table and allocating the pages on the fly from the kernel.
2112 *	The pointer table does not have to be already linked into
2113 *	the root table, this routine will do that if necessary.
2114 *
2115 *	NOTE
2116 *	This routine will assert failure and use the serial_putc
2117 *	routines in the case of a run-time error.  For example,
2118 *	if the address is already mapped.
2119 *
2120 *	NOTE-2
2121 *	This routine will use early terminating descriptors
2122 *	where possible for the 68020+68851 and 68030 type
2123 *	processors.
2124 */
2125func_start	mmu_map,%d0-%d4/%a0-%a4
2126
2127	dputs	"\nmmu_map:"
2128	dputn	ARG1
2129	dputn	ARG2
2130	dputn	ARG3
2131	dputn	ARG4
2132	dputc	'\n'
2133
2134	/* Get logical address and round it down to 256KB
2135	 */
2136	movel	ARG1,%d0
2137	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2138	movel	%d0,%a3
2139
2140	/* Get the end address
2141	 */
2142	movel	ARG1,%a4
2143	addl	ARG3,%a4
2144	subql	#1,%a4
2145
2146	/* Get physical address and round it down to 256KB
2147	 */
2148	movel	ARG2,%d0
2149	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2150	movel	%d0,%a2
2151
2152	/* Add page attributes to the physical address
2153	 */
2154	movel	ARG4,%d0
2155	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2156	addw	%d0,%a2
2157
2158	dputn	%a2
2159	dputn	%a3
2160	dputn	%a4
2161
2162	is_not_040_or_060(L(mmu_map_030))
2163
2164	addw	#_PAGE_GLOBAL040,%a2
2165/*
2166 *	MMU 040 & 060 Support
2167 *
2168 *	The MMU usage for the 040 and 060 is different enough from
2169 *	the 030 and 68851 that there is separate code.  This comment
2170 *	block describes the data structures and algorithms built by
2171 *	this code.
2172 *
2173 *	The 040 does not support early terminating descriptors, as
2174 *	the 030 does.  Therefore, a third level of table is needed
2175 *	for the 040, and that would be the page table.  In Linux,
2176 *	page tables are allocated directly from the memory above the
2177 *	kernel.
2178 *
2179 */
2180
2181L(mmu_map_040):
2182	/* Calculate the offset into the root table
2183	 */
2184	movel	%a3,%d0
2185	moveq	#ROOT_INDEX_SHIFT,%d1
2186	lsrl	%d1,%d0
2187	mmu_get_root_table_entry	%d0
2188
2189	/* Calculate the offset into the pointer table
2190	 */
2191	movel	%a3,%d0
2192	moveq	#PTR_INDEX_SHIFT,%d1
2193	lsrl	%d1,%d0
2194	andl	#PTR_TABLE_SIZE-1,%d0
2195	mmu_get_ptr_table_entry		%a0,%d0
2196
2197	/* Calculate the offset into the page table
2198	 */
2199	movel	%a3,%d0
2200	moveq	#PAGE_INDEX_SHIFT,%d1
2201	lsrl	%d1,%d0
2202	andl	#PAGE_TABLE_SIZE-1,%d0
2203	mmu_get_page_table_entry	%a0,%d0
2204
2205	/* The page table entry must not no be busy
2206	 */
2207	tstl	%a0@
2208	jne	L(mmu_map_error)
2209
2210	/* Do the mapping and advance the pointers
2211	 */
2212	movel	%a2,%a0@
22132:
2214	addw	#PAGESIZE,%a2
2215	addw	#PAGESIZE,%a3
2216
2217	/* Ready with mapping?
2218	 */
2219	lea	%a3@(-1),%a0
2220	cmpl	%a0,%a4
2221	jhi	L(mmu_map_040)
2222	jra	L(mmu_map_done)
2223
2224L(mmu_map_030):
2225	/* Calculate the offset into the root table
2226	 */
2227	movel	%a3,%d0
2228	moveq	#ROOT_INDEX_SHIFT,%d1
2229	lsrl	%d1,%d0
2230	mmu_get_root_table_entry	%d0
2231
2232	/* Check if logical address 32MB aligned,
2233	 * so we can try to map it once
2234	 */
2235	movel	%a3,%d0
2236	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2237	jne	1f
2238
2239	/* Is there enough to map for 32MB at once
2240	 */
2241	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2242	cmpl	%a1,%a4
2243	jcs	1f
2244
2245	addql	#1,%a1
2246
2247	/* The root table entry must not no be busy
2248	 */
2249	tstl	%a0@
2250	jne	L(mmu_map_error)
2251
2252	/* Do the mapping and advance the pointers
2253	 */
2254	dputs	"early term1"
2255	dputn	%a2
2256	dputn	%a3
2257	dputn	%a1
2258	dputc	'\n'
2259	movel	%a2,%a0@
2260
2261	movel	%a1,%a3
2262	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2263	jra	L(mmu_mapnext_030)
22641:
2265	/* Calculate the offset into the pointer table
2266	 */
2267	movel	%a3,%d0
2268	moveq	#PTR_INDEX_SHIFT,%d1
2269	lsrl	%d1,%d0
2270	andl	#PTR_TABLE_SIZE-1,%d0
2271	mmu_get_ptr_table_entry		%a0,%d0
2272
2273	/* The pointer table entry must not no be busy
2274	 */
2275	tstl	%a0@
2276	jne	L(mmu_map_error)
2277
2278	/* Do the mapping and advance the pointers
2279	 */
2280	dputs	"early term2"
2281	dputn	%a2
2282	dputn	%a3
2283	dputc	'\n'
2284	movel	%a2,%a0@
2285
2286	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2287	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2288
2289L(mmu_mapnext_030):
2290	/* Ready with mapping?
2291	 */
2292	lea	%a3@(-1),%a0
2293	cmpl	%a0,%a4
2294	jhi	L(mmu_map_030)
2295	jra	L(mmu_map_done)
2296
2297L(mmu_map_error):
2298
2299	dputs	"mmu_map error:"
2300	dputn	%a2
2301	dputn	%a3
2302	dputc	'\n'
2303
2304L(mmu_map_done):
2305
2306func_return	mmu_map
2307
2308/*
2309 *	mmu_fixup
2310 *
2311 *	On the 040 class machines, all pages that are used for the
2312 *	mmu have to be fixed up.
2313 */
2314
2315func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2316
2317	dputs	"mmu_fixup_page_mmu_cache"
2318	dputn	ARG1
2319
2320	/* Calculate the offset into the root table
2321	 */
2322	movel	ARG1,%d0
2323	moveq	#ROOT_INDEX_SHIFT,%d1
2324	lsrl	%d1,%d0
2325	mmu_get_root_table_entry	%d0
2326
2327	/* Calculate the offset into the pointer table
2328	 */
2329	movel	ARG1,%d0
2330	moveq	#PTR_INDEX_SHIFT,%d1
2331	lsrl	%d1,%d0
2332	andl	#PTR_TABLE_SIZE-1,%d0
2333	mmu_get_ptr_table_entry		%a0,%d0
2334
2335	/* Calculate the offset into the page table
2336	 */
2337	movel	ARG1,%d0
2338	moveq	#PAGE_INDEX_SHIFT,%d1
2339	lsrl	%d1,%d0
2340	andl	#PAGE_TABLE_SIZE-1,%d0
2341	mmu_get_page_table_entry	%a0,%d0
2342
2343	movel	%a0@,%d0
2344	andil	#_CACHEMASK040,%d0
2345	orl	%pc@(m68k_pgtable_cachemode),%d0
2346	movel	%d0,%a0@
2347
2348	dputc	'\n'
2349
2350func_return	mmu_fixup_page_mmu_cache
2351
2352/*
2353 *	mmu_temp_map
2354 *
2355 *	create a temporary mapping to enable the mmu,
2356 *	this we don't need any transparation translation tricks.
2357 */
2358
2359func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2360
2361	dputs	"mmu_temp_map"
2362	dputn	ARG1
2363	dputn	ARG2
2364	dputc	'\n'
2365
2366	lea	%pc@(L(temp_mmap_mem)),%a1
2367
2368	/* Calculate the offset in the root table
2369	 */
2370	movel	ARG2,%d0
2371	moveq	#ROOT_INDEX_SHIFT,%d1
2372	lsrl	%d1,%d0
2373	mmu_get_root_table_entry	%d0
2374
2375	/* Check if the table is temporary allocated, so we have to reuse it
2376	 */
2377	movel	%a0@,%d0
2378	cmpl	%pc@(L(memory_start)),%d0
2379	jcc	1f
2380
2381	/* Temporary allocate a ptr table and insert it into the root table
2382	 */
2383	movel	%a1@,%d0
2384	addl	#PTR_TABLE_SIZE*4,%a1@
2385	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2386	movel	%d0,%a0@
2387	dputs	" (new)"
23881:
2389	dputn	%d0
2390	/* Mask the root table entry for the ptr table
2391	 */
2392	andw	#-ROOT_TABLE_SIZE,%d0
2393	movel	%d0,%a0
2394
2395	/* Calculate the offset into the pointer table
2396	 */
2397	movel	ARG2,%d0
2398	moveq	#PTR_INDEX_SHIFT,%d1
2399	lsrl	%d1,%d0
2400	andl	#PTR_TABLE_SIZE-1,%d0
2401	lea	%a0@(%d0*4),%a0
2402	dputn	%a0
2403
2404	/* Check if a temporary page table is already allocated
2405	 */
2406	movel	%a0@,%d0
2407	jne	1f
2408
2409	/* Temporary allocate a page table and insert it into the ptr table
2410	 */
2411	movel	%a1@,%d0
2412	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2413	   alignment restriction for pointer tables on the '0[46]0.  */
2414	addl	#512,%a1@
2415	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2416	movel	%d0,%a0@
2417	dputs	" (new)"
24181:
2419	dputn	%d0
2420	/* Mask the ptr table entry for the page table
2421	 */
2422	andw	#-PTR_TABLE_SIZE,%d0
2423	movel	%d0,%a0
2424
2425	/* Calculate the offset into the page table
2426	 */
2427	movel	ARG2,%d0
2428	moveq	#PAGE_INDEX_SHIFT,%d1
2429	lsrl	%d1,%d0
2430	andl	#PAGE_TABLE_SIZE-1,%d0
2431	lea	%a0@(%d0*4),%a0
2432	dputn	%a0
2433
2434	/* Insert the address into the page table
2435	 */
2436	movel	ARG1,%d0
2437	andw	#-PAGESIZE,%d0
2438	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2439	movel	%d0,%a0@
2440	dputn	%d0
2441
2442	dputc	'\n'
2443
2444func_return	mmu_temp_map
2445
2446func_start	mmu_engage,%d0-%d2/%a0-%a3
2447
2448	moveq	#ROOT_TABLE_SIZE-1,%d0
2449	/* Temporarily use a different root table.  */
2450	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2451	movel	%a0@,%a2
2452	movel	%pc@(L(memory_start)),%a1
2453	movel	%a1,%a0@
2454	movel	%a2,%a0
24551:
2456	movel	%a0@+,%a1@+
2457	dbra	%d0,1b
2458
2459	lea	%pc@(L(temp_mmap_mem)),%a0
2460	movel	%a1,%a0@
2461
2462	movew	#PAGESIZE-1,%d0
24631:
2464	clrl	%a1@+
2465	dbra	%d0,1b
2466
2467	lea	%pc@(1b),%a0
2468	movel	#1b,%a1
2469	/* Skip temp mappings if phys == virt */
2470	cmpl	%a0,%a1
2471	jeq	1f
2472
2473	mmu_temp_map	%a0,%a0
2474	mmu_temp_map	%a0,%a1
2475
2476	addw	#PAGESIZE,%a0
2477	addw	#PAGESIZE,%a1
2478	mmu_temp_map	%a0,%a0
2479	mmu_temp_map	%a0,%a1
24801:
2481	movel	%pc@(L(memory_start)),%a3
2482	movel	%pc@(L(phys_kernel_start)),%d2
2483
2484	is_not_040_or_060(L(mmu_engage_030))
2485
2486L(mmu_engage_040):
2487	.chip	68040
2488	nop
2489	cinva	%bc
2490	nop
2491	pflusha
2492	nop
2493	movec	%a3,%srp
2494	movel	#TC_ENABLE+TC_PAGE4K,%d0
2495	movec	%d0,%tc		/* enable the MMU */
2496	jmp	1f:l
24971:	nop
2498	movec	%a2,%srp
2499	nop
2500	cinva	%bc
2501	nop
2502	pflusha
2503	.chip	68k
2504	jra	L(mmu_engage_cleanup)
2505
2506L(mmu_engage_030_temp):
2507	.space	12
2508L(mmu_engage_030):
2509	.chip	68030
2510	lea	%pc@(L(mmu_engage_030_temp)),%a0
2511	movel	#0x80000002,%a0@
2512	movel	%a3,%a0@(4)
2513	movel	#0x0808,%d0
2514	movec	%d0,%cacr
2515	pmove	%a0@,%srp
2516	pflusha
2517	/*
2518	 * enable,super root enable,4096 byte pages,7 bit root index,
2519	 * 7 bit pointer index, 6 bit page table index.
2520	 */
2521	movel	#0x82c07760,%a0@(8)
2522	pmove	%a0@(8),%tc	/* enable the MMU */
2523	jmp	1f:l
25241:	movel	%a2,%a0@(4)
2525	movel	#0x0808,%d0
2526	movec	%d0,%cacr
2527	pmove	%a0@,%srp
2528	pflusha
2529	.chip	68k
2530
2531L(mmu_engage_cleanup):
2532	subl	#PAGE_OFFSET,%d2
2533	subl	%d2,%a2
2534	movel	%a2,L(kernel_pgdir_ptr)
2535	subl	%d2,%fp
2536	subl	%d2,%sp
2537	subl	%d2,ARG0
2538
2539func_return	mmu_engage
2540
2541func_start	mmu_get_root_table_entry,%d0/%a1
2542
2543#if 0
2544	dputs	"mmu_get_root_table_entry:"
2545	dputn	ARG1
2546	dputs	" ="
2547#endif
2548
2549	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2550	tstl	%a0
2551	jne	2f
2552
2553	dputs	"\nmmu_init:"
2554
2555	/* Find the start of free memory, get_bi_record does this for us,
2556	 * as the bootinfo structure is located directly behind the kernel
2557	 * and and we simply search for the last entry.
2558	 */
2559	get_bi_record	BI_LAST
2560	addw	#PAGESIZE-1,%a0
2561	movel	%a0,%d0
2562	andw	#-PAGESIZE,%d0
2563
2564	dputn	%d0
2565
2566	lea	%pc@(L(memory_start)),%a0
2567	movel	%d0,%a0@
2568	lea	%pc@(L(kernel_end)),%a0
2569	movel	%d0,%a0@
2570
2571	/* we have to return the first page at _stext since the init code
2572	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2573	 * page is used for further ptr tables in get_ptr_table.
2574	 */
2575	lea	%pc@(_stext),%a0
2576	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2577	movel	%a0,%a1@
2578	addl	#ROOT_TABLE_SIZE*4,%a1@
2579
2580	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2581	addql	#1,%a1@
2582
2583	/* clear the page
2584	 */
2585	movel	%a0,%a1
2586	movew	#PAGESIZE/4-1,%d0
25871:
2588	clrl	%a1@+
2589	dbra	%d0,1b
2590
2591	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2592	movel	%a0,%a1@
2593
2594	dputn	%a0
2595	dputc	'\n'
25962:
2597	movel	ARG1,%d0
2598	lea	%a0@(%d0*4),%a0
2599
2600#if 0
2601	dputn	%a0
2602	dputc	'\n'
2603#endif
2604
2605func_return	mmu_get_root_table_entry
2606
2607
2608
2609func_start	mmu_get_ptr_table_entry,%d0/%a1
2610
2611#if 0
2612	dputs	"mmu_get_ptr_table_entry:"
2613	dputn	ARG1
2614	dputn	ARG2
2615	dputs	" ="
2616#endif
2617
2618	movel	ARG1,%a0
2619	movel	%a0@,%d0
2620	jne	2f
2621
2622	/* Keep track of the number of pointer tables we use
2623	 */
2624	dputs	"\nmmu_get_new_ptr_table:"
2625	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2626	movel	%a0@,%d0
2627	addql	#1,%a0@
2628
2629	/* See if there is a free pointer table in our cache of pointer tables
2630	 */
2631	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2632	andw	#7,%d0
2633	jne	1f
2634
2635	/* Get a new pointer table page from above the kernel memory
2636	 */
2637	get_new_page
2638	movel	%a0,%a1@
26391:
2640	/* There is an unused pointer table in our cache... use it
2641	 */
2642	movel	%a1@,%d0
2643	addl	#PTR_TABLE_SIZE*4,%a1@
2644
2645	dputn	%d0
2646	dputc	'\n'
2647
2648	/* Insert the new pointer table into the root table
2649	 */
2650	movel	ARG1,%a0
2651	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2652	movel	%d0,%a0@
26532:
2654	/* Extract the pointer table entry
2655	 */
2656	andw	#-PTR_TABLE_SIZE,%d0
2657	movel	%d0,%a0
2658	movel	ARG2,%d0
2659	lea	%a0@(%d0*4),%a0
2660
2661#if 0
2662	dputn	%a0
2663	dputc	'\n'
2664#endif
2665
2666func_return	mmu_get_ptr_table_entry
2667
2668
2669func_start	mmu_get_page_table_entry,%d0/%a1
2670
2671#if 0
2672	dputs	"mmu_get_page_table_entry:"
2673	dputn	ARG1
2674	dputn	ARG2
2675	dputs	" ="
2676#endif
2677
2678	movel	ARG1,%a0
2679	movel	%a0@,%d0
2680	jne	2f
2681
2682	/* If the page table entry doesn't exist, we allocate a complete new
2683	 * page and use it as one continues big page table which can cover
2684	 * 4MB of memory, nearly almost all mappings have that alignment.
2685	 */
2686	get_new_page
2687	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2688
2689	/* align pointer table entry for a page of page tables
2690	 */
2691	movel	ARG1,%d0
2692	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2693	movel	%d0,%a1
2694
2695	/* Insert the page tables into the pointer entries
2696	 */
2697	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26981:
2699	movel	%a0,%a1@+
2700	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2701	dbra	%d0,1b
2702
2703	/* Now we can get the initialized pointer table entry
2704	 */
2705	movel	ARG1,%a0
2706	movel	%a0@,%d0
27072:
2708	/* Extract the page table entry
2709	 */
2710	andw	#-PAGE_TABLE_SIZE,%d0
2711	movel	%d0,%a0
2712	movel	ARG2,%d0
2713	lea	%a0@(%d0*4),%a0
2714
2715#if 0
2716	dputn	%a0
2717	dputc	'\n'
2718#endif
2719
2720func_return	mmu_get_page_table_entry
2721
2722/*
2723 *	get_new_page
2724 *
2725 *	Return a new page from the memory start and clear it.
2726 */
2727func_start	get_new_page,%d0/%a1
2728
2729	dputs	"\nget_new_page:"
2730
2731	/* allocate the page and adjust memory_start
2732	 */
2733	lea	%pc@(L(memory_start)),%a0
2734	movel	%a0@,%a1
2735	addl	#PAGESIZE,%a0@
2736
2737	/* clear the new page
2738	 */
2739	movel	%a1,%a0
2740	movew	#PAGESIZE/4-1,%d0
27411:
2742	clrl	%a1@+
2743	dbra	%d0,1b
2744
2745	dputn	%a0
2746	dputc	'\n'
2747
2748func_return	get_new_page
2749
2750
2751
2752/*
2753 * Debug output support
2754 * Atarians have a choice between the parallel port, the serial port
2755 * from the MFP or a serial port of the SCC
2756 */
2757
2758#ifdef CONFIG_MAC
2759
2760L(scc_initable_mac):
2761	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2762	.byte	3,0xc0		/* receiver: 8 bpc */
2763	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2764	.byte	10,0		/* NRZ */
2765	.byte	11,0x50		/* use baud rate generator */
2766	.byte	12,1,13,0	/* 38400 baud */
2767	.byte	14,1		/* Baud rate generator enable */
2768	.byte	3,0xc1		/* enable receiver */
2769	.byte	5,0xea		/* enable transmitter */
2770	.byte	-1
2771	.even
2772#endif
2773
2774#ifdef CONFIG_ATARI
2775/* #define USE_PRINTER */
2776/* #define USE_SCC_B */
2777/* #define USE_SCC_A */
2778#define USE_MFP
2779
2780#if defined(USE_SCC_A) || defined(USE_SCC_B)
2781#define USE_SCC
2782/* Initialisation table for SCC */
2783L(scc_initable):
2784	.byte	9,12		/* Reset */
2785	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2786	.byte	3,0xc0		/* receiver: 8 bpc */
2787	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2788	.byte	9,0		/* no interrupts */
2789	.byte	10,0		/* NRZ */
2790	.byte	11,0x50		/* use baud rate generator */
2791	.byte	12,24,13,0	/* 9600 baud */
2792	.byte	14,2,14,3	/* use master clock for BRG, enable */
2793	.byte	3,0xc1		/* enable receiver */
2794	.byte	5,0xea		/* enable transmitter */
2795	.byte	-1
2796	.even
2797#endif
2798
2799#ifdef USE_PRINTER
2800
2801LPSG_SELECT	= 0xff8800
2802LPSG_READ	= 0xff8800
2803LPSG_WRITE	= 0xff8802
2804LPSG_IO_A	= 14
2805LPSG_IO_B	= 15
2806LPSG_CONTROL	= 7
2807LSTMFP_GPIP	= 0xfffa01
2808LSTMFP_DDR	= 0xfffa05
2809LSTMFP_IERB	= 0xfffa09
2810
2811#elif defined(USE_SCC_B)
2812
2813LSCC_CTRL	= 0xff8c85
2814LSCC_DATA	= 0xff8c87
2815
2816#elif defined(USE_SCC_A)
2817
2818LSCC_CTRL	= 0xff8c81
2819LSCC_DATA	= 0xff8c83
2820
2821#elif defined(USE_MFP)
2822
2823LMFP_UCR     = 0xfffa29
2824LMFP_TDCDR   = 0xfffa1d
2825LMFP_TDDR    = 0xfffa25
2826LMFP_TSR     = 0xfffa2d
2827LMFP_UDR     = 0xfffa2f
2828
2829#endif
2830#endif	/* CONFIG_ATARI */
2831
2832/*
2833 * Serial port output support.
2834 */
2835
2836/*
2837 * Initialize serial port hardware for 9600/8/1
2838 */
2839func_start	serial_init,%d0/%d1/%a0/%a1
2840	/*
2841	 *	Some of the register usage that follows
2842	 *	CONFIG_AMIGA
2843	 *		a0 = pointer to boot info record
2844	 *		d0 = boot info offset
2845	 *	CONFIG_ATARI
2846	 *		a0 = address of SCC
2847	 *		a1 = Liobase address/address of scc_initable
2848	 *		d0 = init data for serial port
2849	 *	CONFIG_MAC
2850	 *		a0 = address of SCC
2851	 *		a1 = address of scc_initable_mac
2852	 *		d0 = init data for serial port
2853	 */
2854
2855#ifdef CONFIG_AMIGA
2856#define SERIAL_DTR	7
2857#define SERIAL_CNTRL	CIABBASE+C_PRA
2858
2859	is_not_amiga(1f)
2860	lea	%pc@(L(custom)),%a0
2861	movel	#-ZTWOBASE,%a0@
2862	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2863	get_bi_record	BI_AMIGA_SERPER
2864	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2865|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28661:
2867#endif
2868#ifdef CONFIG_ATARI
2869	is_not_atari(4f)
2870	movel	%pc@(L(iobase)),%a1
2871#if defined(USE_PRINTER)
2872	bclr	#0,%a1@(LSTMFP_IERB)
2873	bclr	#0,%a1@(LSTMFP_DDR)
2874	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2875	moveb	#0xff,%a1@(LPSG_WRITE)
2876	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2877	clrb	%a1@(LPSG_WRITE)
2878	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2879	moveb	%a1@(LPSG_READ),%d0
2880	bset	#5,%d0
2881	moveb	%d0,%a1@(LPSG_WRITE)
2882#elif defined(USE_SCC)
2883	lea	%a1@(LSCC_CTRL),%a0
2884	lea	%pc@(L(scc_initable)),%a1
28852:	moveb	%a1@+,%d0
2886	jmi	3f
2887	moveb	%d0,%a0@
2888	moveb	%a1@+,%a0@
2889	jra	2b
28903:	clrb	%a0@
2891#elif defined(USE_MFP)
2892	bclr	#1,%a1@(LMFP_TSR)
2893	moveb   #0x88,%a1@(LMFP_UCR)
2894	andb	#0x70,%a1@(LMFP_TDCDR)
2895	moveb   #2,%a1@(LMFP_TDDR)
2896	orb	#1,%a1@(LMFP_TDCDR)
2897	bset	#1,%a1@(LMFP_TSR)
2898#endif
2899	jra	L(serial_init_done)
29004:
2901#endif
2902#ifdef CONFIG_MAC
2903	is_not_mac(L(serial_init_not_mac))
2904
2905#ifdef SERIAL_DEBUG
2906
2907/* You may define either or both of these. */
2908#define MAC_USE_SCC_A /* Modem port */
2909#define MAC_USE_SCC_B /* Printer port */
2910
2911#define mac_scc_cha_b_ctrl_offset	0x0
2912#define mac_scc_cha_a_ctrl_offset	0x2
2913#define mac_scc_cha_b_data_offset	0x4
2914#define mac_scc_cha_a_data_offset	0x6
2915
2916#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2917	movel	%pc@(L(mac_sccbase)),%a0
2918	/* Reset SCC register pointer */
2919	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2920	/* Reset SCC device: write register pointer then register value */
2921	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2922	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2923	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2924	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2925	movel	#35,%d0
29265:
2927	subq	#1,%d0
2928	jne	5b
2929#endif
2930
2931#ifdef MAC_USE_SCC_A
2932	/* Initialize channel A */
2933	lea	%pc@(L(scc_initable_mac)),%a1
29345:	moveb	%a1@+,%d0
2935	jmi	6f
2936	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2937	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2938	jra	5b
29396:
2940#endif	/* MAC_USE_SCC_A */
2941
2942#ifdef MAC_USE_SCC_B
2943	/* Initialize channel B */
2944	lea	%pc@(L(scc_initable_mac)),%a1
29457:	moveb	%a1@+,%d0
2946	jmi	8f
2947	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2948	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2949	jra	7b
29508:
2951#endif	/* MAC_USE_SCC_B */
2952
2953#endif	/* SERIAL_DEBUG */
2954
2955	jra	L(serial_init_done)
2956L(serial_init_not_mac):
2957#endif	/* CONFIG_MAC */
2958
2959#ifdef CONFIG_Q40
2960	is_not_q40(2f)
2961/* debug output goes into SRAM, so we don't do it unless requested
2962   - check for '%LX$' signature in SRAM   */
2963	lea	%pc@(q40_mem_cptr),%a1
2964	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2965	move.l	#0xff020000,%a1
2966	cmp.b	#'%',%a1@
2967	bne	2f	/*nodbg*/
2968	addq.w	#4,%a1
2969	cmp.b	#'L',%a1@
2970	bne	2f	/*nodbg*/
2971	addq.w	#4,%a1
2972	cmp.b	#'X',%a1@
2973	bne	2f	/*nodbg*/
2974	addq.w	#4,%a1
2975	cmp.b	#'$',%a1@
2976	bne	2f	/*nodbg*/
2977	/* signature OK */
2978	lea	%pc@(L(q40_do_debug)),%a1
2979	tas	%a1@
2980/*nodbg: q40_do_debug is 0 by default*/
29812:
2982#endif
2983
2984#ifdef CONFIG_APOLLO
2985/* We count on the PROM initializing SIO1 */
2986#endif
2987
2988#ifdef CONFIG_HP300
2989/* We count on the boot loader initialising the UART */
2990#endif
2991
2992L(serial_init_done):
2993func_return	serial_init
2994
2995/*
2996 * Output character on serial port.
2997 */
2998func_start	serial_putc,%d0/%d1/%a0/%a1
2999
3000	movel	ARG1,%d0
3001	cmpib	#'\n',%d0
3002	jbne	1f
3003
3004	/* A little safe recursion is good for the soul */
3005	serial_putc	#'\r'
30061:
3007
3008#ifdef CONFIG_AMIGA
3009	is_not_amiga(2f)
3010	andw	#0x00ff,%d0
3011	oriw	#0x0100,%d0
3012	movel	%pc@(L(custom)),%a0
3013	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30141:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3015	andw	#0x2000,%d0
3016	jeq	1b
3017	jra	L(serial_putc_done)
30182:
3019#endif
3020
3021#ifdef CONFIG_MAC
3022	is_not_mac(5f)
3023
3024#ifdef SERIAL_DEBUG
3025
3026#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3027	movel	%pc@(L(mac_sccbase)),%a1
3028#endif
3029
3030#ifdef MAC_USE_SCC_A
30313:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3032	jeq	3b
3033	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3034#endif	/* MAC_USE_SCC_A */
3035
3036#ifdef MAC_USE_SCC_B
30374:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3038	jeq	4b
3039	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3040#endif	/* MAC_USE_SCC_B */
3041
3042#endif	/* SERIAL_DEBUG */
3043
3044	jra	L(serial_putc_done)
30455:
3046#endif	/* CONFIG_MAC */
3047
3048#ifdef CONFIG_ATARI
3049	is_not_atari(4f)
3050	movel	%pc@(L(iobase)),%a1
3051#if defined(USE_PRINTER)
30523:	btst	#0,%a1@(LSTMFP_GPIP)
3053	jne	3b
3054	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3055	moveb	%d0,%a1@(LPSG_WRITE)
3056	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3057	moveb	%a1@(LPSG_READ),%d0
3058	bclr	#5,%d0
3059	moveb	%d0,%a1@(LPSG_WRITE)
3060	nop
3061	nop
3062	bset	#5,%d0
3063	moveb	%d0,%a1@(LPSG_WRITE)
3064#elif defined(USE_SCC)
30653:	btst	#2,%a1@(LSCC_CTRL)
3066	jeq	3b
3067	moveb	%d0,%a1@(LSCC_DATA)
3068#elif defined(USE_MFP)
30693:	btst	#7,%a1@(LMFP_TSR)
3070	jeq	3b
3071	moveb	%d0,%a1@(LMFP_UDR)
3072#endif
3073	jra	L(serial_putc_done)
30744:
3075#endif	/* CONFIG_ATARI */
3076
3077#ifdef CONFIG_MVME147
3078	is_not_mvme147(2f)
30791:	btst	#2,M147_SCC_CTRL_A
3080	jeq	1b
3081	moveb	%d0,M147_SCC_DATA_A
3082	jbra	L(serial_putc_done)
30832:
3084#endif
3085
3086#ifdef CONFIG_MVME16x
3087	is_not_mvme16x(2f)
3088	/*
3089	 * If the loader gave us a board type then we can use that to
3090	 * select an appropriate output routine; otherwise we just use
3091	 * the Bug code.  If we have to use the Bug that means the Bug
3092	 * workspace has to be valid, which means the Bug has to use
3093	 * the SRAM, which is non-standard.
3094	 */
3095	moveml	%d0-%d7/%a2-%a6,%sp@-
3096	movel	vme_brdtype,%d1
3097	jeq	1f			| No tag - use the Bug
3098	cmpi	#VME_TYPE_MVME162,%d1
3099	jeq	6f
3100	cmpi	#VME_TYPE_MVME172,%d1
3101	jne	5f
3102	/* 162/172; it's an SCC */
31036:	btst	#2,M162_SCC_CTRL_A
3104	nop
3105	nop
3106	nop
3107	jeq	6b
3108	moveb	#8,M162_SCC_CTRL_A
3109	nop
3110	nop
3111	nop
3112	moveb	%d0,M162_SCC_CTRL_A
3113	jra	3f
31145:
3115	/* 166/167/177; it's a CD2401 */
3116	moveb	#0,M167_CYCAR
3117	moveb	M167_CYIER,%d2
3118	moveb	#0x02,M167_CYIER
31197:
3120	btst	#5,M167_PCSCCTICR
3121	jeq	7b
3122	moveb	M167_PCTPIACKR,%d1
3123	moveb	M167_CYLICR,%d1
3124	jeq	8f
3125	moveb	#0x08,M167_CYTEOIR
3126	jra	7b
31278:
3128	moveb	%d0,M167_CYTDR
3129	moveb	#0,M167_CYTEOIR
3130	moveb	%d2,M167_CYIER
3131	jra	3f
31321:
3133	moveb	%d0,%sp@-
3134	trap	#15
3135	.word	0x0020	/* TRAP 0x020 */
31363:
3137	moveml	%sp@+,%d0-%d7/%a2-%a6
3138	jbra	L(serial_putc_done)
31392:
3140#endif /* CONFIG_MVME16x */
3141
3142#ifdef CONFIG_BVME6000
3143	is_not_bvme6000(2f)
3144	/*
3145	 * The BVME6000 machine has a serial port ...
3146	 */
31471:	btst	#2,BVME_SCC_CTRL_A
3148	jeq	1b
3149	moveb	%d0,BVME_SCC_DATA_A
3150	jbra	L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_SUN3X
3155	is_not_sun3x(2f)
3156	movel	%d0,-(%sp)
3157	movel	0xFEFE0018,%a1
3158	jbsr	(%a1)
3159	addq	#4,%sp
3160	jbra	L(serial_putc_done)
31612:
3162#endif
3163
3164#ifdef CONFIG_Q40
3165	is_not_q40(2f)
3166	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3167	beq	2f
3168	lea	%pc@(q40_mem_cptr),%a1
3169	move.l	%a1@,%a0
3170	move.b	%d0,%a0@
3171	addq.l	#4,%a0
3172	move.l	%a0,%a1@
3173	jbra    L(serial_putc_done)
31742:
3175#endif
3176
3177#ifdef CONFIG_APOLLO
3178	is_not_apollo(2f)
3179	movl    %pc@(L(iobase)),%a1
3180	moveb	%d0,%a1@(LTHRB0)
31811:      moveb   %a1@(LSRB0),%d0
3182	andb	#0x4,%d0
3183	beq	1b
3184	jbra	L(serial_putc_done)
31852:
3186#endif
3187
3188#ifdef CONFIG_HP300
3189	is_not_hp300(3f)
3190	movl    %pc@(L(iobase)),%a1
3191	addl	%pc@(L(uartbase)),%a1
3192	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3193	jmi	3f			/* Unset? Exit */
3194	cmpi	#256,%d1		/* APCI scode? */
3195	jeq	2f
31961:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3197	andb	#0x20,%d1
3198	beq	1b
3199	moveb	%d0,%a1@(DCADATA)
3200	jbra	L(serial_putc_done)
32012:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3202	andb	#0x20,%d1
3203	beq	2b
3204	moveb	%d0,%a1@(APCIDATA)
3205	jbra	L(serial_putc_done)
32063:
3207#endif
3208
3209L(serial_putc_done):
3210func_return	serial_putc
3211
3212/*
3213 * Output a string.
3214 */
3215func_start	puts,%d0/%a0
3216
3217	movel	ARG1,%a0
3218	jra	2f
32191:
3220#ifdef CONSOLE
3221	console_putc	%d0
3222#endif
3223#ifdef SERIAL_DEBUG
3224	serial_putc	%d0
3225#endif
32262:	moveb	%a0@+,%d0
3227	jne	1b
3228
3229func_return	puts
3230
3231/*
3232 * Output number in hex notation.
3233 */
3234
3235func_start	putn,%d0-%d2
3236
3237	putc	' '
3238
3239	movel	ARG1,%d0
3240	moveq	#7,%d1
32411:	roll	#4,%d0
3242	move	%d0,%d2
3243	andb	#0x0f,%d2
3244	addb	#'0',%d2
3245	cmpb	#'9',%d2
3246	jls	2f
3247	addb	#'A'-('9'+1),%d2
32482:
3249#ifdef CONSOLE
3250	console_putc	%d2
3251#endif
3252#ifdef SERIAL_DEBUG
3253	serial_putc	%d2
3254#endif
3255	dbra	%d1,1b
3256
3257func_return	putn
3258
3259#ifdef CONFIG_MAC
3260/*
3261 *	mac_early_print
3262 *
3263 *	This routine takes its parameters on the stack.  It then
3264 *	turns around and calls the internal routines.  This routine
3265 *	is used by the boot console.
3266 *
3267 *	The calling parameters are:
3268 *		void mac_early_print(const char *str, unsigned length);
3269 *
3270 *	This routine does NOT understand variable arguments only
3271 *	simple strings!
3272 */
3273ENTRY(mac_early_print)
3274	moveml	%d0/%d1/%a0,%sp@-
3275	movew	%sr,%sp@-
3276	ori	#0x0700,%sr
3277	movel	%sp@(18),%a0		/* fetch parameter */
3278	movel	%sp@(22),%d1		/* fetch parameter */
3279	jra	2f
32801:
3281#ifdef CONSOLE
3282	console_putc	%d0
3283#endif
3284#ifdef SERIAL_DEBUG
3285	serial_putc	%d0
3286#endif
3287	subq	#1,%d1
32882:	jeq	3f
3289	moveb	%a0@+,%d0
3290	jne	1b
32913:
3292	movew	%sp@+,%sr
3293	moveml	%sp@+,%d0/%d1/%a0
3294	rts
3295#endif /* CONFIG_MAC */
3296
3297#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3298func_start	set_leds,%d0/%a0
3299	movel	ARG1,%d0
3300#ifdef CONFIG_HP300
3301	is_not_hp300(1f)
3302	movel	%pc@(L(iobase)),%a0
3303	moveb	%d0,%a0@(0x1ffff)
3304	jra	2f
3305#endif
33061:
3307#ifdef CONFIG_APOLLO
3308	movel   %pc@(L(iobase)),%a0
3309	lsll    #8,%d0
3310	eorw    #0xff00,%d0
3311	moveb	%d0,%a0@(LCPUCTRL)
3312#endif
33132:
3314func_return	set_leds
3315#endif
3316
3317#ifdef CONSOLE
3318/*
3319 *	For continuity, see the data alignment
3320 *	to which this structure is tied.
3321 */
3322#define Lconsole_struct_cur_column	0
3323#define Lconsole_struct_cur_row		4
3324#define Lconsole_struct_num_columns	8
3325#define Lconsole_struct_num_rows	12
3326#define Lconsole_struct_left_edge	16
3327#define Lconsole_struct_penguin_putc	20
3328
3329func_start	console_init,%a0-%a4/%d0-%d7
3330	/*
3331	 *	Some of the register usage that follows
3332	 *		a0 = pointer to boot_info
3333	 *		a1 = pointer to screen
3334	 *		a2 = pointer to Lconsole_globals
3335	 *		d3 = pixel width of screen
3336	 *		d4 = pixel height of screen
3337	 *		(d3,d4) ~= (x,y) of a point just below
3338	 *			and to the right of the screen
3339	 *			NOT on the screen!
3340	 *		d5 = number of bytes per scan line
3341	 *		d6 = number of bytes on the entire screen
3342	 */
3343
3344	lea	%pc@(L(console_globals)),%a2
3345	movel	%pc@(L(mac_videobase)),%a1
3346	movel	%pc@(L(mac_rowbytes)),%d5
3347	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3348	movel	%d3,%d4
3349	swap	%d4		/* -> high byte */
3350	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3351	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3352
3353	movel	%d5,%d6
3354|	subl	#20,%d6
3355	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3356	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3357	moveq	#-1,%d0		/* Mac_black */
3358	subq	#1,%d6
3359
3360L(console_clear_loop):
3361	movel	%d0,%a1@+
3362	movel	%d0,%a1@+
3363	dbra	%d6,L(console_clear_loop)
3364
3365	/* Calculate font size */
3366
3367#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3368	lea	%pc@(font_vga_8x8),%a0
3369#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3370	lea	%pc@(font_vga_8x16),%a0
3371#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3372	lea	%pc@(font_vga_6x11),%a0
3373#elif defined(CONFIG_FONT_8x8) /* default */
3374	lea	%pc@(font_vga_8x8),%a0
3375#else /* no compiled-in font */
3376	lea	0,%a0
3377#endif
3378
3379	/*
3380	 *	At this point we make a shift in register usage
3381	 *	a1 = address of console_font pointer
3382	 */
3383	lea	%pc@(L(console_font)),%a1
3384	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3385	tstl	%a0
3386	jeq	1f
3387	lea	%pc@(L(console_font_data)),%a4
3388	movel	%a0@(FONT_DESC_DATA),%d0
3389	subl	#L(console_font),%a1
3390	addl	%a1,%d0
3391	movel	%d0,%a4@
3392
3393	/*
3394	 *	Calculate global maxs
3395	 *	Note - we can use either an
3396	 *	8 x 16 or 8 x 8 character font
3397	 *	6 x 11 also supported
3398	 */
3399		/* ASSERT: a0 = contents of Lconsole_font */
3400	movel	%d3,%d0				/* screen width in pixels */
3401	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3402
3403	movel	%d4,%d1				/* screen height in pixels */
3404	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3405
3406	movel	%d0,%a2@(Lconsole_struct_num_columns)
3407	movel	%d1,%a2@(Lconsole_struct_num_rows)
3408
3409	/*
3410	 *	Clear the current row and column
3411	 */
3412	clrl	%a2@(Lconsole_struct_cur_column)
3413	clrl	%a2@(Lconsole_struct_cur_row)
3414	clrl	%a2@(Lconsole_struct_left_edge)
3415
3416	/*
3417	 * Initialization is complete
3418	 */
34191:
3420func_return	console_init
3421
3422func_start	console_put_stats,%a0/%d7
3423	/*
3424	 *	Some of the register usage that follows
3425	 *		a0 = pointer to boot_info
3426	 *		d7 = value of boot_info fields
3427	 */
3428	puts	"\nMacLinux\n"
3429
3430#ifdef SERIAL_DEBUG
3431	puts	"\n vidaddr:"
3432	putn	%pc@(L(mac_videobase))		/* video addr. */
3433
3434	puts	"\n  _stext:"
3435	lea	%pc@(_stext),%a0
3436	putn	%a0
3437
3438	puts	"\nbootinfo:"
3439	lea	%pc@(_end),%a0
3440	putn	%a0
3441
3442	puts	"\n   cpuid:"
3443	putn	%pc@(L(cputype))
3444
3445#  ifdef CONFIG_MAC
3446	puts	"\n sccbase:"
3447	putn	%pc@(L(mac_sccbase))
3448#  endif
3449#  ifdef MMU_PRINT
3450	putc	'\n'
3451	jbsr	mmu_print_machine_cpu_types
3452#  endif
3453#endif /* SERIAL_DEBUG */
3454
3455	putc	'\n'
3456
3457func_return	console_put_stats
3458
3459#ifdef CONSOLE_PENGUIN
3460func_start	console_put_penguin,%a0-%a1/%d0-%d7
3461	/*
3462	 *	Get 'that_penguin' onto the screen in the upper right corner
3463	 *	penguin is 64 x 74 pixels, align against right edge of screen
3464	 */
3465	lea	%pc@(L(mac_dimensions)),%a0
3466	movel	%a0@,%d0
3467	andil	#0xffff,%d0
3468	subil	#64,%d0		/* snug up against the right edge */
3469	clrl	%d1		/* start at the top */
3470	movel	#73,%d7
3471	lea	%pc@(L(that_penguin)),%a1
3472L(console_penguin_row):
3473	movel	#31,%d6
3474L(console_penguin_pixel_pair):
3475	moveb	%a1@,%d2
3476	lsrb	#4,%d2
3477	console_plot_pixel %d0,%d1,%d2
3478	addq	#1,%d0
3479	moveb	%a1@+,%d2
3480	console_plot_pixel %d0,%d1,%d2
3481	addq	#1,%d0
3482	dbra	%d6,L(console_penguin_pixel_pair)
3483
3484	subil	#64,%d0
3485	addq	#1,%d1
3486	dbra	%d7,L(console_penguin_row)
3487
3488func_return	console_put_penguin
3489
3490/* include penguin bitmap */
3491L(that_penguin):
3492#include "../mac/mac_penguin.S"
3493#endif
3494
3495	/*
3496	 * Calculate source and destination addresses
3497	 *	output	a1 = dest
3498	 *		a2 = source
3499	 */
3500
3501func_start	console_scroll,%a0-%a4/%d0-%d7
3502	lea	%pc@(L(mac_videobase)),%a0
3503	movel	%a0@,%a1
3504	movel	%a1,%a2
3505	lea	%pc@(L(mac_rowbytes)),%a0
3506	movel	%a0@,%d5
3507	movel	%pc@(L(console_font)),%a0
3508	tstl	%a0
3509	jeq	1f
3510	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3511	addal	%d5,%a2
3512
3513	/*
3514	 * Get dimensions
3515	 */
3516	lea	%pc@(L(mac_dimensions)),%a0
3517	movel	%a0@,%d3
3518	movel	%d3,%d4
3519	swap	%d4
3520	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3521	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3522
3523	/*
3524	 * Calculate number of bytes to move
3525	 */
3526	lea	%pc@(L(mac_rowbytes)),%a0
3527	movel	%a0@,%d6
3528	movel	%pc@(L(console_font)),%a0
3529	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3530	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3531	divul	#32,%d6		/* we'll move 8 longs at a time */
3532	subq	#1,%d6
3533
3534L(console_scroll_loop):
3535	movel	%a2@+,%a1@+
3536	movel	%a2@+,%a1@+
3537	movel	%a2@+,%a1@+
3538	movel	%a2@+,%a1@+
3539	movel	%a2@+,%a1@+
3540	movel	%a2@+,%a1@+
3541	movel	%a2@+,%a1@+
3542	movel	%a2@+,%a1@+
3543	dbra	%d6,L(console_scroll_loop)
3544
3545	lea	%pc@(L(mac_rowbytes)),%a0
3546	movel	%a0@,%d6
3547	movel	%pc@(L(console_font)),%a0
3548	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3549	divul	#32,%d6			/* we'll move 8 words at a time */
3550	subq	#1,%d6
3551
3552	moveq	#-1,%d0
3553L(console_scroll_clear_loop):
3554	movel	%d0,%a1@+
3555	movel	%d0,%a1@+
3556	movel	%d0,%a1@+
3557	movel	%d0,%a1@+
3558	movel	%d0,%a1@+
3559	movel	%d0,%a1@+
3560	movel	%d0,%a1@+
3561	movel	%d0,%a1@+
3562	dbra	%d6,L(console_scroll_clear_loop)
3563
35641:
3565func_return	console_scroll
3566
3567
3568func_start	console_putc,%a0/%a1/%d0-%d7
3569
3570	is_not_mac(L(console_exit))
3571	tstl	%pc@(L(console_font))
3572	jeq	L(console_exit)
3573
3574	/* Output character in d7 on console.
3575	 */
3576	movel	ARG1,%d7
3577	cmpib	#'\n',%d7
3578	jbne	1f
3579
3580	/* A little safe recursion is good for the soul */
3581	console_putc	#'\r'
35821:
3583	lea	%pc@(L(console_globals)),%a0
3584
3585	cmpib	#10,%d7
3586	jne	L(console_not_lf)
3587	movel	%a0@(Lconsole_struct_cur_row),%d0
3588	addil	#1,%d0
3589	movel	%d0,%a0@(Lconsole_struct_cur_row)
3590	movel	%a0@(Lconsole_struct_num_rows),%d1
3591	cmpl	%d1,%d0
3592	jcs	1f
3593	subil	#1,%d0
3594	movel	%d0,%a0@(Lconsole_struct_cur_row)
3595	console_scroll
35961:
3597	jra	L(console_exit)
3598
3599L(console_not_lf):
3600	cmpib	#13,%d7
3601	jne	L(console_not_cr)
3602	clrl	%a0@(Lconsole_struct_cur_column)
3603	jra	L(console_exit)
3604
3605L(console_not_cr):
3606	cmpib	#1,%d7
3607	jne	L(console_not_home)
3608	clrl	%a0@(Lconsole_struct_cur_row)
3609	clrl	%a0@(Lconsole_struct_cur_column)
3610	jra	L(console_exit)
3611
3612/*
3613 *	At this point we know that the %d7 character is going to be
3614 *	rendered on the screen.  Register usage is -
3615 *		a0 = pointer to console globals
3616 *		a1 = font data
3617 *		d0 = cursor column
3618 *		d1 = cursor row to draw the character
3619 *		d7 = character number
3620 */
3621L(console_not_home):
3622	movel	%a0@(Lconsole_struct_cur_column),%d0
3623	addql	#1,%a0@(Lconsole_struct_cur_column)
3624	movel	%a0@(Lconsole_struct_num_columns),%d1
3625	cmpl	%d1,%d0
3626	jcs	1f
3627	console_putc	#'\n'	/* recursion is OK! */
36281:
3629	movel	%a0@(Lconsole_struct_cur_row),%d1
3630
3631	/*
3632	 *	At this point we make a shift in register usage
3633	 *	a0 = address of pointer to font data (fbcon_font_desc)
3634	 */
3635	movel	%pc@(L(console_font)),%a0
3636	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3637	andl	#0x000000ff,%d7
3638		/* ASSERT: a0 = contents of Lconsole_font */
3639	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3640	addl	%d7,%a1			/* a1 = points to char image */
3641
3642	/*
3643	 *	At this point we make a shift in register usage
3644	 *	d0 = pixel coordinate, x
3645	 *	d1 = pixel coordinate, y
3646	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3647	 *	d3 = font scan line data (8 pixels)
3648	 *	d6 = count down for the font's pixel width (8)
3649	 *	d7 = count down for the font's pixel count in height
3650	 */
3651		/* ASSERT: a0 = contents of Lconsole_font */
3652	mulul	%a0@(FONT_DESC_WIDTH),%d0
3653	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3654	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3655	subq	#1,%d7
3656L(console_read_char_scanline):
3657	moveb	%a1@+,%d3
3658
3659		/* ASSERT: a0 = contents of Lconsole_font */
3660	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3661	subql	#1,%d6
3662
3663L(console_do_font_scanline):
3664	lslb	#1,%d3
3665	scsb	%d2		/* convert 1 bit into a byte */
3666	console_plot_pixel %d0,%d1,%d2
3667	addq	#1,%d0
3668	dbra	%d6,L(console_do_font_scanline)
3669
3670		/* ASSERT: a0 = contents of Lconsole_font */
3671	subl	%a0@(FONT_DESC_WIDTH),%d0
3672	addq	#1,%d1
3673	dbra	%d7,L(console_read_char_scanline)
3674
3675L(console_exit):
3676func_return	console_putc
3677
3678	/*
3679	 *	Input:
3680	 *		d0 = x coordinate
3681	 *		d1 = y coordinate
3682	 *		d2 = (bit 0) 1/0 for white/black (!)
3683	 *	All registers are preserved
3684	 */
3685func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3686
3687	movel	%pc@(L(mac_videobase)),%a1
3688	movel	%pc@(L(mac_videodepth)),%d3
3689	movel	ARG1,%d0
3690	movel	ARG2,%d1
3691	mulul	%pc@(L(mac_rowbytes)),%d1
3692	movel	ARG3,%d2
3693
3694	/*
3695	 *	Register usage:
3696	 *		d0 = x coord becomes byte offset into frame buffer
3697	 *		d1 = y coord
3698	 *		d2 = black or white (0/1)
3699	 *		d3 = video depth
3700	 *		d4 = temp of x (d0) for many bit depths
3701	 */
3702L(test_1bit):
3703	cmpb	#1,%d3
3704	jbne	L(test_2bit)
3705	movel	%d0,%d4		/* we need the low order 3 bits! */
3706	divul	#8,%d0
3707	addal	%d0,%a1
3708	addal	%d1,%a1
3709	andb	#7,%d4
3710	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3711	andb	#1,%d2
3712	jbne	L(white_1)
3713	bsetb	%d4,%a1@
3714	jbra	L(console_plot_pixel_exit)
3715L(white_1):
3716	bclrb	%d4,%a1@
3717	jbra	L(console_plot_pixel_exit)
3718
3719L(test_2bit):
3720	cmpb	#2,%d3
3721	jbne	L(test_4bit)
3722	movel	%d0,%d4		/* we need the low order 2 bits! */
3723	divul	#4,%d0
3724	addal	%d0,%a1
3725	addal	%d1,%a1
3726	andb	#3,%d4
3727	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3728	lsll	#1,%d4		/* ! */
3729	andb	#1,%d2
3730	jbne	L(white_2)
3731	bsetb	%d4,%a1@
3732	addq	#1,%d4
3733	bsetb	%d4,%a1@
3734	jbra	L(console_plot_pixel_exit)
3735L(white_2):
3736	bclrb	%d4,%a1@
3737	addq	#1,%d4
3738	bclrb	%d4,%a1@
3739	jbra	L(console_plot_pixel_exit)
3740
3741L(test_4bit):
3742	cmpb	#4,%d3
3743	jbne	L(test_8bit)
3744	movel	%d0,%d4		/* we need the low order bit! */
3745	divul	#2,%d0
3746	addal	%d0,%a1
3747	addal	%d1,%a1
3748	andb	#1,%d4
3749	eorb	#1,%d4
3750	lsll	#2,%d4		/* ! */
3751	andb	#1,%d2
3752	jbne	L(white_4)
3753	bsetb	%d4,%a1@
3754	addq	#1,%d4
3755	bsetb	%d4,%a1@
3756	addq	#1,%d4
3757	bsetb	%d4,%a1@
3758	addq	#1,%d4
3759	bsetb	%d4,%a1@
3760	jbra	L(console_plot_pixel_exit)
3761L(white_4):
3762	bclrb	%d4,%a1@
3763	addq	#1,%d4
3764	bclrb	%d4,%a1@
3765	addq	#1,%d4
3766	bclrb	%d4,%a1@
3767	addq	#1,%d4
3768	bclrb	%d4,%a1@
3769	jbra	L(console_plot_pixel_exit)
3770
3771L(test_8bit):
3772	cmpb	#8,%d3
3773	jbne	L(test_16bit)
3774	addal	%d0,%a1
3775	addal	%d1,%a1
3776	andb	#1,%d2
3777	jbne	L(white_8)
3778	moveb	#0xff,%a1@
3779	jbra	L(console_plot_pixel_exit)
3780L(white_8):
3781	clrb	%a1@
3782	jbra	L(console_plot_pixel_exit)
3783
3784L(test_16bit):
3785	cmpb	#16,%d3
3786	jbne	L(console_plot_pixel_exit)
3787	addal	%d0,%a1
3788	addal	%d0,%a1
3789	addal	%d1,%a1
3790	andb	#1,%d2
3791	jbne	L(white_16)
3792	clrw	%a1@
3793	jbra	L(console_plot_pixel_exit)
3794L(white_16):
3795	movew	#0x0fff,%a1@
3796	jbra	L(console_plot_pixel_exit)
3797
3798L(console_plot_pixel_exit):
3799func_return	console_plot_pixel
3800#endif /* CONSOLE */
3801
3802#if 0
3803/*
3804 * This is some old code lying around.  I don't believe
3805 * it's used or important anymore.  My guess is it contributed
3806 * to getting to this point, but it's done for now.
3807 * It was still in the 2.1.77 head.S, so it's still here.
3808 * (And still not used!)
3809 */
3810L(showtest):
3811	moveml	%a0/%d7,%sp@-
3812	puts	"A="
3813	putn	%a1
3814
3815	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3816
3817	puts	"DA="
3818	putn	%a0
3819
3820	puts	"D="
3821	putn	%a0@
3822
3823	puts	"S="
3824	lea	%pc@(L(mmu)),%a0
3825	.long	0xf0106200		| pmove		%psr,%a0@
3826	clrl	%d7
3827	movew	%a0@,%d7
3828	putn	%d7
3829
3830	putc	'\n'
3831	moveml	%sp@+,%a0/%d7
3832	rts
3833#endif	/* 0 */
3834
3835__INITDATA
3836	.align	4
3837
3838#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3839    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3840L(custom):
3841L(iobase):
3842	.long 0
3843#endif
3844
3845#if defined(CONSOLE)
3846L(console_globals):
3847	.long	0		/* cursor column */
3848	.long	0		/* cursor row */
3849	.long	0		/* max num columns */
3850	.long	0		/* max num rows */
3851	.long	0		/* left edge */
3852	.long	0		/* mac putc */
3853L(console_font):
3854	.long	0		/* pointer to console font (struct font_desc) */
3855L(console_font_data):
3856	.long	0		/* pointer to console font data */
3857#endif /* CONSOLE */
3858
3859#if defined(MMU_PRINT)
3860L(mmu_print_data):
3861	.long	0		/* valid flag */
3862	.long	0		/* start logical */
3863	.long	0		/* next logical */
3864	.long	0		/* start physical */
3865	.long	0		/* next physical */
3866#endif /* MMU_PRINT */
3867
3868L(cputype):
3869	.long	0
3870L(mmu_cached_pointer_tables):
3871	.long	0
3872L(mmu_num_pointer_tables):
3873	.long	0
3874L(phys_kernel_start):
3875	.long	0
3876L(kernel_end):
3877	.long	0
3878L(memory_start):
3879	.long	0
3880L(kernel_pgdir_ptr):
3881	.long	0
3882L(temp_mmap_mem):
3883	.long	0
3884
3885#if defined (CONFIG_MVME147)
3886M147_SCC_CTRL_A = 0xfffe3002
3887M147_SCC_DATA_A = 0xfffe3003
3888#endif
3889
3890#if defined (CONFIG_MVME16x)
3891M162_SCC_CTRL_A = 0xfff45005
3892M167_CYCAR = 0xfff450ee
3893M167_CYIER = 0xfff45011
3894M167_CYLICR = 0xfff45026
3895M167_CYTEOIR = 0xfff45085
3896M167_CYTDR = 0xfff450f8
3897M167_PCSCCTICR = 0xfff4201e
3898M167_PCTPIACKR = 0xfff42025
3899#endif
3900
3901#if defined (CONFIG_BVME6000)
3902BVME_SCC_CTRL_A	= 0xffb0000b
3903BVME_SCC_DATA_A	= 0xffb0000f
3904#endif
3905
3906#if defined(CONFIG_MAC)
3907L(mac_videobase):
3908	.long	0
3909L(mac_videodepth):
3910	.long	0
3911L(mac_dimensions):
3912	.long	0
3913L(mac_rowbytes):
3914	.long	0
3915#ifdef SERIAL_DEBUG
3916L(mac_sccbase):
3917	.long	0
3918#endif
3919#endif /* CONFIG_MAC */
3920
3921#if defined (CONFIG_APOLLO)
3922LSRB0        = 0x10412
3923LTHRB0       = 0x10416
3924LCPUCTRL     = 0x10100
3925#endif
3926
3927#if defined(CONFIG_HP300)
3928DCADATA	     = 0x11
3929DCALSR	     = 0x1b
3930APCIDATA     = 0x00
3931APCILSR      = 0x14
3932L(uartbase):
3933	.long	0
3934L(uart_scode):
3935	.long	-1
3936#endif
3937
3938__FINIT
3939	.data
3940	.align	4
3941
3942availmem:
3943	.long	0
3944m68k_pgtable_cachemode:
3945	.long	0
3946m68k_supervisor_cachemode:
3947	.long	0
3948#if defined(CONFIG_MVME16x)
3949mvme_bdid:
3950	.long	0,0,0,0,0,0,0,0
3951#endif
3952#if defined(CONFIG_Q40)
3953q40_mem_cptr:
3954	.long	0
3955L(q40_do_debug):
3956	.long	0
3957#endif
3958