xref: /openbmc/linux/arch/m68k/kernel/head.S (revision 367b8112)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 9/02/11  Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * postion and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in include/linux/autoconf.h.
200 *
201 * CONSOLE:	There is support for head.S console in this file.  This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU:	This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine.  The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
212 *		machines.  At that point the underlying logic will be
213 *		believed to be solid enough to be trusted, and TEST_MMU
214 *		can be dropped.  Do note that that will clean up the
215 *		head.S code significantly as large blocks of #if/#else
216 *		clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work.  A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT:	There is a routine built into head.S that can display the
223 * MMU data structures.  It outputs its result through the serial_putc
224 * interface.  So where ever that winds up driving data, that's where the
225 * mmu struct will appear.  On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG:	There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console.  This constant determines whether those
230 * are used.
231 *
232 * DEBUG:	This is the standard DEBUG flag that can be set for building
233 *		the kernel.  It has the effect adding additional tests into
234 *		the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 *		In theory these could be determined at run time or handed
240 *		over by the booter.  But, let's be real, it's a fine hard
241 *		coded value.  (But, you will notice the code is run-time
242 *		flexible!)  A pointer to the font's struct font_desc
243 *		is kept locally in Lconsole_font.  It is used to determine
244 *		font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER:	Use the printer port for serial debug.
248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_SERIAL_DEBUG:	Turns on serial debug output for the Macintosh.
254 * MAC_USE_SCC_A:	Use the SCC port A (modem) for serial debug.
255 * MAC_USE_SCC_B:	Use the SCC port B (printer) for serial debug (default).
256 */
257
258#include <linux/linkage.h>
259#include <linux/init.h>
260#include <asm/bootinfo.h>
261#include <asm/setup.h>
262#include <asm/entry.h>
263#include <asm/pgtable.h>
264#include <asm/page.h>
265#include <asm/asm-offsets.h>
266
267#ifdef CONFIG_MAC
268
269#include <asm/machw.h>
270
271/*
272 * Macintosh console support
273 */
274
275#ifdef CONFIG_FRAMEBUFFER_CONSOLE
276#define CONSOLE
277#define CONSOLE_PENGUIN
278#endif
279
280/*
281 * Macintosh serial debug support; outputs boot info to the printer
282 *   and/or modem serial ports
283 */
284#undef MAC_SERIAL_DEBUG
285
286/*
287 * Macintosh serial debug port selection; define one or both;
288 *   requires MAC_SERIAL_DEBUG to be defined
289 */
290#define MAC_USE_SCC_A		/* Macintosh modem serial port */
291#define MAC_USE_SCC_B		/* Macintosh printer serial port */
292
293#endif	/* CONFIG_MAC */
294
295#undef MMU_PRINT
296#undef MMU_NOCACHE_KERNEL
297#define SERIAL_DEBUG
298#undef DEBUG
299
300/*
301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
302 * The 8x8 font is harder to read but fits more on the screen.
303 */
304#define FONT_8x8	/* default */
305/* #define FONT_8x16 */	/* 2nd choice */
306/* #define FONT_6x11 */	/* 3rd choice */
307
308.globl kernel_pg_dir
309.globl availmem
310.globl m68k_pgtable_cachemode
311.globl m68k_supervisor_cachemode
312#ifdef CONFIG_MVME16x
313.globl mvme_bdid
314#endif
315#ifdef CONFIG_Q40
316.globl q40_mem_cptr
317#endif
318
319CPUTYPE_040	= 1	/* indicates an 040 */
320CPUTYPE_060	= 2	/* indicates an 060 */
321CPUTYPE_0460	= 3	/* if either above are set, this is set */
322CPUTYPE_020	= 4	/* indicates an 020 */
323
324/* Translation control register */
325TC_ENABLE = 0x8000
326TC_PAGE8K = 0x4000
327TC_PAGE4K = 0x0000
328
329/* Transparent translation registers */
330TTR_ENABLE	= 0x8000	/* enable transparent translation */
331TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
332TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
333TTR_USERMODE	= 0x0000	/* only user mode access */
334TTR_CI		= 0x0400	/* inhibit cache */
335TTR_RW		= 0x0200	/* read/write mode */
336TTR_RWM		= 0x0100	/* read/write mask */
337TTR_FCB2	= 0x0040	/* function code base bit 2 */
338TTR_FCB1	= 0x0020	/* function code base bit 1 */
339TTR_FCB0	= 0x0010	/* function code base bit 0 */
340TTR_FCM2	= 0x0004	/* function code mask bit 2 */
341TTR_FCM1	= 0x0002	/* function code mask bit 1 */
342TTR_FCM0	= 0x0001	/* function code mask bit 0 */
343
344/* Cache Control registers */
345CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
346CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
347CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
348CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
349CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
350CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
351CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
352CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
353CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
354CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
355CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
356CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
357CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
358CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
359CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
360CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
361CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
362CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
363CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
364CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
365CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
366CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
367
368/* Miscellaneous definitions */
369PAGESIZE	= 4096
370PAGESHIFT	= 12
371
372ROOT_TABLE_SIZE	= 128
373PTR_TABLE_SIZE	= 128
374PAGE_TABLE_SIZE	= 64
375ROOT_INDEX_SHIFT = 25
376PTR_INDEX_SHIFT  = 18
377PAGE_INDEX_SHIFT = 12
378
379#ifdef DEBUG
380/* When debugging use readable names for labels */
381#ifdef __STDC__
382#define L(name) .head.S.##name
383#else
384#define L(name) .head.S./**/name
385#endif
386#else
387#ifdef __STDC__
388#define L(name) .L##name
389#else
390#define L(name) .L/**/name
391#endif
392#endif
393
394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
395#ifndef __INITDATA
396#define __INITDATA	.data
397#define __FINIT		.previous
398#endif
399
400/* Several macros to make the writing of subroutines easier:
401 * - func_start marks the beginning of the routine which setups the frame
402 *   register and saves the registers, it also defines another macro
403 *   to automatically restore the registers again.
404 * - func_return marks the end of the routine and simply calls the prepared
405 *   macro to restore registers and jump back to the caller.
406 * - func_define generates another macro to automatically put arguments
407 *   onto the stack call the subroutine and cleanup the stack again.
408 */
409
410/* Within subroutines these macros can be used to access the arguments
411 * on the stack. With STACK some allocated memory on the stack can be
412 * accessed and ARG0 points to the return address (used by mmu_engage).
413 */
414#define	STACK	%a6@(stackstart)
415#define ARG0	%a6@(4)
416#define ARG1	%a6@(8)
417#define ARG2	%a6@(12)
418#define ARG3	%a6@(16)
419#define ARG4	%a6@(20)
420
421.macro	func_start	name,saveregs,stack=0
422L(\name):
423	linkw	%a6,#-\stack
424	moveml	\saveregs,%sp@-
425.set	stackstart,-\stack
426
427.macro	func_return_\name
428	moveml	%sp@+,\saveregs
429	unlk	%a6
430	rts
431.endm
432.endm
433
434.macro	func_return	name
435	func_return_\name
436.endm
437
438.macro	func_call	name
439	jbsr	L(\name)
440.endm
441
442.macro	move_stack	nr,arg1,arg2,arg3,arg4
443.if	\nr
444	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
445	movel	\arg1,%sp@-
446.endif
447.endm
448
449.macro	func_define	name,nr=0
450.macro	\name	arg1,arg2,arg3,arg4
451	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
452	func_call	\name
453.if	\nr
454	lea	%sp@(\nr*4),%sp
455.endif
456.endm
457.endm
458
459func_define	mmu_map,4
460func_define	mmu_map_tt,4
461func_define	mmu_fixup_page_mmu_cache,1
462func_define	mmu_temp_map,2
463func_define	mmu_engage
464func_define	mmu_get_root_table_entry,1
465func_define	mmu_get_ptr_table_entry,2
466func_define	mmu_get_page_table_entry,2
467func_define	mmu_print
468func_define	get_new_page
469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
470func_define	set_leds
471#endif
472
473.macro	mmu_map_eq	arg1,arg2,arg3
474	mmu_map	\arg1,\arg1,\arg2,\arg3
475.endm
476
477.macro	get_bi_record	record
478	pea	\record
479	func_call	get_bi_record
480	addql	#4,%sp
481.endm
482
483func_define	serial_putc,1
484func_define	console_putc,1
485
486func_define	console_init
487func_define	console_put_stats
488func_define	console_put_penguin
489func_define	console_plot_pixel,3
490func_define	console_scroll
491
492.macro	putc	ch
493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
494	pea	\ch
495#endif
496#ifdef CONSOLE
497	func_call	console_putc
498#endif
499#ifdef SERIAL_DEBUG
500	func_call	serial_putc
501#endif
502#if defined(CONSOLE) || defined(SERIAL_DEBUG)
503	addql	#4,%sp
504#endif
505.endm
506
507.macro	dputc	ch
508#ifdef DEBUG
509	putc	\ch
510#endif
511.endm
512
513func_define	putn,1
514
515.macro	dputn	nr
516#ifdef DEBUG
517	putn	\nr
518#endif
519.endm
520
521.macro	puts		string
522#if defined(CONSOLE) || defined(SERIAL_DEBUG)
523	__INITDATA
524.Lstr\@:
525	.string	"\string"
526	__FINIT
527	pea	%pc@(.Lstr\@)
528	func_call	puts
529	addql	#4,%sp
530#endif
531.endm
532
533.macro	dputs	string
534#ifdef DEBUG
535	puts	"\string"
536#endif
537.endm
538
539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
552
553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
554			jeq 42f; \
555			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
556			jne lab ;\
557		42:\
558
559#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
560#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
561#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
562#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
563#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
564#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
565#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
566
567/* On the HP300 we use the on-board LEDs for debug output before
568   the console is running.  Writing a 1 bit turns the corresponding LED
569   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
570.macro	leds	mask
571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
572	hasnt_leds(.Lled\@)
573	pea	\mask
574	func_call	set_leds
575	addql	#4,%sp
576.Lled\@:
577#endif
578.endm
579
580.section ".text.head","ax"
581ENTRY(_stext)
582/*
583 * Version numbers of the bootinfo interface
584 * The area from _stext to _start will later be used as kernel pointer table
585 */
586	bras	1f	/* Jump over bootinfo version numbers */
587
588	.long	BOOTINFOV_MAGIC
589	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
590	.long	MACH_ATARI, ATARI_BOOTI_VERSION
591	.long	MACH_MVME147, MVME147_BOOTI_VERSION
592	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
593	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
594	.long	MACH_MAC, MAC_BOOTI_VERSION
595	.long	MACH_Q40, Q40_BOOTI_VERSION
596	.long	MACH_HP300, HP300_BOOTI_VERSION
597	.long	0
5981:	jra	__start
599
600.equ	kernel_pg_dir,_stext
601
602.equ	.,_stext+PAGESIZE
603
604ENTRY(_start)
605	jra	__start
606__INIT
607ENTRY(__start)
608/*
609 * Setup initial stack pointer
610 */
611	lea	%pc@(_stext),%sp
612
613/*
614 * Record the CPU and machine type.
615 */
616	get_bi_record	BI_MACHTYPE
617	lea	%pc@(m68k_machtype),%a1
618	movel	%a0@,%a1@
619
620	get_bi_record	BI_FPUTYPE
621	lea	%pc@(m68k_fputype),%a1
622	movel	%a0@,%a1@
623
624	get_bi_record	BI_MMUTYPE
625	lea	%pc@(m68k_mmutype),%a1
626	movel	%a0@,%a1@
627
628	get_bi_record	BI_CPUTYPE
629	lea	%pc@(m68k_cputype),%a1
630	movel	%a0@,%a1@
631
632	leds	0x1
633
634#ifdef CONFIG_MAC
635/*
636 * For Macintosh, we need to determine the display parameters early (at least
637 * while debugging it).
638 */
639
640	is_not_mac(L(test_notmac))
641
642	get_bi_record	BI_MAC_VADDR
643	lea	%pc@(L(mac_videobase)),%a1
644	movel	%a0@,%a1@
645
646	get_bi_record	BI_MAC_VDEPTH
647	lea	%pc@(L(mac_videodepth)),%a1
648	movel	%a0@,%a1@
649
650	get_bi_record	BI_MAC_VDIM
651	lea	%pc@(L(mac_dimensions)),%a1
652	movel	%a0@,%a1@
653
654	get_bi_record	BI_MAC_VROW
655	lea	%pc@(L(mac_rowbytes)),%a1
656	movel	%a0@,%a1@
657
658#ifdef MAC_SERIAL_DEBUG
659	get_bi_record	BI_MAC_SCCBASE
660	lea	%pc@(L(mac_sccbase)),%a1
661	movel	%a0@,%a1@
662#endif /* MAC_SERIAL_DEBUG */
663
664#if 0
665	/*
666	 * Clear the screen
667	 */
668	lea	%pc@(L(mac_videobase)),%a0
669	movel	%a0@,%a1
670	lea	%pc@(L(mac_dimensions)),%a0
671	movel	%a0@,%d1
672	swap	%d1		/* #rows is high bytes */
673	andl	#0xFFFF,%d1	/* rows */
674	subl	#10,%d1
675	lea	%pc@(L(mac_rowbytes)),%a0
676loopy2:
677	movel	%a0@,%d0
678	subql	#1,%d0
679loopx2:
680	moveb	#0x55, %a1@+
681	dbra	%d0,loopx2
682	dbra	%d1,loopy2
683#endif
684
685L(test_notmac):
686#endif /* CONFIG_MAC */
687
688
689/*
690 * There are ultimately two pieces of information we want for all kinds of
691 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
692 * and is converted here from a booter type definition to a separate bit
693 * number which allows for the standard is_0x0 macro tests.
694 */
695	movel	%pc@(m68k_cputype),%d0
696	/*
697	 * Assume it's an 030
698	 */
699	clrl	%d1
700
701	/*
702	 * Test the BootInfo cputype for 060
703	 */
704	btst	#CPUB_68060,%d0
705	jeq	1f
706	bset	#CPUTYPE_060,%d1
707	bset	#CPUTYPE_0460,%d1
708	jra	3f
7091:
710	/*
711	 * Test the BootInfo cputype for 040
712	 */
713	btst	#CPUB_68040,%d0
714	jeq	2f
715	bset	#CPUTYPE_040,%d1
716	bset	#CPUTYPE_0460,%d1
717	jra	3f
7182:
719	/*
720	 * Test the BootInfo cputype for 020
721	 */
722	btst	#CPUB_68020,%d0
723	jeq	3f
724	bset	#CPUTYPE_020,%d1
725	jra	3f
7263:
727	/*
728	 * Record the cpu type
729	 */
730	lea	%pc@(L(cputype)),%a0
731	movel	%d1,%a0@
732
733	/*
734	 * NOTE:
735	 *
736	 * Now the macros are valid:
737	 *	is_040_or_060
738	 *	is_not_040_or_060
739	 *	is_040
740	 *	is_060
741	 *	is_not_060
742	 */
743
744	/*
745	 * Determine the cache mode for pages holding MMU tables
746	 * and for supervisor mode, unused for '020 and '030
747	 */
748	clrl	%d0
749	clrl	%d1
750
751	is_not_040_or_060(L(save_cachetype))
752
753	/*
754	 * '040 or '060
755	 * d1 := cacheable write-through
756	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
757	 * but we have been using write-through since at least 2.0.29 so I
758	 * guess it is OK.
759	 */
760#ifdef CONFIG_060_WRITETHROUGH
761	/*
762	 * If this is a 68060 board using drivers with cache coherency
763	 * problems, then supervisor memory accesses need to be write-through
764	 * also; otherwise, we want copyback.
765	 */
766
767	is_not_060(1f)
768	movel	#_PAGE_CACHE040W,%d0
769	jra	L(save_cachetype)
770#endif /* CONFIG_060_WRITETHROUGH */
7711:
772	movew	#_PAGE_CACHE040,%d0
773
774	movel	#_PAGE_CACHE040W,%d1
775
776L(save_cachetype):
777	/* Save cache mode for supervisor mode and page tables
778	 */
779	lea	%pc@(m68k_supervisor_cachemode),%a0
780	movel	%d0,%a0@
781	lea	%pc@(m68k_pgtable_cachemode),%a0
782	movel	%d1,%a0@
783
784/*
785 * raise interrupt level
786 */
787	movew	#0x2700,%sr
788
789/*
790   If running on an Atari, determine the I/O base of the
791   serial port and test if we are running on a Medusa or Hades.
792   This test is necessary here, because on the Hades the serial
793   port is only accessible in the high I/O memory area.
794
795   The test whether it is a Medusa is done by writing to the byte at
796   phys. 0x0. This should result in a bus error on all other machines.
797
798   ...should, but doesn't. The Afterburner040 for the Falcon has the
799   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
800   another test to distinguish Medusa and AB040. This is a
801   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
802   (+AB040), but is in the range where the Medusa always asserts DTACK.
803
804   The test for the Hades is done by reading address 0xb0000000. This
805   should give a bus error on the Medusa.
806 */
807
808#ifdef CONFIG_ATARI
809	is_not_atari(L(notypetest))
810
811	/* get special machine type (Medusa/Hades/AB40) */
812	moveq	#0,%d3 /* default if tag doesn't exist */
813	get_bi_record	BI_ATARI_MCH_TYPE
814	tstl	%d0
815	jbmi	1f
816	movel	%a0@,%d3
817	lea	%pc@(atari_mch_type),%a0
818	movel	%d3,%a0@
8191:
820	/* On the Hades, the iobase must be set up before opening the
821	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
822	moveq	#0,%d0
823	cmpl	#ATARI_MACH_HADES,%d3
824	jbne	1f
825	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
8261:	lea     %pc@(L(iobase)),%a0
827	movel   %d0,%a0@
828
829L(notypetest):
830#endif
831
832#ifdef CONFIG_VME
833	is_mvme147(L(getvmetype))
834	is_bvme6000(L(getvmetype))
835	is_not_mvme16x(L(gvtdone))
836
837	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
838	 * versions of VMELILO and TFTPLILO do this.  We have to do this
839	 * early so we know how to handle console output.  If the tag
840	 * doesn't exist then we use the Bug for output on MVME16x.
841	 */
842L(getvmetype):
843	get_bi_record	BI_VME_TYPE
844	tstl	%d0
845	jbmi	1f
846	movel	%a0@,%d3
847	lea	%pc@(vme_brdtype),%a0
848	movel	%d3,%a0@
8491:
850#ifdef CONFIG_MVME16x
851	is_not_mvme16x(L(gvtdone))
852
853	/* Need to get the BRD_ID info to differentiate between 162, 167,
854	 * etc.  This is available as a BI_VME_BRDINFO tag with later
855	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
856	 */
857	get_bi_record	BI_VME_BRDINFO
858	tstl	%d0
859	jpl	1f
860
861	/* Get pointer to board ID data from Bug */
862	movel	%d2,%sp@-
863	trap	#15
864	.word	0x70		/* trap 0x70 - .BRD_ID */
865	movel	%sp@+,%a0
8661:
867	lea	%pc@(mvme_bdid),%a1
868	/* Structure is 32 bytes long */
869	movel	%a0@+,%a1@+
870	movel	%a0@+,%a1@+
871	movel	%a0@+,%a1@+
872	movel	%a0@+,%a1@+
873	movel	%a0@+,%a1@+
874	movel	%a0@+,%a1@+
875	movel	%a0@+,%a1@+
876	movel	%a0@+,%a1@+
877#endif
878
879L(gvtdone):
880
881#endif
882
883#ifdef CONFIG_HP300
884	is_not_hp300(L(nothp))
885
886	/* Get the address of the UART for serial debugging */
887	get_bi_record	BI_HP300_UART_ADDR
888	tstl	%d0
889	jbmi	1f
890	movel	%a0@,%d3
891	lea	%pc@(L(uartbase)),%a0
892	movel	%d3,%a0@
893	get_bi_record	BI_HP300_UART_SCODE
894	tstl	%d0
895	jbmi	1f
896	movel	%a0@,%d3
897	lea	%pc@(L(uart_scode)),%a0
898	movel	%d3,%a0@
8991:
900L(nothp):
901#endif
902
903/*
904 * Initialize serial port
905 */
906	jbsr	L(serial_init)
907
908/*
909 * Initialize console
910 */
911#ifdef CONFIG_MAC
912	is_not_mac(L(nocon))
913#ifdef CONSOLE
914	console_init
915#ifdef CONSOLE_PENGUIN
916	console_put_penguin
917#endif	/* CONSOLE_PENGUIN */
918	console_put_stats
919#endif	/* CONSOLE */
920L(nocon):
921#endif	/* CONFIG_MAC */
922
923
924	putc	'\n'
925	putc	'A'
926	leds	0x2
927	dputn	%pc@(L(cputype))
928	dputn	%pc@(m68k_supervisor_cachemode)
929	dputn	%pc@(m68k_pgtable_cachemode)
930	dputc	'\n'
931
932/*
933 * Save physical start address of kernel
934 */
935	lea	%pc@(L(phys_kernel_start)),%a0
936	lea	%pc@(_stext),%a1
937	subl	#_stext,%a1
938	addl	#PAGE_OFFSET,%a1
939	movel	%a1,%a0@
940
941	putc	'B'
942
943	leds	0x4
944
945/*
946 *	mmu_init
947 *
948 *	This block of code does what's necessary to map in the various kinds
949 *	of machines for execution of Linux.
950 *	First map the first 4 MB of kernel code & data
951 */
952
953	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
954		%pc@(m68k_supervisor_cachemode)
955
956	putc	'C'
957
958#ifdef CONFIG_AMIGA
959
960L(mmu_init_amiga):
961
962	is_not_amiga(L(mmu_init_not_amiga))
963/*
964 * mmu_init_amiga
965 */
966
967	putc	'D'
968
969	is_not_040_or_060(1f)
970
971	/*
972	 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000
973	 */
974	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
975	/*
976	 * Map the Zorro III I/O space with transparent translation
977	 * for frame buffer memory etc.
978	 */
979	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
980
981	jbra	L(mmu_init_done)
982
9831:
984	/*
985	 * 030:	Map the 32Meg range physical 0x0 upto logical 0x8000.0000
986	 */
987	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
988	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
989
990	jbra	L(mmu_init_done)
991
992L(mmu_init_not_amiga):
993#endif
994
995#ifdef CONFIG_ATARI
996
997L(mmu_init_atari):
998
999	is_not_atari(L(mmu_init_not_atari))
1000
1001	putc	'E'
1002
1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004   the last 16 MB of virtual address space to the first 16 MB (i.e.
1005   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006   needed. I/O ranges are marked non-cachable.
1007
1008   For the Medusa it is better to map the I/O region transparently
1009   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010   accessible only in the high area.
1011
1012   On the Hades all I/O registers are only accessible in the high
1013   area.
1014*/
1015
1016	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017	moveq	#0,%d0
1018	movel	%pc@(atari_mch_type),%d3
1019	cmpl	#ATARI_MACH_MEDUSA,%d3
1020	jbeq	2f
1021	cmpl	#ATARI_MACH_HADES,%d3
1022	jbne	1f
10232:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10241:	movel	%d0,%d3
1025
1026	is_040_or_060(L(spata68040))
1027
1028	/* Map everything non-cacheable, though not all parts really
1029	 * need to disable caches (crucial only for 0xff8000..0xffffff
1030	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031	 * isn't really used, except for sometimes peeking into the
1032	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033	 * this. */
1034	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036	jbra	L(mmu_init_done)
1037
1038L(spata68040):
1039
1040	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042	jbra	L(mmu_init_done)
1043
1044L(mmu_init_not_atari):
1045#endif
1046
1047#ifdef CONFIG_Q40
1048	is_not_q40(L(notq40))
1049	/*
1050	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051	 * non-cached serialized etc..
1052	 * this includes master chip, DAC, RTC and ISA ports
1053	 * 0xfe000000-0xfeffffff is for screen and ROM
1054	 */
1055
1056	putc    'Q'
1057
1058	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061	jbra	L(mmu_init_done)
1062
1063L(notq40):
1064#endif
1065
1066#ifdef CONFIG_HP300
1067	is_not_hp300(L(nothp300))
1068
1069	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071	 * The ROM mapping is needed because the LEDs are mapped there too.
1072	 */
1073
1074	is_040(1f)
1075
1076	/*
1077	 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000
1078	 */
1079	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081	jbra	L(mmu_init_done)
1082
10831:
1084	/*
1085	 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000
1086	 */
1087	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089	jbra	L(mmu_init_done)
1090
1091L(nothp300):
1092#endif /* CONFIG_HP300 */
1093
1094#ifdef CONFIG_MVME147
1095
1096	is_not_mvme147(L(not147))
1097
1098	/*
1099	 * On MVME147 we have already created kernel page tables for
1100	 * 4MB of RAM at address 0, so now need to do a transparent
1101	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1102	 * so we can access on-board i/o areas.
1103	 */
1104
1105	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107	jbra	L(mmu_init_done)
1108
1109L(not147):
1110#endif /* CONFIG_MVME147 */
1111
1112#ifdef CONFIG_MVME16x
1113
1114	is_not_mvme16x(L(not16x))
1115
1116	/*
1117	 * On MVME16x we have already created kernel page tables for
1118	 * 4MB of RAM at address 0, so now need to do a transparent
1119	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1123	 * mapping is needed to allow 167Bug to run.
1124	 * IO is in the range 0xfff00000 to 0xfffeffff.
1125	 * PROM is 0xff800000->0xffbfffff and SRAM is
1126	 * 0xffe00000->0xffe1ffff.
1127	 */
1128
1129	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131	jbra	L(mmu_init_done)
1132
1133L(not16x):
1134#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136#ifdef CONFIG_BVME6000
1137
1138	is_not_bvme6000(L(not6000))
1139
1140	/*
1141	 * On BVME6000 we have already created kernel page tables for
1142	 * 4MB of RAM at address 0, so now need to do a transparent
1143	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1144	 * so we can access on-board i/o areas.
1145	 * Supervisor only access, so transparent mapping doesn't
1146	 * clash with User code virtual address space.
1147	 */
1148
1149	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151	jbra	L(mmu_init_done)
1152
1153L(not6000):
1154#endif /* CONFIG_BVME6000 */
1155
1156/*
1157 * mmu_init_mac
1158 *
1159 * The Macintosh mappings are less clear.
1160 *
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done.  However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1165 *
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1174 *
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1177 *
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions.  But I'd like to cut that out.  (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1183
1184#ifdef CONFIG_MAC
1185
1186L(mmu_init_mac):
1187
1188	is_not_mac(L(mmu_init_not_mac))
1189
1190	putc	'F'
1191
1192	is_not_040_or_060(1f)
1193
1194	moveq	#_PAGE_NOCACHE_S,%d3
1195	jbra	2f
11961:
1197	moveq	#_PAGE_NOCACHE030,%d3
11982:
1199	/*
1200	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201	 *	     we simply map the 4MB that contains the videomem
1202	 */
1203
1204	movel	#VIDEOMEMMASK,%d0
1205	andl	%pc@(L(mac_videobase)),%d0
1206
1207	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209	mmu_map_eq	#0x40000000,#0x02000000,%d3
1210	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211	mmu_map_eq	#0x50000000,#0x03000000,%d3
1212	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1214
1215	jbra	L(mmu_init_done)
1216
1217L(mmu_init_not_mac):
1218#endif
1219
1220#ifdef CONFIG_SUN3X
1221	is_not_sun3x(L(notsun3x))
1222
1223	/* oh, the pain..  We're gonna want the prom code after
1224	 * starting the MMU, so we copy the mappings, translating
1225	 * from 8k -> 4k pages as we go.
1226	 */
1227
1228	/* copy maps from 0xfee00000 to 0xff000000 */
1229	movel	#0xfee00000, %d0
1230	moveq	#ROOT_INDEX_SHIFT, %d1
1231	lsrl	%d1,%d0
1232	mmu_get_root_table_entry	%d0
1233
1234	movel	#0xfee00000, %d0
1235	moveq	#PTR_INDEX_SHIFT, %d1
1236	lsrl	%d1,%d0
1237	andl	#PTR_TABLE_SIZE-1, %d0
1238	mmu_get_ptr_table_entry		%a0,%d0
1239
1240	movel	#0xfee00000, %d0
1241	moveq	#PAGE_INDEX_SHIFT, %d1
1242	lsrl	%d1,%d0
1243	andl	#PAGE_TABLE_SIZE-1, %d0
1244	mmu_get_page_table_entry	%a0,%d0
1245
1246	/* this is where the prom page table lives */
1247	movel	0xfefe00d4, %a1
1248	movel	%a1@, %a1
1249
1250	movel	#((0x200000 >> 13)-1), %d1
1251
12521:
1253	movel	%a1@+, %d3
1254	movel	%d3,%a0@+
1255	addl	#0x1000,%d3
1256	movel	%d3,%a0@+
1257
1258	dbra	%d1,1b
1259
1260	/* setup tt1 for I/O */
1261	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262	jbra	L(mmu_init_done)
1263
1264L(notsun3x):
1265#endif
1266
1267#ifdef CONFIG_APOLLO
1268	is_not_apollo(L(notapollo))
1269
1270	putc	'P'
1271	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273L(notapollo):
1274	jbra	L(mmu_init_done)
1275#endif
1276
1277L(mmu_init_done):
1278
1279	putc	'G'
1280	leds	0x8
1281
1282/*
1283 * mmu_fixup
1284 *
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1290 *
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295L(mmu_fixup):
1296
1297	is_not_040_or_060(L(mmu_fixup_done))
1298
1299#ifdef MMU_NOCACHE_KERNEL
1300	jbra	L(mmu_fixup_done)
1301#endif
1302
1303	/* first fix the page at the start of the kernel, that
1304	 * contains also kernel_pg_dir.
1305	 */
1306	movel	%pc@(L(phys_kernel_start)),%d0
1307	subl	#PAGE_OFFSET,%d0
1308	lea	%pc@(_stext),%a0
1309	subl	%d0,%a0
1310	mmu_fixup_page_mmu_cache	%a0
1311
1312	movel	%pc@(L(kernel_end)),%a0
1313	subl	%d0,%a0
1314	movel	%pc@(L(memory_start)),%a1
1315	subl	%d0,%a1
1316	bra	2f
13171:
1318	mmu_fixup_page_mmu_cache	%a0
1319	addw	#PAGESIZE,%a0
13202:
1321	cmpl	%a0,%a1
1322	jgt	1b
1323
1324L(mmu_fixup_done):
1325
1326#ifdef MMU_PRINT
1327	mmu_print
1328#endif
1329
1330/*
1331 * mmu_engage
1332 *
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses.  The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 *    the kernel of which there are two sub-possibilities:
1341 *    A. The PC maps to the correct instruction (logical PC == physical
1342 *       code location), or
1343 *    B. The PC does not map through and the processor will read some
1344 *       data (or instruction) which is not the logically next instr.
1345 *    As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU.  The processor
1348 *    will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 *    the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else.  e.g., 0x0400.0000
1356 *
1357 *    Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 *
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc.  And, create a transparent
1368 * translation register for the first 16 Meg.  Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally).  This is essentially the code that the Amiga used
1373 * to use.  Now, it's generalized for all processors.  Which means
1374 * that a fresh (but temporary) mapping has to be created.  The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!).  This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1378 *
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg.  Then, just use Transparent Translation registers
1381 * to do the right thing.
1382 *
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1386 *
1387 * Let's do it.
1388 *
1389 *
1390 */
1391
1392	putc	'H'
1393
1394	mmu_engage
1395
1396/*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1401
1402	movel	L(memory_start),availmem
1403
1404#ifdef CONFIG_AMIGA
1405	is_not_amiga(1f)
1406	/* fixup the Amiga custom register location before printing */
1407	clrl	L(custom)
14081:
1409#endif
1410
1411#ifdef CONFIG_ATARI
1412	is_not_atari(1f)
1413	/* fixup the Atari iobase register location before printing */
1414	movel	#0xff000000,L(iobase)
14151:
1416#endif
1417
1418#ifdef CONFIG_MAC
1419	is_not_mac(1f)
1420	movel	#~VIDEOMEMMASK,%d0
1421	andl	L(mac_videobase),%d0
1422	addl	#VIDEOMEMBASE,%d0
1423	movel	%d0,L(mac_videobase)
1424#if defined(CONSOLE)
1425	movel	%pc@(L(phys_kernel_start)),%d0
1426	subl	#PAGE_OFFSET,%d0
1427	subl	%d0,L(console_font)
1428	subl	%d0,L(console_font_data)
1429#endif
1430#ifdef MAC_SERIAL_DEBUG
1431	orl	#0x50000000,L(mac_sccbase)
1432#endif
14331:
1434#endif
1435
1436#ifdef CONFIG_HP300
1437	is_not_hp300(2f)
1438	/*
1439	 * Fix up the iobase register to point to the new location of the LEDs.
1440	 */
1441	movel	#0xf0000000,L(iobase)
1442
1443	/*
1444	 * Energise the FPU and caches.
1445	 */
1446	is_040(1f)
1447	movel	#0x60,0xf05f400c
1448	jbra	2f
1449
1450	/*
1451	 * 040: slightly different, apparently.
1452	 */
14531:	movew	#0,0xf05f400e
1454	movew	#0x64,0xf05f400e
14552:
1456#endif
1457
1458#ifdef CONFIG_SUN3X
1459	is_not_sun3x(1f)
1460
1461	/* enable copro */
1462	oriw	#0x4000,0x61000000
14631:
1464#endif
1465
1466#ifdef CONFIG_APOLLO
1467	is_not_apollo(1f)
1468
1469	/*
1470	 * Fix up the iobase before printing
1471	 */
1472	movel	#0x80000000,L(iobase)
14731:
1474#endif
1475
1476	putc	'I'
1477	leds	0x10
1478
1479/*
1480 * Enable caches
1481 */
1482
1483	is_not_040_or_060(L(cache_not_680460))
1484
1485L(cache680460):
1486	.chip	68040
1487	nop
1488	cpusha	%bc
1489	nop
1490
1491	is_060(L(cache68060))
1492
1493	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494	/* MMU stuff works in copyback mode now, so enable the cache */
1495	movec	%d0,%cacr
1496	jra	L(cache_done)
1497
1498L(cache68060):
1499	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500	/* MMU stuff works in copyback mode now, so enable the cache */
1501	movec	%d0,%cacr
1502	/* enable superscalar dispatch in PCR */
1503	moveq	#1,%d0
1504	.chip	68060
1505	movec	%d0,%pcr
1506
1507	jbra	L(cache_done)
1508L(cache_not_680460):
1509L(cache68030):
1510	.chip	68030
1511	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512	movec	%d0,%cacr
1513
1514	jra	L(cache_done)
1515	.chip	68k
1516L(cache_done):
1517
1518	putc	'J'
1519
1520/*
1521 * Setup initial stack pointer
1522 */
1523	lea	init_task,%curptr
1524	lea	init_thread_union+THREAD_SIZE,%sp
1525
1526	putc	'K'
1527
1528	subl	%a6,%a6		/* clear a6 for gdb */
1529
1530/*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533	jbsr	base_trap_init
1534
1535/* jump to the kernel start */
1536
1537	putc	'\n'
1538	leds	0x55
1539
1540	jbsr	start_kernel
1541
1542/*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 *          a0: data pointer (end-of-records if not found)
1547 */
1548func_start	get_bi_record,%d1
1549
1550	movel	ARG1,%d0
1551	lea	%pc@(_end),%a0
15521:	tstw	%a0@(BIR_TAG)
1553	jeq	3f
1554	cmpw	%a0@(BIR_TAG),%d0
1555	jeq	2f
1556	addw	%a0@(BIR_SIZE),%a0
1557	jra	1b
15582:	moveq	#0,%d0
1559	movew	%a0@(BIR_SIZE),%d0
1560	lea	%a0@(BIR_DATA),%a0
1561	jra	4f
15623:	moveq	#-1,%d0
1563	lea	%a0@(BIR_SIZE),%a0
15644:
1565func_return	get_bi_record
1566
1567
1568/*
1569 *	MMU Initialization Begins Here
1570 *
1571 *	The structure of the MMU tables on the 68k machines
1572 *	is thus:
1573 *	Root Table
1574 *		Logical addresses are translated through
1575 *	a hierarchical translation mechanism where the high-order
1576 *	seven bits of the logical address (LA) are used as an
1577 *	index into the "root table."  Each entry in the root
1578 *	table has a bit which specifies if it's a valid pointer to a
1579 *	pointer table.  Each entry defines a 32KMeg range of memory.
1580 *	If an entry is invalid then that logical range of 32M is
1581 *	invalid and references to that range of memory (when the MMU
1582 *	is enabled) will fault.  If the entry is valid, then it does
1583 *	one of two things.  On 040/060 class machines, it points to
1584 *	a pointer table which then describes more finely the memory
1585 *	within that 32M range.  On 020/030 class machines, a technique
1586 *	called "early terminating descriptors" are used.  This technique
1587 *	allows an entire 32Meg to be described by a single entry in the
1588 *	root table.  Thus, this entry in the root table, contains the
1589 *	physical address of the memory or I/O at the logical address
1590 *	which the entry represents and it also contains the necessary
1591 *	cache bits for this region.
1592 *
1593 *	Pointer Tables
1594 *		Per the Root Table, there will be one or more
1595 *	pointer tables.  Each pointer table defines a 32M range.
1596 *	Not all of the 32M range need be defined.  Again, the next
1597 *	seven bits of the logical address are used an index into
1598 *	the pointer table to point to page tables (if the pointer
1599 *	is valid).  There will undoubtedly be more than one
1600 *	pointer table for the kernel because each pointer table
1601 *	defines a range of only 32M.  Valid pointer table entries
1602 *	point to page tables, or are early terminating entries
1603 *	themselves.
1604 *
1605 *	Page Tables
1606 *		Per the Pointer Tables, each page table entry points
1607 *	to the physical page in memory that supports the logical
1608 *	address that translates to the particular index.
1609 *
1610 *	In short, the Logical Address gets translated as follows:
1611 *		bits 31..26 - index into the Root Table
1612 *		bits 25..18 - index into the Pointer Table
1613 *		bits 17..12 - index into the Page Table
1614 *		bits 11..0  - offset into a particular 4K page
1615 *
1616 *	The algorithms which follows do one thing: they abstract
1617 *	the MMU hardware.  For example, there are three kinds of
1618 *	cache settings that are relevant.  Either, memory is
1619 *	being mapped in which case it is either Kernel Code (or
1620 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1621 *	option also describes the kernel.  Or, I/O is being mapped
1622 *	in which case it has its own kind of cache bits.  There
1623 *	are constants which abstract these notions from the code that
1624 *	actually makes the call to map some range of memory.
1625 *
1626 *
1627 *
1628 */
1629
1630#ifdef MMU_PRINT
1631/*
1632 *	mmu_print
1633 *
1634 *	This algorithm will print out the current MMU mappings.
1635 *
1636 *	Input:
1637 *		%a5 points to the root table.  Everything else is calculated
1638 *			from this.
1639 */
1640
1641#define mmu_next_valid		0
1642#define mmu_start_logical	4
1643#define mmu_next_logical	8
1644#define mmu_start_physical	12
1645#define mmu_next_physical	16
1646
1647#define MMU_PRINT_INVALID		-1
1648#define MMU_PRINT_VALID			1
1649#define MMU_PRINT_UNINITED		0
1650
1651#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653func_start	mmu_print,%a0-%a6/%d0-%d7
1654
1655	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1656	lea	%pc@(L(mmu_print_data)),%a0
1657	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659	is_not_040_or_060(mmu_030_print)
1660
1661mmu_040_print:
1662	puts	"\nMMU040\n"
1663	puts	"rp:"
1664	putn	%a5
1665	putc	'\n'
1666#if 0
1667	/*
1668	 * The following #if/#endif block is a tight algorithm for dumping the 040
1669	 * MMU Map in gory detail.  It really isn't that practical unless the
1670	 * MMU Map algorithm appears to go awry and you need to debug it at the
1671	 * entry per entry level.
1672	 */
1673	movel	#ROOT_TABLE_SIZE,%d5
1674#if 0
1675	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1676	subql	#1,%d5			| they (might) work
1677#endif
16781:	tstl	%d5
1679	jbeq	mmu_print_done
1680	subq	#1,%d5
1681	movel	%a5@+,%d7
1682	btst	#1,%d7
1683	jbeq	1b
1684
16852:	putn	%d7
1686	andil	#0xFFFFFE00,%d7
1687	movel	%d7,%a4
1688	movel	#PTR_TABLE_SIZE,%d4
1689	putc	' '
16903:	tstl	%d4
1691	jbeq	11f
1692	subq	#1,%d4
1693	movel	%a4@+,%d7
1694	btst	#1,%d7
1695	jbeq	3b
1696
16974:	putn	%d7
1698	andil	#0xFFFFFF00,%d7
1699	movel	%d7,%a3
1700	movel	#PAGE_TABLE_SIZE,%d3
17015:	movel	#8,%d2
17026:	tstl	%d3
1703	jbeq	31f
1704	subq	#1,%d3
1705	movel	%a3@+,%d6
1706	btst	#0,%d6
1707	jbeq	6b
17087:	tstl	%d2
1709	jbeq	8f
1710	subq	#1,%d2
1711	putc	' '
1712	jbra	91f
17138:	putc	'\n'
1714	movel	#8+1+8+1+1,%d2
17159:	putc	' '
1716	dbra	%d2,9b
1717	movel	#7,%d2
171891:	putn	%d6
1719	jbra	6b
1720
172131:	putc	'\n'
1722	movel	#8+1,%d2
172332:	putc	' '
1724	dbra	%d2,32b
1725	jbra	3b
1726
172711:	putc	'\n'
1728	jbra	1b
1729#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731	lea	%pc@(kernel_pg_dir),%a5
1732	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1733	movel	#0x00000000,%a4		/* logical address */
1734	moveql	#0,%d0
173540:
1736	/* Increment the logical address and preserve in d5 */
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<13,%d5
1739	movel	%a0@+,%d6
1740	btst	#1,%d6
1741	jbne	41f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	48f
174441:
1745	movel	#0,%d1
1746	andil	#0xfffffe00,%d6
1747	movel	%d6,%a1
174842:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE<<6,%d5
1751	movel	%a1@+,%d6
1752	btst	#1,%d6
1753	jbne	43f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	47f
175643:
1757	movel	#0,%d2
1758	andil	#0xffffff00,%d6
1759	movel	%d6,%a2
176044:
1761	movel	%a4,%d5
1762	addil	#PAGESIZE,%d5
1763	movel	%a2@+,%d6
1764	btst	#0,%d6
1765	jbne	45f
1766	jbsr	mmu_print_tuple_invalidate
1767	jbra	46f
176845:
1769	moveml	%d0-%d1,%sp@-
1770	movel	%a4,%d0
1771	movel	%d6,%d1
1772	andil	#0xfffff4e0,%d1
1773	lea	%pc@(mmu_040_print_flags),%a6
1774	jbsr	mmu_print_tuple
1775	moveml	%sp@+,%d0-%d1
177646:
1777	movel	%d5,%a4
1778	addq	#1,%d2
1779	cmpib	#64,%d2
1780	jbne	44b
178147:
1782	movel	%d5,%a4
1783	addq	#1,%d1
1784	cmpib	#128,%d1
1785	jbne	42b
178648:
1787	movel	%d5,%a4			/* move to the next logical address */
1788	addq	#1,%d0
1789	cmpib	#128,%d0
1790	jbne	40b
1791
1792	.chip	68040
1793	movec	%dtt1,%d0
1794	movel	%d0,%d1
1795	andiw	#0x8000,%d1		/* is it valid ? */
1796	jbeq	1f			/* No, bail out */
1797
1798	movel	%d0,%d1
1799	andil	#0xff000000,%d1		/* Get the address */
1800	putn	%d1
1801	puts	"=="
1802	putn	%d1
1803
1804	movel	%d0,%d6
1805	jbsr	mmu_040_print_flags_tt
18061:
1807	movec	%dtt0,%d0
1808	movel	%d0,%d1
1809	andiw	#0x8000,%d1		/* is it valid ? */
1810	jbeq	1f			/* No, bail out */
1811
1812	movel	%d0,%d1
1813	andil	#0xff000000,%d1		/* Get the address */
1814	putn	%d1
1815	puts	"=="
1816	putn	%d1
1817
1818	movel	%d0,%d6
1819	jbsr	mmu_040_print_flags_tt
18201:
1821	.chip	68k
1822
1823	jbra	mmu_print_done
1824
1825mmu_040_print_flags:
1826	btstl	#10,%d6
1827	putZc(' ','G')	/* global bit */
1828	btstl	#7,%d6
1829	putZc(' ','S')	/* supervisor bit */
1830mmu_040_print_flags_tt:
1831	btstl	#6,%d6
1832	jbne	3f
1833	putc	'C'
1834	btstl	#5,%d6
1835	putZc('w','c')	/* write through or copy-back */
1836	jbra	4f
18373:
1838	putc	'N'
1839	btstl	#5,%d6
1840	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18414:
1842	rts
1843
1844mmu_030_print_flags:
1845	btstl	#6,%d6
1846	putZc('C','I')	/* write through or copy-back */
1847	rts
1848
1849mmu_030_print:
1850	puts	"\nMMU030\n"
1851	puts	"\nrp:"
1852	putn	%a5
1853	putc	'\n'
1854	movel	%a5,%d0
1855	andil	#0xfffffff0,%d0
1856	movel	%d0,%a0
1857	movel	#0x00000000,%a4		/* logical address */
1858	movel	#0,%d0
185930:
1860	movel	%a4,%d5
1861	addil	#PAGESIZE<<13,%d5
1862	movel	%a0@+,%d6
1863	btst	#1,%d6			/* is it a table ptr? */
1864	jbne	31f			/* yes */
1865	btst	#0,%d6			/* is it early terminating? */
1866	jbeq	1f			/* no */
1867	jbsr	mmu_030_print_helper
1868	jbra	38f
18691:
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	38f
187231:
1873	movel	#0,%d1
1874	andil	#0xfffffff0,%d6
1875	movel	%d6,%a1
187632:
1877	movel	%a4,%d5
1878	addil	#PAGESIZE<<6,%d5
1879	movel	%a1@+,%d6
1880	btst	#1,%d6			/* is it a table ptr? */
1881	jbne	33f			/* yes */
1882	btst	#0,%d6			/* is it a page descriptor? */
1883	jbeq	1f			/* no */
1884	jbsr	mmu_030_print_helper
1885	jbra	37f
18861:
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	37f
188933:
1890	movel	#0,%d2
1891	andil	#0xfffffff0,%d6
1892	movel	%d6,%a2
189334:
1894	movel	%a4,%d5
1895	addil	#PAGESIZE,%d5
1896	movel	%a2@+,%d6
1897	btst	#0,%d6
1898	jbne	35f
1899	jbsr	mmu_print_tuple_invalidate
1900	jbra	36f
190135:
1902	jbsr	mmu_030_print_helper
190336:
1904	movel	%d5,%a4
1905	addq	#1,%d2
1906	cmpib	#64,%d2
1907	jbne	34b
190837:
1909	movel	%d5,%a4
1910	addq	#1,%d1
1911	cmpib	#128,%d1
1912	jbne	32b
191338:
1914	movel	%d5,%a4			/* move to the next logical address */
1915	addq	#1,%d0
1916	cmpib	#128,%d0
1917	jbne	30b
1918
1919mmu_print_done:
1920	puts	"\n\n"
1921
1922func_return	mmu_print
1923
1924
1925mmu_030_print_helper:
1926	moveml	%d0-%d1,%sp@-
1927	movel	%a4,%d0
1928	movel	%d6,%d1
1929	lea	%pc@(mmu_030_print_flags),%a6
1930	jbsr	mmu_print_tuple
1931	moveml	%sp@+,%d0-%d1
1932	rts
1933
1934mmu_print_tuple_invalidate:
1935	moveml	%a0/%d7,%sp@-
1936
1937	lea	%pc@(L(mmu_print_data)),%a0
1938	tstl	%a0@(mmu_next_valid)
1939	jbmi	mmu_print_tuple_invalidate_exit
1940
1941	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943	putn	%a4
1944
1945	puts	"##\n"
1946
1947mmu_print_tuple_invalidate_exit:
1948	moveml	%sp@+,%a0/%d7
1949	rts
1950
1951
1952mmu_print_tuple:
1953	moveml	%d0-%d7/%a0,%sp@-
1954
1955	lea	%pc@(L(mmu_print_data)),%a0
1956
1957	tstl	%a0@(mmu_next_valid)
1958	jble	mmu_print_tuple_print
1959
1960	cmpl	%a0@(mmu_next_physical),%d1
1961	jbeq	mmu_print_tuple_increment
1962
1963mmu_print_tuple_print:
1964	putn	%d0
1965	puts	"->"
1966	putn	%d1
1967
1968	movel	%d1,%d6
1969	jbsr	%a6@
1970
1971mmu_print_tuple_record:
1972	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974	movel	%d1,%a0@(mmu_next_physical)
1975
1976mmu_print_tuple_increment:
1977	movel	%d5,%d7
1978	subl	%a4,%d7
1979	addl	%d7,%a0@(mmu_next_physical)
1980
1981mmu_print_tuple_exit:
1982	moveml	%sp@+,%d0-%d7/%a0
1983	rts
1984
1985mmu_print_machine_cpu_types:
1986	puts	"machine: "
1987
1988	is_not_amiga(1f)
1989	puts	"amiga"
1990	jbra	9f
19911:
1992	is_not_atari(2f)
1993	puts	"atari"
1994	jbra	9f
19952:
1996	is_not_mac(3f)
1997	puts	"macintosh"
1998	jbra	9f
19993:	puts	"unknown"
20009:	putc	'\n'
2001
2002	puts	"cputype: 0"
2003	is_not_060(1f)
2004	putc	'6'
2005	jbra	9f
20061:
2007	is_not_040_or_060(2f)
2008	putc	'4'
2009	jbra	9f
20102:	putc	'3'
20119:	putc	'0'
2012	putc	'\n'
2013
2014	rts
2015#endif /* MMU_PRINT */
2016
2017/*
2018 * mmu_map_tt
2019 *
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026func_start	mmu_map_tt,%d0/%d1/%a0,4
2027
2028	dputs	"mmu_map_tt:"
2029	dputn	ARG1
2030	dputn	ARG2
2031	dputn	ARG3
2032	dputn	ARG4
2033	dputc	'\n'
2034
2035	is_020(L(do_map))
2036
2037	/* Extract the highest bit set
2038	 */
2039	bfffo	ARG3{#0,#32},%d1
2040	cmpw	#8,%d1
2041	jcc	L(do_map)
2042
2043	/* And get the mask
2044	 */
2045	moveq	#-1,%d0
2046	lsrl	%d1,%d0
2047	lsrl	#1,%d0
2048
2049	/* Mask the address
2050	 */
2051	movel	%d0,%d1
2052	notl	%d1
2053	andl	ARG2,%d1
2054
2055	/* Generate the upper 16bit of the tt register
2056	 */
2057	lsrl	#8,%d0
2058	orl	%d0,%d1
2059	clrw	%d1
2060
2061	is_040_or_060(L(mmu_map_tt_040))
2062
2063	/* set 030 specific bits (read/write access for supervisor mode
2064	 * (highest function code set, lower two bits masked))
2065	 */
2066	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067	movel	ARG4,%d0
2068	btst	#6,%d0
2069	jeq	1f
2070	orw	#TTR_CI,%d1
2071
20721:	lea	STACK,%a0
2073	dputn	%d1
2074	movel	%d1,%a0@
2075	.chip	68030
2076	tstl	ARG1
2077	jne	1f
2078	pmove	%a0@,%tt0
2079	jra	2f
20801:	pmove	%a0@,%tt1
20812:	.chip	68k
2082	jra	L(mmu_map_tt_done)
2083
2084	/* set 040 specific bits
2085	 */
2086L(mmu_map_tt_040):
2087	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2088	orl	ARG4,%d1
2089	dputn	%d1
2090
2091	.chip	68040
2092	tstl	ARG1
2093	jne	1f
2094	movec	%d1,%itt0
2095	movec	%d1,%dtt0
2096	jra	2f
20971:	movec	%d1,%itt1
2098	movec	%d1,%dtt1
20992:	.chip	68k
2100
2101	jra	L(mmu_map_tt_done)
2102
2103L(do_map):
2104	mmu_map_eq	ARG2,ARG3,ARG4
2105
2106L(mmu_map_tt_done):
2107
2108func_return	mmu_map_tt
2109
2110/*
2111 *	mmu_map
2112 *
2113 *	This routine will map a range of memory using a pointer
2114 *	table and allocating the pages on the fly from the kernel.
2115 *	The pointer table does not have to be already linked into
2116 *	the root table, this routine will do that if necessary.
2117 *
2118 *	NOTE
2119 *	This routine will assert failure and use the serial_putc
2120 *	routines in the case of a run-time error.  For example,
2121 *	if the address is already mapped.
2122 *
2123 *	NOTE-2
2124 *	This routine will use early terminating descriptors
2125 *	where possible for the 68020+68851 and 68030 type
2126 *	processors.
2127 */
2128func_start	mmu_map,%d0-%d4/%a0-%a4
2129
2130	dputs	"\nmmu_map:"
2131	dputn	ARG1
2132	dputn	ARG2
2133	dputn	ARG3
2134	dputn	ARG4
2135	dputc	'\n'
2136
2137	/* Get logical address and round it down to 256KB
2138	 */
2139	movel	ARG1,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a3
2142
2143	/* Get the end address
2144	 */
2145	movel	ARG1,%a4
2146	addl	ARG3,%a4
2147	subql	#1,%a4
2148
2149	/* Get physical address and round it down to 256KB
2150	 */
2151	movel	ARG2,%d0
2152	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153	movel	%d0,%a2
2154
2155	/* Add page attributes to the physical address
2156	 */
2157	movel	ARG4,%d0
2158	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159	addw	%d0,%a2
2160
2161	dputn	%a2
2162	dputn	%a3
2163	dputn	%a4
2164
2165	is_not_040_or_060(L(mmu_map_030))
2166
2167	addw	#_PAGE_GLOBAL040,%a2
2168/*
2169 *	MMU 040 & 060 Support
2170 *
2171 *	The MMU usage for the 040 and 060 is different enough from
2172 *	the 030 and 68851 that there is separate code.  This comment
2173 *	block describes the data structures and algorithms built by
2174 *	this code.
2175 *
2176 *	The 040 does not support early terminating descriptors, as
2177 *	the 030 does.  Therefore, a third level of table is needed
2178 *	for the 040, and that would be the page table.  In Linux,
2179 *	page tables are allocated directly from the memory above the
2180 *	kernel.
2181 *
2182 */
2183
2184L(mmu_map_040):
2185	/* Calculate the offset into the root table
2186	 */
2187	movel	%a3,%d0
2188	moveq	#ROOT_INDEX_SHIFT,%d1
2189	lsrl	%d1,%d0
2190	mmu_get_root_table_entry	%d0
2191
2192	/* Calculate the offset into the pointer table
2193	 */
2194	movel	%a3,%d0
2195	moveq	#PTR_INDEX_SHIFT,%d1
2196	lsrl	%d1,%d0
2197	andl	#PTR_TABLE_SIZE-1,%d0
2198	mmu_get_ptr_table_entry		%a0,%d0
2199
2200	/* Calculate the offset into the page table
2201	 */
2202	movel	%a3,%d0
2203	moveq	#PAGE_INDEX_SHIFT,%d1
2204	lsrl	%d1,%d0
2205	andl	#PAGE_TABLE_SIZE-1,%d0
2206	mmu_get_page_table_entry	%a0,%d0
2207
2208	/* The page table entry must not no be busy
2209	 */
2210	tstl	%a0@
2211	jne	L(mmu_map_error)
2212
2213	/* Do the mapping and advance the pointers
2214	 */
2215	movel	%a2,%a0@
22162:
2217	addw	#PAGESIZE,%a2
2218	addw	#PAGESIZE,%a3
2219
2220	/* Ready with mapping?
2221	 */
2222	lea	%a3@(-1),%a0
2223	cmpl	%a0,%a4
2224	jhi	L(mmu_map_040)
2225	jra	L(mmu_map_done)
2226
2227L(mmu_map_030):
2228	/* Calculate the offset into the root table
2229	 */
2230	movel	%a3,%d0
2231	moveq	#ROOT_INDEX_SHIFT,%d1
2232	lsrl	%d1,%d0
2233	mmu_get_root_table_entry	%d0
2234
2235	/* Check if logical address 32MB aligned,
2236	 * so we can try to map it once
2237	 */
2238	movel	%a3,%d0
2239	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240	jne	1f
2241
2242	/* Is there enough to map for 32MB at once
2243	 */
2244	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245	cmpl	%a1,%a4
2246	jcs	1f
2247
2248	addql	#1,%a1
2249
2250	/* The root table entry must not no be busy
2251	 */
2252	tstl	%a0@
2253	jne	L(mmu_map_error)
2254
2255	/* Do the mapping and advance the pointers
2256	 */
2257	dputs	"early term1"
2258	dputn	%a2
2259	dputn	%a3
2260	dputn	%a1
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	movel	%a1,%a3
2265	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266	jra	L(mmu_mapnext_030)
22671:
2268	/* Calculate the offset into the pointer table
2269	 */
2270	movel	%a3,%d0
2271	moveq	#PTR_INDEX_SHIFT,%d1
2272	lsrl	%d1,%d0
2273	andl	#PTR_TABLE_SIZE-1,%d0
2274	mmu_get_ptr_table_entry		%a0,%d0
2275
2276	/* The pointer table entry must not no be busy
2277	 */
2278	tstl	%a0@
2279	jne	L(mmu_map_error)
2280
2281	/* Do the mapping and advance the pointers
2282	 */
2283	dputs	"early term2"
2284	dputn	%a2
2285	dputn	%a3
2286	dputc	'\n'
2287	movel	%a2,%a0@
2288
2289	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2290	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292L(mmu_mapnext_030):
2293	/* Ready with mapping?
2294	 */
2295	lea	%a3@(-1),%a0
2296	cmpl	%a0,%a4
2297	jhi	L(mmu_map_030)
2298	jra	L(mmu_map_done)
2299
2300L(mmu_map_error):
2301
2302	dputs	"mmu_map error:"
2303	dputn	%a2
2304	dputn	%a3
2305	dputc	'\n'
2306
2307L(mmu_map_done):
2308
2309func_return	mmu_map
2310
2311/*
2312 *	mmu_fixup
2313 *
2314 *	On the 040 class machines, all pages that are used for the
2315 *	mmu have to be fixed up.
2316 */
2317
2318func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320	dputs	"mmu_fixup_page_mmu_cache"
2321	dputn	ARG1
2322
2323	/* Calculate the offset into the root table
2324	 */
2325	movel	ARG1,%d0
2326	moveq	#ROOT_INDEX_SHIFT,%d1
2327	lsrl	%d1,%d0
2328	mmu_get_root_table_entry	%d0
2329
2330	/* Calculate the offset into the pointer table
2331	 */
2332	movel	ARG1,%d0
2333	moveq	#PTR_INDEX_SHIFT,%d1
2334	lsrl	%d1,%d0
2335	andl	#PTR_TABLE_SIZE-1,%d0
2336	mmu_get_ptr_table_entry		%a0,%d0
2337
2338	/* Calculate the offset into the page table
2339	 */
2340	movel	ARG1,%d0
2341	moveq	#PAGE_INDEX_SHIFT,%d1
2342	lsrl	%d1,%d0
2343	andl	#PAGE_TABLE_SIZE-1,%d0
2344	mmu_get_page_table_entry	%a0,%d0
2345
2346	movel	%a0@,%d0
2347	andil	#_CACHEMASK040,%d0
2348	orl	%pc@(m68k_pgtable_cachemode),%d0
2349	movel	%d0,%a0@
2350
2351	dputc	'\n'
2352
2353func_return	mmu_fixup_page_mmu_cache
2354
2355/*
2356 *	mmu_temp_map
2357 *
2358 *	create a temporary mapping to enable the mmu,
2359 *	this we don't need any transparation translation tricks.
2360 */
2361
2362func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364	dputs	"mmu_temp_map"
2365	dputn	ARG1
2366	dputn	ARG2
2367	dputc	'\n'
2368
2369	lea	%pc@(L(temp_mmap_mem)),%a1
2370
2371	/* Calculate the offset in the root table
2372	 */
2373	movel	ARG2,%d0
2374	moveq	#ROOT_INDEX_SHIFT,%d1
2375	lsrl	%d1,%d0
2376	mmu_get_root_table_entry	%d0
2377
2378	/* Check if the table is temporary allocated, so we have to reuse it
2379	 */
2380	movel	%a0@,%d0
2381	cmpl	%pc@(L(memory_start)),%d0
2382	jcc	1f
2383
2384	/* Temporary allocate a ptr table and insert it into the root table
2385	 */
2386	movel	%a1@,%d0
2387	addl	#PTR_TABLE_SIZE*4,%a1@
2388	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389	movel	%d0,%a0@
2390	dputs	" (new)"
23911:
2392	dputn	%d0
2393	/* Mask the root table entry for the ptr table
2394	 */
2395	andw	#-ROOT_TABLE_SIZE,%d0
2396	movel	%d0,%a0
2397
2398	/* Calculate the offset into the pointer table
2399	 */
2400	movel	ARG2,%d0
2401	moveq	#PTR_INDEX_SHIFT,%d1
2402	lsrl	%d1,%d0
2403	andl	#PTR_TABLE_SIZE-1,%d0
2404	lea	%a0@(%d0*4),%a0
2405	dputn	%a0
2406
2407	/* Check if a temporary page table is already allocated
2408	 */
2409	movel	%a0@,%d0
2410	jne	1f
2411
2412	/* Temporary allocate a page table and insert it into the ptr table
2413	 */
2414	movel	%a1@,%d0
2415	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416	   alignment restriction for pointer tables on the '0[46]0.  */
2417	addl	#512,%a1@
2418	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419	movel	%d0,%a0@
2420	dputs	" (new)"
24211:
2422	dputn	%d0
2423	/* Mask the ptr table entry for the page table
2424	 */
2425	andw	#-PTR_TABLE_SIZE,%d0
2426	movel	%d0,%a0
2427
2428	/* Calculate the offset into the page table
2429	 */
2430	movel	ARG2,%d0
2431	moveq	#PAGE_INDEX_SHIFT,%d1
2432	lsrl	%d1,%d0
2433	andl	#PAGE_TABLE_SIZE-1,%d0
2434	lea	%a0@(%d0*4),%a0
2435	dputn	%a0
2436
2437	/* Insert the address into the page table
2438	 */
2439	movel	ARG1,%d0
2440	andw	#-PAGESIZE,%d0
2441	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442	movel	%d0,%a0@
2443	dputn	%d0
2444
2445	dputc	'\n'
2446
2447func_return	mmu_temp_map
2448
2449func_start	mmu_engage,%d0-%d2/%a0-%a3
2450
2451	moveq	#ROOT_TABLE_SIZE-1,%d0
2452	/* Temporarily use a different root table.  */
2453	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2454	movel	%a0@,%a2
2455	movel	%pc@(L(memory_start)),%a1
2456	movel	%a1,%a0@
2457	movel	%a2,%a0
24581:
2459	movel	%a0@+,%a1@+
2460	dbra	%d0,1b
2461
2462	lea	%pc@(L(temp_mmap_mem)),%a0
2463	movel	%a1,%a0@
2464
2465	movew	#PAGESIZE-1,%d0
24661:
2467	clrl	%a1@+
2468	dbra	%d0,1b
2469
2470	lea	%pc@(1b),%a0
2471	movel	#1b,%a1
2472	/* Skip temp mappings if phys == virt */
2473	cmpl	%a0,%a1
2474	jeq	1f
2475
2476	mmu_temp_map	%a0,%a0
2477	mmu_temp_map	%a0,%a1
2478
2479	addw	#PAGESIZE,%a0
2480	addw	#PAGESIZE,%a1
2481	mmu_temp_map	%a0,%a0
2482	mmu_temp_map	%a0,%a1
24831:
2484	movel	%pc@(L(memory_start)),%a3
2485	movel	%pc@(L(phys_kernel_start)),%d2
2486
2487	is_not_040_or_060(L(mmu_engage_030))
2488
2489L(mmu_engage_040):
2490	.chip	68040
2491	nop
2492	cinva	%bc
2493	nop
2494	pflusha
2495	nop
2496	movec	%a3,%srp
2497	movel	#TC_ENABLE+TC_PAGE4K,%d0
2498	movec	%d0,%tc		/* enable the MMU */
2499	jmp	1f:l
25001:	nop
2501	movec	%a2,%srp
2502	nop
2503	cinva	%bc
2504	nop
2505	pflusha
2506	.chip	68k
2507	jra	L(mmu_engage_cleanup)
2508
2509L(mmu_engage_030_temp):
2510	.space	12
2511L(mmu_engage_030):
2512	.chip	68030
2513	lea	%pc@(L(mmu_engage_030_temp)),%a0
2514	movel	#0x80000002,%a0@
2515	movel	%a3,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	/*
2521	 * enable,super root enable,4096 byte pages,7 bit root index,
2522	 * 7 bit pointer index, 6 bit page table index.
2523	 */
2524	movel	#0x82c07760,%a0@(8)
2525	pmove	%a0@(8),%tc	/* enable the MMU */
2526	jmp	1f:l
25271:	movel	%a2,%a0@(4)
2528	movel	#0x0808,%d0
2529	movec	%d0,%cacr
2530	pmove	%a0@,%srp
2531	pflusha
2532	.chip	68k
2533
2534L(mmu_engage_cleanup):
2535	subl	#PAGE_OFFSET,%d2
2536	subl	%d2,%a2
2537	movel	%a2,L(kernel_pgdir_ptr)
2538	subl	%d2,%fp
2539	subl	%d2,%sp
2540	subl	%d2,ARG0
2541
2542func_return	mmu_engage
2543
2544func_start	mmu_get_root_table_entry,%d0/%a1
2545
2546#if 0
2547	dputs	"mmu_get_root_table_entry:"
2548	dputn	ARG1
2549	dputs	" ="
2550#endif
2551
2552	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2553	tstl	%a0
2554	jne	2f
2555
2556	dputs	"\nmmu_init:"
2557
2558	/* Find the start of free memory, get_bi_record does this for us,
2559	 * as the bootinfo structure is located directly behind the kernel
2560	 * and and we simply search for the last entry.
2561	 */
2562	get_bi_record	BI_LAST
2563	addw	#PAGESIZE-1,%a0
2564	movel	%a0,%d0
2565	andw	#-PAGESIZE,%d0
2566
2567	dputn	%d0
2568
2569	lea	%pc@(L(memory_start)),%a0
2570	movel	%d0,%a0@
2571	lea	%pc@(L(kernel_end)),%a0
2572	movel	%d0,%a0@
2573
2574	/* we have to return the first page at _stext since the init code
2575	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576	 * page is used for further ptr tables in get_ptr_table.
2577	 */
2578	lea	%pc@(_stext),%a0
2579	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2580	movel	%a0,%a1@
2581	addl	#ROOT_TABLE_SIZE*4,%a1@
2582
2583	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2584	addql	#1,%a1@
2585
2586	/* clear the page
2587	 */
2588	movel	%a0,%a1
2589	movew	#PAGESIZE/4-1,%d0
25901:
2591	clrl	%a1@+
2592	dbra	%d0,1b
2593
2594	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2595	movel	%a0,%a1@
2596
2597	dputn	%a0
2598	dputc	'\n'
25992:
2600	movel	ARG1,%d0
2601	lea	%a0@(%d0*4),%a0
2602
2603#if 0
2604	dputn	%a0
2605	dputc	'\n'
2606#endif
2607
2608func_return	mmu_get_root_table_entry
2609
2610
2611
2612func_start	mmu_get_ptr_table_entry,%d0/%a1
2613
2614#if 0
2615	dputs	"mmu_get_ptr_table_entry:"
2616	dputn	ARG1
2617	dputn	ARG2
2618	dputs	" ="
2619#endif
2620
2621	movel	ARG1,%a0
2622	movel	%a0@,%d0
2623	jne	2f
2624
2625	/* Keep track of the number of pointer tables we use
2626	 */
2627	dputs	"\nmmu_get_new_ptr_table:"
2628	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2629	movel	%a0@,%d0
2630	addql	#1,%a0@
2631
2632	/* See if there is a free pointer table in our cache of pointer tables
2633	 */
2634	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2635	andw	#7,%d0
2636	jne	1f
2637
2638	/* Get a new pointer table page from above the kernel memory
2639	 */
2640	get_new_page
2641	movel	%a0,%a1@
26421:
2643	/* There is an unused pointer table in our cache... use it
2644	 */
2645	movel	%a1@,%d0
2646	addl	#PTR_TABLE_SIZE*4,%a1@
2647
2648	dputn	%d0
2649	dputc	'\n'
2650
2651	/* Insert the new pointer table into the root table
2652	 */
2653	movel	ARG1,%a0
2654	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655	movel	%d0,%a0@
26562:
2657	/* Extract the pointer table entry
2658	 */
2659	andw	#-PTR_TABLE_SIZE,%d0
2660	movel	%d0,%a0
2661	movel	ARG2,%d0
2662	lea	%a0@(%d0*4),%a0
2663
2664#if 0
2665	dputn	%a0
2666	dputc	'\n'
2667#endif
2668
2669func_return	mmu_get_ptr_table_entry
2670
2671
2672func_start	mmu_get_page_table_entry,%d0/%a1
2673
2674#if 0
2675	dputs	"mmu_get_page_table_entry:"
2676	dputn	ARG1
2677	dputn	ARG2
2678	dputs	" ="
2679#endif
2680
2681	movel	ARG1,%a0
2682	movel	%a0@,%d0
2683	jne	2f
2684
2685	/* If the page table entry doesn't exist, we allocate a complete new
2686	 * page and use it as one continues big page table which can cover
2687	 * 4MB of memory, nearly almost all mappings have that alignment.
2688	 */
2689	get_new_page
2690	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692	/* align pointer table entry for a page of page tables
2693	 */
2694	movel	ARG1,%d0
2695	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696	movel	%d0,%a1
2697
2698	/* Insert the page tables into the pointer entries
2699	 */
2700	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27011:
2702	movel	%a0,%a1@+
2703	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2704	dbra	%d0,1b
2705
2706	/* Now we can get the initialized pointer table entry
2707	 */
2708	movel	ARG1,%a0
2709	movel	%a0@,%d0
27102:
2711	/* Extract the page table entry
2712	 */
2713	andw	#-PAGE_TABLE_SIZE,%d0
2714	movel	%d0,%a0
2715	movel	ARG2,%d0
2716	lea	%a0@(%d0*4),%a0
2717
2718#if 0
2719	dputn	%a0
2720	dputc	'\n'
2721#endif
2722
2723func_return	mmu_get_page_table_entry
2724
2725/*
2726 *	get_new_page
2727 *
2728 *	Return a new page from the memory start and clear it.
2729 */
2730func_start	get_new_page,%d0/%a1
2731
2732	dputs	"\nget_new_page:"
2733
2734	/* allocate the page and adjust memory_start
2735	 */
2736	lea	%pc@(L(memory_start)),%a0
2737	movel	%a0@,%a1
2738	addl	#PAGESIZE,%a0@
2739
2740	/* clear the new page
2741	 */
2742	movel	%a1,%a0
2743	movew	#PAGESIZE/4-1,%d0
27441:
2745	clrl	%a1@+
2746	dbra	%d0,1b
2747
2748	dputn	%a0
2749	dputc	'\n'
2750
2751func_return	get_new_page
2752
2753
2754
2755/*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2760
2761#ifdef CONFIG_MAC
2762
2763L(scc_initable_mac):
2764	.byte	9,12		/* Reset */
2765	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2766	.byte	3,0xc0		/* receiver: 8 bpc */
2767	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2768	.byte	9,0		/* no interrupts */
2769	.byte	10,0		/* NRZ */
2770	.byte	11,0x50		/* use baud rate generator */
2771	.byte	12,10,13,0	/* 9600 baud */
2772	.byte	14,1		/* Baud rate generator enable */
2773	.byte	3,0xc1		/* enable receiver */
2774	.byte	5,0xea		/* enable transmitter */
2775	.byte	-1
2776	.even
2777#endif
2778
2779#ifdef CONFIG_ATARI
2780/* #define USE_PRINTER */
2781/* #define USE_SCC_B */
2782/* #define USE_SCC_A */
2783#define USE_MFP
2784
2785#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786#define USE_SCC
2787/* Initialisation table for SCC */
2788L(scc_initable):
2789	.byte	9,12		/* Reset */
2790	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2791	.byte	3,0xc0		/* receiver: 8 bpc */
2792	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2793	.byte	9,0		/* no interrupts */
2794	.byte	10,0		/* NRZ */
2795	.byte	11,0x50		/* use baud rate generator */
2796	.byte	12,24,13,0	/* 9600 baud */
2797	.byte	14,2,14,3	/* use master clock for BRG, enable */
2798	.byte	3,0xc1		/* enable receiver */
2799	.byte	5,0xea		/* enable transmitter */
2800	.byte	-1
2801	.even
2802#endif
2803
2804#ifdef USE_PRINTER
2805
2806LPSG_SELECT	= 0xff8800
2807LPSG_READ	= 0xff8800
2808LPSG_WRITE	= 0xff8802
2809LPSG_IO_A	= 14
2810LPSG_IO_B	= 15
2811LPSG_CONTROL	= 7
2812LSTMFP_GPIP	= 0xfffa01
2813LSTMFP_DDR	= 0xfffa05
2814LSTMFP_IERB	= 0xfffa09
2815
2816#elif defined(USE_SCC_B)
2817
2818LSCC_CTRL	= 0xff8c85
2819LSCC_DATA	= 0xff8c87
2820
2821#elif defined(USE_SCC_A)
2822
2823LSCC_CTRL	= 0xff8c81
2824LSCC_DATA	= 0xff8c83
2825
2826#elif defined(USE_MFP)
2827
2828LMFP_UCR     = 0xfffa29
2829LMFP_TDCDR   = 0xfffa1d
2830LMFP_TDDR    = 0xfffa25
2831LMFP_TSR     = 0xfffa2d
2832LMFP_UDR     = 0xfffa2f
2833
2834#endif
2835#endif	/* CONFIG_ATARI */
2836
2837/*
2838 * Serial port output support.
2839 */
2840
2841/*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844func_start	serial_init,%d0/%d1/%a0/%a1
2845	/*
2846	 *	Some of the register usage that follows
2847	 *	CONFIG_AMIGA
2848	 *		a0 = pointer to boot info record
2849	 *		d0 = boot info offset
2850	 *	CONFIG_ATARI
2851	 *		a0 = address of SCC
2852	 *		a1 = Liobase address/address of scc_initable
2853	 *		d0 = init data for serial port
2854	 *	CONFIG_MAC
2855	 *		a0 = address of SCC
2856	 *		a1 = address of scc_initable_mac
2857	 *		d0 = init data for serial port
2858	 */
2859
2860#ifdef CONFIG_AMIGA
2861#define SERIAL_DTR	7
2862#define SERIAL_CNTRL	CIABBASE+C_PRA
2863
2864	is_not_amiga(1f)
2865	lea	%pc@(L(custom)),%a0
2866	movel	#-ZTWOBASE,%a0@
2867	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868	get_bi_record	BI_AMIGA_SERPER
2869	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28711:
2872#endif
2873#ifdef CONFIG_ATARI
2874	is_not_atari(4f)
2875	movel	%pc@(L(iobase)),%a1
2876#if defined(USE_PRINTER)
2877	bclr	#0,%a1@(LSTMFP_IERB)
2878	bclr	#0,%a1@(LSTMFP_DDR)
2879	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2880	moveb	#0xff,%a1@(LPSG_WRITE)
2881	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2882	clrb	%a1@(LPSG_WRITE)
2883	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2884	moveb	%a1@(LPSG_READ),%d0
2885	bset	#5,%d0
2886	moveb	%d0,%a1@(LPSG_WRITE)
2887#elif defined(USE_SCC)
2888	lea	%a1@(LSCC_CTRL),%a0
2889	lea	%pc@(L(scc_initable)),%a1
28902:	moveb	%a1@+,%d0
2891	jmi	3f
2892	moveb	%d0,%a0@
2893	moveb	%a1@+,%a0@
2894	jra	2b
28953:	clrb	%a0@
2896#elif defined(USE_MFP)
2897	bclr	#1,%a1@(LMFP_TSR)
2898	moveb   #0x88,%a1@(LMFP_UCR)
2899	andb	#0x70,%a1@(LMFP_TDCDR)
2900	moveb   #2,%a1@(LMFP_TDDR)
2901	orb	#1,%a1@(LMFP_TDCDR)
2902	bset	#1,%a1@(LMFP_TSR)
2903#endif
2904	jra	L(serial_init_done)
29054:
2906#endif
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#ifdef MAC_SERIAL_DEBUG
2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911#define MAC_USE_SCC_B
2912#endif
2913#define mac_scc_cha_b_ctrl_offset	0x0
2914#define mac_scc_cha_a_ctrl_offset	0x2
2915#define mac_scc_cha_b_data_offset	0x4
2916#define mac_scc_cha_a_data_offset	0x6
2917
2918#ifdef MAC_USE_SCC_A
2919	/* Initialize channel A */
2920	movel	%pc@(L(mac_sccbase)),%a0
2921	lea	%pc@(L(scc_initable_mac)),%a1
29225:	moveb	%a1@+,%d0
2923	jmi	6f
2924	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926	jra	5b
29276:
2928#endif	/* MAC_USE_SCC_A */
2929
2930#ifdef MAC_USE_SCC_B
2931	/* Initialize channel B */
2932#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
2933	movel	%pc@(L(mac_sccbase)),%a0
2934#endif	/* MAC_USE_SCC_A */
2935	lea	%pc@(L(scc_initable_mac)),%a1
29367:	moveb	%a1@+,%d0
2937	jmi	8f
2938	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940	jra	7b
29418:
2942#endif	/* MAC_USE_SCC_B */
2943#endif	/* MAC_SERIAL_DEBUG */
2944
2945	jra	L(serial_init_done)
2946L(serial_init_not_mac):
2947#endif	/* CONFIG_MAC */
2948
2949#ifdef CONFIG_Q40
2950	is_not_q40(2f)
2951/* debug output goes into SRAM, so we don't do it unless requested
2952   - check for '%LX$' signature in SRAM   */
2953	lea	%pc@(q40_mem_cptr),%a1
2954	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2955	move.l	#0xff020000,%a1
2956	cmp.b	#'%',%a1@
2957	bne	2f	/*nodbg*/
2958	addq.w	#4,%a1
2959	cmp.b	#'L',%a1@
2960	bne	2f	/*nodbg*/
2961	addq.w	#4,%a1
2962	cmp.b	#'X',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'$',%a1@
2966	bne	2f	/*nodbg*/
2967	/* signature OK */
2968	lea	%pc@(L(q40_do_debug)),%a1
2969	tas	%a1@
2970/*nodbg: q40_do_debug is 0 by default*/
29712:
2972#endif
2973
2974#ifdef CONFIG_APOLLO
2975/* We count on the PROM initializing SIO1 */
2976#endif
2977
2978#ifdef CONFIG_HP300
2979/* We count on the boot loader initialising the UART */
2980#endif
2981
2982L(serial_init_done):
2983func_return	serial_init
2984
2985/*
2986 * Output character on serial port.
2987 */
2988func_start	serial_putc,%d0/%d1/%a0/%a1
2989
2990	movel	ARG1,%d0
2991	cmpib	#'\n',%d0
2992	jbne	1f
2993
2994	/* A little safe recursion is good for the soul */
2995	serial_putc	#'\r'
29961:
2997
2998#ifdef CONFIG_AMIGA
2999	is_not_amiga(2f)
3000	andw	#0x00ff,%d0
3001	oriw	#0x0100,%d0
3002	movel	%pc@(L(custom)),%a0
3003	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30041:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3005	andw	#0x2000,%d0
3006	jeq	1b
3007	jra	L(serial_putc_done)
30082:
3009#endif
3010
3011#ifdef CONFIG_MAC
3012	is_not_mac(5f)
3013
3014#ifdef MAC_SERIAL_DEBUG
3015
3016#ifdef MAC_USE_SCC_A
3017	movel	%pc@(L(mac_sccbase)),%a1
30183:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3019	jeq	3b
3020	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3021#endif	/* MAC_USE_SCC_A */
3022
3023#ifdef MAC_USE_SCC_B
3024#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif	/* MAC_USE_SCC_A */
30274:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3028	jeq	4b
3029	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3030#endif	/* MAC_USE_SCC_B */
3031
3032#endif	/* MAC_SERIAL_DEBUG */
3033
3034	jra	L(serial_putc_done)
30355:
3036#endif	/* CONFIG_MAC */
3037
3038#ifdef CONFIG_ATARI
3039	is_not_atari(4f)
3040	movel	%pc@(L(iobase)),%a1
3041#if defined(USE_PRINTER)
30423:	btst	#0,%a1@(LSTMFP_GPIP)
3043	jne	3b
3044	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3045	moveb	%d0,%a1@(LPSG_WRITE)
3046	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3047	moveb	%a1@(LPSG_READ),%d0
3048	bclr	#5,%d0
3049	moveb	%d0,%a1@(LPSG_WRITE)
3050	nop
3051	nop
3052	bset	#5,%d0
3053	moveb	%d0,%a1@(LPSG_WRITE)
3054#elif defined(USE_SCC)
30553:	btst	#2,%a1@(LSCC_CTRL)
3056	jeq	3b
3057	moveb	%d0,%a1@(LSCC_DATA)
3058#elif defined(USE_MFP)
30593:	btst	#7,%a1@(LMFP_TSR)
3060	jeq	3b
3061	moveb	%d0,%a1@(LMFP_UDR)
3062#endif
3063	jra	L(serial_putc_done)
30644:
3065#endif	/* CONFIG_ATARI */
3066
3067#ifdef CONFIG_MVME147
3068	is_not_mvme147(2f)
30691:	btst	#2,M147_SCC_CTRL_A
3070	jeq	1b
3071	moveb	%d0,M147_SCC_DATA_A
3072	jbra	L(serial_putc_done)
30732:
3074#endif
3075
3076#ifdef CONFIG_MVME16x
3077	is_not_mvme16x(2f)
3078	/*
3079	 * If the loader gave us a board type then we can use that to
3080	 * select an appropriate output routine; otherwise we just use
3081	 * the Bug code.  If we haev to use the Bug that means the Bug
3082	 * workspace has to be valid, which means the Bug has to use
3083	 * the SRAM, which is non-standard.
3084	 */
3085	moveml	%d0-%d7/%a2-%a6,%sp@-
3086	movel	vme_brdtype,%d1
3087	jeq	1f			| No tag - use the Bug
3088	cmpi	#VME_TYPE_MVME162,%d1
3089	jeq	6f
3090	cmpi	#VME_TYPE_MVME172,%d1
3091	jne	5f
3092	/* 162/172; it's an SCC */
30936:	btst	#2,M162_SCC_CTRL_A
3094	nop
3095	nop
3096	nop
3097	jeq	6b
3098	moveb	#8,M162_SCC_CTRL_A
3099	nop
3100	nop
3101	nop
3102	moveb	%d0,M162_SCC_CTRL_A
3103	jra	3f
31045:
3105	/* 166/167/177; it's a CD2401 */
3106	moveb	#0,M167_CYCAR
3107	moveb	M167_CYIER,%d2
3108	moveb	#0x02,M167_CYIER
31097:
3110	btst	#5,M167_PCSCCTICR
3111	jeq	7b
3112	moveb	M167_PCTPIACKR,%d1
3113	moveb	M167_CYLICR,%d1
3114	jeq	8f
3115	moveb	#0x08,M167_CYTEOIR
3116	jra	7b
31178:
3118	moveb	%d0,M167_CYTDR
3119	moveb	#0,M167_CYTEOIR
3120	moveb	%d2,M167_CYIER
3121	jra	3f
31221:
3123	moveb	%d0,%sp@-
3124	trap	#15
3125	.word	0x0020	/* TRAP 0x020 */
31263:
3127	moveml	%sp@+,%d0-%d7/%a2-%a6
3128	jbra	L(serial_putc_done)
31292:
3130#endif /* CONFIG_MVME16x */
3131
3132#ifdef CONFIG_BVME6000
3133	is_not_bvme6000(2f)
3134	/*
3135	 * The BVME6000 machine has a serial port ...
3136	 */
31371:	btst	#2,BVME_SCC_CTRL_A
3138	jeq	1b
3139	moveb	%d0,BVME_SCC_DATA_A
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_SUN3X
3145	is_not_sun3x(2f)
3146	movel	%d0,-(%sp)
3147	movel	0xFEFE0018,%a1
3148	jbsr	(%a1)
3149	addq	#4,%sp
3150	jbra	L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_Q40
3155	is_not_q40(2f)
3156	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3157	beq	2f
3158	lea	%pc@(q40_mem_cptr),%a1
3159	move.l	%a1@,%a0
3160	move.b	%d0,%a0@
3161	addq.l	#4,%a0
3162	move.l	%a0,%a1@
3163	jbra    L(serial_putc_done)
31642:
3165#endif
3166
3167#ifdef CONFIG_APOLLO
3168	is_not_apollo(2f)
3169	movl    %pc@(L(iobase)),%a1
3170	moveb	%d0,%a1@(LTHRB0)
31711:      moveb   %a1@(LSRB0),%d0
3172	andb	#0x4,%d0
3173	beq	1b
3174	jbra	L(serial_putc_done)
31752:
3176#endif
3177
3178#ifdef CONFIG_HP300
3179	is_not_hp300(3f)
3180	movl    %pc@(L(iobase)),%a1
3181	addl	%pc@(L(uartbase)),%a1
3182	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3183	jmi	3f			/* Unset? Exit */
3184	cmpi	#256,%d1		/* APCI scode? */
3185	jeq	2f
31861:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3187	andb	#0x20,%d1
3188	beq	1b
3189	moveb	%d0,%a1@(DCADATA)
3190	jbra	L(serial_putc_done)
31912:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3192	andb	#0x20,%d1
3193	beq	2b
3194	moveb	%d0,%a1@(APCIDATA)
3195	jbra	L(serial_putc_done)
31963:
3197#endif
3198
3199L(serial_putc_done):
3200func_return	serial_putc
3201
3202/*
3203 * Output a string.
3204 */
3205func_start	puts,%d0/%a0
3206
3207	movel	ARG1,%a0
3208	jra	2f
32091:
3210#ifdef CONSOLE
3211	console_putc	%d0
3212#endif
3213#ifdef SERIAL_DEBUG
3214	serial_putc	%d0
3215#endif
32162:	moveb	%a0@+,%d0
3217	jne	1b
3218
3219func_return	puts
3220
3221/*
3222 * Output number in hex notation.
3223 */
3224
3225func_start	putn,%d0-%d2
3226
3227	putc	' '
3228
3229	movel	ARG1,%d0
3230	moveq	#7,%d1
32311:	roll	#4,%d0
3232	move	%d0,%d2
3233	andb	#0x0f,%d2
3234	addb	#'0',%d2
3235	cmpb	#'9',%d2
3236	jls	2f
3237	addb	#'A'-('9'+1),%d2
32382:
3239#ifdef CONSOLE
3240	console_putc	%d2
3241#endif
3242#ifdef SERIAL_DEBUG
3243	serial_putc	%d2
3244#endif
3245	dbra	%d1,1b
3246
3247func_return	putn
3248
3249#ifdef CONFIG_MAC
3250/*
3251 *	mac_serial_print
3252 *
3253 *	This routine takes its parameters on the stack.  It then
3254 *	turns around and calls the internal routine.  This routine
3255 *	is used until the Linux console driver initializes itself.
3256 *
3257 *	The calling parameters are:
3258 *		void mac_serial_print(const char *str);
3259 *
3260 *	This routine does NOT understand variable arguments only
3261 *	simple strings!
3262 */
3263ENTRY(mac_serial_print)
3264	moveml	%d0/%a0,%sp@-
3265#if 1
3266	move	%sr,%sp@-
3267	ori	#0x0700,%sr
3268#endif
3269	movel	%sp@(10),%a0		/* fetch parameter */
3270	jra	2f
32711:	serial_putc	%d0
32722:	moveb	%a0@+,%d0
3273	jne	1b
3274#if 1
3275	move	%sp@+,%sr
3276#endif
3277	moveml	%sp@+,%d0/%a0
3278	rts
3279#endif /* CONFIG_MAC */
3280
3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282func_start	set_leds,%d0/%a0
3283	movel	ARG1,%d0
3284#ifdef CONFIG_HP300
3285	is_not_hp300(1f)
3286	movel	%pc@(L(iobase)),%a0
3287	moveb	%d0,%a0@(0x1ffff)
3288	jra	2f
3289#endif
32901:
3291#ifdef CONFIG_APOLLO
3292	movel   %pc@(L(iobase)),%a0
3293	lsll    #8,%d0
3294	eorw    #0xff00,%d0
3295	moveb	%d0,%a0@(LCPUCTRL)
3296#endif
32972:
3298func_return	set_leds
3299#endif
3300
3301#ifdef CONSOLE
3302/*
3303 *	For continuity, see the data alignment
3304 *	to which this structure is tied.
3305 */
3306#define Lconsole_struct_cur_column	0
3307#define Lconsole_struct_cur_row		4
3308#define Lconsole_struct_num_columns	8
3309#define Lconsole_struct_num_rows	12
3310#define Lconsole_struct_left_edge	16
3311#define Lconsole_struct_penguin_putc	20
3312
3313func_start	console_init,%a0-%a4/%d0-%d7
3314	/*
3315	 *	Some of the register usage that follows
3316	 *		a0 = pointer to boot_info
3317	 *		a1 = pointer to screen
3318	 *		a2 = pointer to Lconsole_globals
3319	 *		d3 = pixel width of screen
3320	 *		d4 = pixel height of screen
3321	 *		(d3,d4) ~= (x,y) of a point just below
3322	 *			and to the right of the screen
3323	 *			NOT on the screen!
3324	 *		d5 = number of bytes per scan line
3325	 *		d6 = number of bytes on the entire screen
3326	 */
3327
3328	lea	%pc@(L(console_globals)),%a2
3329	movel	%pc@(L(mac_videobase)),%a1
3330	movel	%pc@(L(mac_rowbytes)),%d5
3331	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3332	movel	%d3,%d4
3333	swap	%d4		/* -> high byte */
3334	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3335	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3336
3337	movel	%d5,%d6
3338|	subl	#20,%d6
3339	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3340	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3341	moveq	#-1,%d0		/* Mac_black */
3342	subq	#1,%d6
3343
3344L(console_clear_loop):
3345	movel	%d0,%a1@+
3346	movel	%d0,%a1@+
3347	dbra	%d6,L(console_clear_loop)
3348
3349	/* Calculate font size */
3350
3351#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352	lea	%pc@(font_vga_8x8),%a0
3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354	lea	%pc@(font_vga_8x16),%a0
3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356	lea	%pc@(font_vga_6x11),%a0
3357#elif defined(CONFIG_FONT_8x8) /* default */
3358	lea	%pc@(font_vga_8x8),%a0
3359#else /* no compiled-in font */
3360	lea	0,%a0
3361#endif
3362
3363	/*
3364	 *	At this point we make a shift in register usage
3365	 *	a1 = address of console_font pointer
3366	 */
3367	lea	%pc@(L(console_font)),%a1
3368	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3369	tstl	%a0
3370	jeq	1f
3371	lea	%pc@(L(console_font_data)),%a4
3372	movel	%a0@(FONT_DESC_DATA),%d0
3373	subl	#L(console_font),%a1
3374	addl	%a1,%d0
3375	movel	%d0,%a4@
3376
3377	/*
3378	 *	Calculate global maxs
3379	 *	Note - we can use either an
3380	 *	8 x 16 or 8 x 8 character font
3381	 *	6 x 11 also supported
3382	 */
3383		/* ASSERT: a0 = contents of Lconsole_font */
3384	movel	%d3,%d0				/* screen width in pixels */
3385	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3386
3387	movel	%d4,%d1				/* screen height in pixels */
3388	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3389
3390	movel	%d0,%a2@(Lconsole_struct_num_columns)
3391	movel	%d1,%a2@(Lconsole_struct_num_rows)
3392
3393	/*
3394	 *	Clear the current row and column
3395	 */
3396	clrl	%a2@(Lconsole_struct_cur_column)
3397	clrl	%a2@(Lconsole_struct_cur_row)
3398	clrl	%a2@(Lconsole_struct_left_edge)
3399
3400	/*
3401	 * Initialization is complete
3402	 */
34031:
3404func_return	console_init
3405
3406func_start	console_put_stats,%a0/%d7
3407	/*
3408	 *	Some of the register usage that follows
3409	 *		a0 = pointer to boot_info
3410	 *		d7 = value of boot_info fields
3411	 */
3412	puts	"\nMacLinux\n\n"
3413
3414#ifdef SERIAL_DEBUG
3415	puts	" vidaddr:"
3416	putn	%pc@(L(mac_videobase))		/* video addr. */
3417
3418	puts	"\n  _stext:"
3419	lea	%pc@(_stext),%a0
3420	putn	%a0
3421
3422	puts	"\nbootinfo:"
3423	lea	%pc@(_end),%a0
3424	putn	%a0
3425
3426	puts	"\ncpuid:"
3427	putn	%pc@(L(cputype))
3428	putc	'\n'
3429
3430#ifdef MAC_SERIAL_DEBUG
3431	putn	%pc@(L(mac_sccbase))
3432	putc	'\n'
3433#endif
3434#  if defined(MMU_PRINT)
3435	jbsr	mmu_print_machine_cpu_types
3436#  endif /* MMU_PRINT */
3437#endif /* SERIAL_DEBUG */
3438
3439func_return	console_put_stats
3440
3441#ifdef CONSOLE_PENGUIN
3442func_start	console_put_penguin,%a0-%a1/%d0-%d7
3443	/*
3444	 *	Get 'that_penguin' onto the screen in the upper right corner
3445	 *	penguin is 64 x 74 pixels, align against right edge of screen
3446	 */
3447	lea	%pc@(L(mac_dimensions)),%a0
3448	movel	%a0@,%d0
3449	andil	#0xffff,%d0
3450	subil	#64,%d0		/* snug up against the right edge */
3451	clrl	%d1		/* start at the top */
3452	movel	#73,%d7
3453	lea	%pc@(L(that_penguin)),%a1
3454L(console_penguin_row):
3455	movel	#31,%d6
3456L(console_penguin_pixel_pair):
3457	moveb	%a1@,%d2
3458	lsrb	#4,%d2
3459	console_plot_pixel %d0,%d1,%d2
3460	addq	#1,%d0
3461	moveb	%a1@+,%d2
3462	console_plot_pixel %d0,%d1,%d2
3463	addq	#1,%d0
3464	dbra	%d6,L(console_penguin_pixel_pair)
3465
3466	subil	#64,%d0
3467	addq	#1,%d1
3468	dbra	%d7,L(console_penguin_row)
3469
3470func_return	console_put_penguin
3471
3472/* include penguin bitmap */
3473L(that_penguin):
3474#include "../mac/mac_penguin.S"
3475#endif
3476
3477	/*
3478	 * Calculate source and destination addresses
3479	 *	output	a1 = dest
3480	 *		a2 = source
3481	 */
3482
3483func_start	console_scroll,%a0-%a4/%d0-%d7
3484	lea	%pc@(L(mac_videobase)),%a0
3485	movel	%a0@,%a1
3486	movel	%a1,%a2
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d5
3489	movel	%pc@(L(console_font)),%a0
3490	tstl	%a0
3491	jeq	1f
3492	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3493	addal	%d5,%a2
3494
3495	/*
3496	 * Get dimensions
3497	 */
3498	lea	%pc@(L(mac_dimensions)),%a0
3499	movel	%a0@,%d3
3500	movel	%d3,%d4
3501	swap	%d4
3502	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3503	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3504
3505	/*
3506	 * Calculate number of bytes to move
3507	 */
3508	lea	%pc@(L(mac_rowbytes)),%a0
3509	movel	%a0@,%d6
3510	movel	%pc@(L(console_font)),%a0
3511	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3512	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3513	divul	#32,%d6		/* we'll move 8 longs at a time */
3514	subq	#1,%d6
3515
3516L(console_scroll_loop):
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	movel	%a2@+,%a1@+
3521	movel	%a2@+,%a1@+
3522	movel	%a2@+,%a1@+
3523	movel	%a2@+,%a1@+
3524	movel	%a2@+,%a1@+
3525	dbra	%d6,L(console_scroll_loop)
3526
3527	lea	%pc@(L(mac_rowbytes)),%a0
3528	movel	%a0@,%d6
3529	movel	%pc@(L(console_font)),%a0
3530	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3531	divul	#32,%d6			/* we'll move 8 words at a time */
3532	subq	#1,%d6
3533
3534	moveq	#-1,%d0
3535L(console_scroll_clear_loop):
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	movel	%d0,%a1@+
3540	movel	%d0,%a1@+
3541	movel	%d0,%a1@+
3542	movel	%d0,%a1@+
3543	movel	%d0,%a1@+
3544	dbra	%d6,L(console_scroll_clear_loop)
3545
35461:
3547func_return	console_scroll
3548
3549
3550func_start	console_putc,%a0/%a1/%d0-%d7
3551
3552	is_not_mac(L(console_exit))
3553	tstl	%pc@(L(console_font))
3554	jeq	L(console_exit)
3555
3556	/* Output character in d7 on console.
3557	 */
3558	movel	ARG1,%d7
3559	cmpib	#'\n',%d7
3560	jbne	1f
3561
3562	/* A little safe recursion is good for the soul */
3563	console_putc	#'\r'
35641:
3565	lea	%pc@(L(console_globals)),%a0
3566
3567	cmpib	#10,%d7
3568	jne	L(console_not_lf)
3569	movel	%a0@(Lconsole_struct_cur_row),%d0
3570	addil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	movel	%a0@(Lconsole_struct_num_rows),%d1
3573	cmpl	%d1,%d0
3574	jcs	1f
3575	subil	#1,%d0
3576	movel	%d0,%a0@(Lconsole_struct_cur_row)
3577	console_scroll
35781:
3579	jra	L(console_exit)
3580
3581L(console_not_lf):
3582	cmpib	#13,%d7
3583	jne	L(console_not_cr)
3584	clrl	%a0@(Lconsole_struct_cur_column)
3585	jra	L(console_exit)
3586
3587L(console_not_cr):
3588	cmpib	#1,%d7
3589	jne	L(console_not_home)
3590	clrl	%a0@(Lconsole_struct_cur_row)
3591	clrl	%a0@(Lconsole_struct_cur_column)
3592	jra	L(console_exit)
3593
3594/*
3595 *	At this point we know that the %d7 character is going to be
3596 *	rendered on the screen.  Register usage is -
3597 *		a0 = pointer to console globals
3598 *		a1 = font data
3599 *		d0 = cursor column
3600 *		d1 = cursor row to draw the character
3601 *		d7 = character number
3602 */
3603L(console_not_home):
3604	movel	%a0@(Lconsole_struct_cur_column),%d0
3605	addql	#1,%a0@(Lconsole_struct_cur_column)
3606	movel	%a0@(Lconsole_struct_num_columns),%d1
3607	cmpl	%d1,%d0
3608	jcs	1f
3609	console_putc	#'\n'	/* recursion is OK! */
36101:
3611	movel	%a0@(Lconsole_struct_cur_row),%d1
3612
3613	/*
3614	 *	At this point we make a shift in register usage
3615	 *	a0 = address of pointer to font data (fbcon_font_desc)
3616	 */
3617	movel	%pc@(L(console_font)),%a0
3618	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3619	andl	#0x000000ff,%d7
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3622	addl	%d7,%a1			/* a1 = points to char image */
3623
3624	/*
3625	 *	At this point we make a shift in register usage
3626	 *	d0 = pixel coordinate, x
3627	 *	d1 = pixel coordinate, y
3628	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629	 *	d3 = font scan line data (8 pixels)
3630	 *	d6 = count down for the font's pixel width (8)
3631	 *	d7 = count down for the font's pixel count in height
3632	 */
3633		/* ASSERT: a0 = contents of Lconsole_font */
3634	mulul	%a0@(FONT_DESC_WIDTH),%d0
3635	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3636	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3637	subq	#1,%d7
3638L(console_read_char_scanline):
3639	moveb	%a1@+,%d3
3640
3641		/* ASSERT: a0 = contents of Lconsole_font */
3642	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3643	subql	#1,%d6
3644
3645L(console_do_font_scanline):
3646	lslb	#1,%d3
3647	scsb	%d2		/* convert 1 bit into a byte */
3648	console_plot_pixel %d0,%d1,%d2
3649	addq	#1,%d0
3650	dbra	%d6,L(console_do_font_scanline)
3651
3652		/* ASSERT: a0 = contents of Lconsole_font */
3653	subl	%a0@(FONT_DESC_WIDTH),%d0
3654	addq	#1,%d1
3655	dbra	%d7,L(console_read_char_scanline)
3656
3657L(console_exit):
3658func_return	console_putc
3659
3660	/*
3661	 *	Input:
3662	 *		d0 = x coordinate
3663	 *		d1 = y coordinate
3664	 *		d2 = (bit 0) 1/0 for white/black (!)
3665	 *	All registers are preserved
3666	 */
3667func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669	movel	%pc@(L(mac_videobase)),%a1
3670	movel	%pc@(L(mac_videodepth)),%d3
3671	movel	ARG1,%d0
3672	movel	ARG2,%d1
3673	mulul	%pc@(L(mac_rowbytes)),%d1
3674	movel	ARG3,%d2
3675
3676	/*
3677	 *	Register usage:
3678	 *		d0 = x coord becomes byte offset into frame buffer
3679	 *		d1 = y coord
3680	 *		d2 = black or white (0/1)
3681	 *		d3 = video depth
3682	 *		d4 = temp of x (d0) for many bit depths
3683	 */
3684L(test_1bit):
3685	cmpb	#1,%d3
3686	jbne	L(test_2bit)
3687	movel	%d0,%d4		/* we need the low order 3 bits! */
3688	divul	#8,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#7,%d4
3692	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	andb	#1,%d2
3694	jbne	L(white_1)
3695	bsetb	%d4,%a1@
3696	jbra	L(console_plot_pixel_exit)
3697L(white_1):
3698	bclrb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700
3701L(test_2bit):
3702	cmpb	#2,%d3
3703	jbne	L(test_4bit)
3704	movel	%d0,%d4		/* we need the low order 2 bits! */
3705	divul	#4,%d0
3706	addal	%d0,%a1
3707	addal	%d1,%a1
3708	andb	#3,%d4
3709	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3710	lsll	#1,%d4		/* ! */
3711	andb	#1,%d2
3712	jbne	L(white_2)
3713	bsetb	%d4,%a1@
3714	addq	#1,%d4
3715	bsetb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717L(white_2):
3718	bclrb	%d4,%a1@
3719	addq	#1,%d4
3720	bclrb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722
3723L(test_4bit):
3724	cmpb	#4,%d3
3725	jbne	L(test_8bit)
3726	movel	%d0,%d4		/* we need the low order bit! */
3727	divul	#2,%d0
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d4
3731	eorb	#1,%d4
3732	lsll	#2,%d4		/* ! */
3733	andb	#1,%d2
3734	jbne	L(white_4)
3735	bsetb	%d4,%a1@
3736	addq	#1,%d4
3737	bsetb	%d4,%a1@
3738	addq	#1,%d4
3739	bsetb	%d4,%a1@
3740	addq	#1,%d4
3741	bsetb	%d4,%a1@
3742	jbra	L(console_plot_pixel_exit)
3743L(white_4):
3744	bclrb	%d4,%a1@
3745	addq	#1,%d4
3746	bclrb	%d4,%a1@
3747	addq	#1,%d4
3748	bclrb	%d4,%a1@
3749	addq	#1,%d4
3750	bclrb	%d4,%a1@
3751	jbra	L(console_plot_pixel_exit)
3752
3753L(test_8bit):
3754	cmpb	#8,%d3
3755	jbne	L(test_16bit)
3756	addal	%d0,%a1
3757	addal	%d1,%a1
3758	andb	#1,%d2
3759	jbne	L(white_8)
3760	moveb	#0xff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762L(white_8):
3763	clrb	%a1@
3764	jbra	L(console_plot_pixel_exit)
3765
3766L(test_16bit):
3767	cmpb	#16,%d3
3768	jbne	L(console_plot_pixel_exit)
3769	addal	%d0,%a1
3770	addal	%d0,%a1
3771	addal	%d1,%a1
3772	andb	#1,%d2
3773	jbne	L(white_16)
3774	clrw	%a1@
3775	jbra	L(console_plot_pixel_exit)
3776L(white_16):
3777	movew	#0x0fff,%a1@
3778	jbra	L(console_plot_pixel_exit)
3779
3780L(console_plot_pixel_exit):
3781func_return	console_plot_pixel
3782#endif /* CONSOLE */
3783
3784#if 0
3785/*
3786 * This is some old code lying around.  I don't believe
3787 * it's used or important anymore.  My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792L(showtest):
3793	moveml	%a0/%d7,%sp@-
3794	puts	"A="
3795	putn	%a1
3796
3797	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3798
3799	puts	"DA="
3800	putn	%a0
3801
3802	puts	"D="
3803	putn	%a0@
3804
3805	puts	"S="
3806	lea	%pc@(L(mmu)),%a0
3807	.long	0xf0106200		| pmove		%psr,%a0@
3808	clrl	%d7
3809	movew	%a0@,%d7
3810	putn	%d7
3811
3812	putc	'\n'
3813	moveml	%sp@+,%a0/%d7
3814	rts
3815#endif	/* 0 */
3816
3817__INITDATA
3818	.align	4
3819
3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822L(custom):
3823L(iobase):
3824	.long 0
3825#endif
3826
3827#if defined(CONSOLE)
3828L(console_globals):
3829	.long	0		/* cursor column */
3830	.long	0		/* cursor row */
3831	.long	0		/* max num columns */
3832	.long	0		/* max num rows */
3833	.long	0		/* left edge */
3834	.long	0		/* mac putc */
3835L(console_font):
3836	.long	0		/* pointer to console font (struct font_desc) */
3837L(console_font_data):
3838	.long	0		/* pointer to console font data */
3839#endif /* CONSOLE */
3840
3841#if defined(MMU_PRINT)
3842L(mmu_print_data):
3843	.long	0		/* valid flag */
3844	.long	0		/* start logical */
3845	.long	0		/* next logical */
3846	.long	0		/* start physical */
3847	.long	0		/* next physical */
3848#endif /* MMU_PRINT */
3849
3850L(cputype):
3851	.long	0
3852L(mmu_cached_pointer_tables):
3853	.long	0
3854L(mmu_num_pointer_tables):
3855	.long	0
3856L(phys_kernel_start):
3857	.long	0
3858L(kernel_end):
3859	.long	0
3860L(memory_start):
3861	.long	0
3862L(kernel_pgdir_ptr):
3863	.long	0
3864L(temp_mmap_mem):
3865	.long	0
3866
3867#if defined (CONFIG_MVME147)
3868M147_SCC_CTRL_A = 0xfffe3002
3869M147_SCC_DATA_A = 0xfffe3003
3870#endif
3871
3872#if defined (CONFIG_MVME16x)
3873M162_SCC_CTRL_A = 0xfff45005
3874M167_CYCAR = 0xfff450ee
3875M167_CYIER = 0xfff45011
3876M167_CYLICR = 0xfff45026
3877M167_CYTEOIR = 0xfff45085
3878M167_CYTDR = 0xfff450f8
3879M167_PCSCCTICR = 0xfff4201e
3880M167_PCTPIACKR = 0xfff42025
3881#endif
3882
3883#if defined (CONFIG_BVME6000)
3884BVME_SCC_CTRL_A	= 0xffb0000b
3885BVME_SCC_DATA_A	= 0xffb0000f
3886#endif
3887
3888#if defined(CONFIG_MAC)
3889L(mac_booter_data):
3890	.long	0
3891L(mac_videobase):
3892	.long	0
3893L(mac_videodepth):
3894	.long	0
3895L(mac_dimensions):
3896	.long	0
3897L(mac_rowbytes):
3898	.long	0
3899#ifdef MAC_SERIAL_DEBUG
3900L(mac_sccbase):
3901	.long	0
3902#endif /* MAC_SERIAL_DEBUG */
3903#endif
3904
3905#if defined (CONFIG_APOLLO)
3906LSRB0        = 0x10412
3907LTHRB0       = 0x10416
3908LCPUCTRL     = 0x10100
3909#endif
3910
3911#if defined(CONFIG_HP300)
3912DCADATA	     = 0x11
3913DCALSR	     = 0x1b
3914APCIDATA     = 0x00
3915APCILSR      = 0x14
3916L(uartbase):
3917	.long	0
3918L(uart_scode):
3919	.long	-1
3920#endif
3921
3922__FINIT
3923	.data
3924	.align	4
3925
3926availmem:
3927	.long	0
3928m68k_pgtable_cachemode:
3929	.long	0
3930m68k_supervisor_cachemode:
3931	.long	0
3932#if defined(CONFIG_MVME16x)
3933mvme_bdid:
3934	.long	0,0,0,0,0,0,0,0
3935#endif
3936#if defined(CONFIG_Q40)
3937q40_mem_cptr:
3938	.long	0
3939L(q40_do_debug):
3940	.long	0
3941#endif
3942