xref: /openbmc/linux/arch/m68k/include/asm/delay.h (revision e23feb16)
1 #ifndef _M68K_DELAY_H
2 #define _M68K_DELAY_H
3 
4 #include <asm/param.h>
5 
6 /*
7  * Copyright (C) 1994 Hamish Macdonald
8  * Copyright (C) 2004 Greg Ungerer <gerg@uclinux.com>
9  *
10  * Delay routines, using a pre-computed "loops_per_jiffy" value.
11  */
12 
13 #if defined(CONFIG_COLDFIRE)
14 /*
15  * The ColdFire runs the delay loop at significantly different speeds
16  * depending upon long word alignment or not.  We'll pad it to
17  * long word alignment which is the faster version.
18  * The 0x4a8e is of course a 'tstl %fp' instruction.  This is better
19  * than using a NOP (0x4e71) instruction because it executes in one
20  * cycle not three and doesn't allow for an arbitrary delay waiting
21  * for bus cycles to finish.  Also fp/a6 isn't likely to cause a
22  * stall waiting for the register to become valid if such is added
23  * to the coldfire at some stage.
24  */
25 #define	DELAY_ALIGN	".balignw 4, 0x4a8e\n\t"
26 #else
27 /*
28  * No instruction alignment required for other m68k types.
29  */
30 #define	DELAY_ALIGN
31 #endif
32 
33 static inline void __delay(unsigned long loops)
34 {
35 	__asm__ __volatile__ (
36 		DELAY_ALIGN
37 		"1: subql #1,%0\n\t"
38 		"jcc 1b"
39 		: "=d" (loops)
40 		: "0" (loops));
41 }
42 
43 extern void __bad_udelay(void);
44 
45 
46 #ifdef CONFIG_CPU_HAS_NO_MULDIV64
47 /*
48  * The simpler m68k and ColdFire processors do not have a 32*32->64
49  * multiply instruction. So we need to handle them a little differently.
50  * We use a bit of shifting and a single 32*32->32 multiply to get close.
51  * This is a macro so that the const version can factor out the first
52  * multiply and shift.
53  */
54 #define	HZSCALE		(268435456 / (1000000 / HZ))
55 
56 #define	__const_udelay(u) \
57 	__delay(((((u) * HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6)
58 
59 #else
60 
61 static inline void __xdelay(unsigned long xloops)
62 {
63 	unsigned long tmp;
64 
65 	__asm__ ("mulul %2,%0:%1"
66 		: "=d" (xloops), "=d" (tmp)
67 		: "d" (xloops), "1" (loops_per_jiffy));
68 	__delay(xloops * HZ);
69 }
70 
71 /*
72  * The definition of __const_udelay is specifically made a macro so that
73  * the const factor (4295 = 2**32 / 1000000) can be optimized out when
74  * the delay is a const.
75  */
76 #define	__const_udelay(n)	(__xdelay((n) * 4295))
77 
78 #endif
79 
80 static inline void __udelay(unsigned long usecs)
81 {
82 	__const_udelay(usecs);
83 }
84 
85 /*
86  * Use only for very small delays ( < 1 msec).  Should probably use a
87  * lookup table, really, as the multiplications take much too long with
88  * short delays.  This is a "reasonable" implementation, though (and the
89  * first constant multiplications gets optimized away if the delay is
90  * a constant)
91  */
92 #define udelay(n) (__builtin_constant_p(n) ? \
93 	((n) > 20000 ? __bad_udelay() : __const_udelay(n)) : __udelay(n))
94 
95 /*
96  * nanosecond delay:
97  *
98  * ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) is the number of loops
99  * per microsecond
100  *
101  * 1000 / ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) is the number of
102  * nanoseconds per loop
103  *
104  * So n / ( 1000 / ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) ) would
105  * be the number of loops for n nanoseconds
106  */
107 
108 /*
109  * The simpler m68k and ColdFire processors do not have a 32*32->64
110  * multiply instruction. So we need to handle them a little differently.
111  * We use a bit of shifting and a single 32*32->32 multiply to get close.
112  * This is a macro so that the const version can factor out the first
113  * multiply and shift.
114  */
115 #define	HZSCALE		(268435456 / (1000000 / HZ))
116 
117 #define ndelay(n) __delay(DIV_ROUND_UP((n) * ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6), 1000));
118 
119 #endif /* defined(_M68K_DELAY_H) */
120