xref: /openbmc/linux/arch/m68k/ifpsp060/src/ilsp.S (revision a2cce7a9)
1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
3M68000 Hi-Performance Microprocessor Division
4M68060 Software Package
5Production Release P1.00 -- October 10, 1994
6
7M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved.
8
9THE SOFTWARE is provided on an "AS IS" basis and without warranty.
10To the maximum extent permitted by applicable law,
11MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
12INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
13and any warranty against infringement with regard to the SOFTWARE
14(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
15
16To the maximum extent permitted by applicable law,
17IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
18(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
19BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
20ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
21Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
22
23You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
24so long as this entire notice is retained without alteration in any modified and/or
25redistributed versions, and that such modified versions are clearly identified as such.
26No licenses are granted by implication, estoppel or otherwise under any patents
27or trademarks of Motorola, Inc.
28~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29# litop.s:
30#	This file is appended to the top of the 060FPLSP package
31# and contains the entry points into the package. The user, in
32# effect, branches to one of the branch table entries located here.
33#
34
35	bra.l	_060LSP__idivs64_
36	short	0x0000
37	bra.l	_060LSP__idivu64_
38	short	0x0000
39
40	bra.l	_060LSP__imuls64_
41	short	0x0000
42	bra.l	_060LSP__imulu64_
43	short	0x0000
44
45	bra.l	_060LSP__cmp2_Ab_
46	short	0x0000
47	bra.l	_060LSP__cmp2_Aw_
48	short	0x0000
49	bra.l	_060LSP__cmp2_Al_
50	short	0x0000
51	bra.l	_060LSP__cmp2_Db_
52	short	0x0000
53	bra.l	_060LSP__cmp2_Dw_
54	short	0x0000
55	bra.l	_060LSP__cmp2_Dl_
56	short	0x0000
57
58# leave room for future possible aditions.
59	align	0x200
60
61#########################################################################
62# XDEF ****************************************************************	#
63#	_060LSP__idivu64_(): Emulate 64-bit unsigned div instruction.	#
64#	_060LSP__idivs64_(): Emulate 64-bit signed div instruction.	#
65#									#
66#	This is the library version which is accessed as a subroutine	#
67#	and therefore does not work exactly like the 680X0 div{s,u}.l	#
68#	64-bit divide instruction.					#
69#									#
70# XREF ****************************************************************	#
71#	None.								#
72#									#
73# INPUT ***************************************************************	#
74#	0x4(sp)  = divisor						#
75#	0x8(sp)  = hi(dividend)						#
76#	0xc(sp)  = lo(dividend)						#
77#	0x10(sp) = pointer to location to place quotient/remainder	#
78#									#
79# OUTPUT **************************************************************	#
80#	0x10(sp) = points to location of remainder/quotient.		#
81#		   remainder is in first longword, quotient is in 2nd.	#
82#									#
83# ALGORITHM ***********************************************************	#
84#	If the operands are signed, make them unsigned and save the	#
85# sign info for later. Separate out special cases like divide-by-zero	#
86# or 32-bit divides if possible. Else, use a special math algorithm	#
87# to calculate the result.						#
88#	Restore sign info if signed instruction. Set the condition	#
89# codes before performing the final "rts". If the divisor was equal to	#
90# zero, then perform a divide-by-zero using a 16-bit implemented	#
91# divide instruction. This way, the operating system can record that	#
92# the event occurred even though it may not point to the correct place.	#
93#									#
94#########################################################################
95
96set	POSNEG,		-1
97set	NDIVISOR,	-2
98set	NDIVIDEND,	-3
99set	DDSECOND,	-4
100set	DDNORMAL,	-8
101set	DDQUOTIENT,	-12
102set	DIV64_CC,	-16
103
104##########
105# divs.l #
106##########
107	global		_060LSP__idivs64_
108_060LSP__idivs64_:
109# PROLOGUE BEGIN ########################################################
110	link.w		%a6,&-16
111	movm.l		&0x3f00,-(%sp)		# save d2-d7
112#	fmovm.l		&0x0,-(%sp)		# save no fpregs
113# PROLOGUE END ##########################################################
114
115	mov.w		%cc,DIV64_CC(%a6)
116	st		POSNEG(%a6)		# signed operation
117	bra.b		ldiv64_cont
118
119##########
120# divu.l #
121##########
122	global		_060LSP__idivu64_
123_060LSP__idivu64_:
124# PROLOGUE BEGIN ########################################################
125	link.w		%a6,&-16
126	movm.l		&0x3f00,-(%sp)		# save d2-d7
127#	fmovm.l		&0x0,-(%sp)		# save no fpregs
128# PROLOGUE END ##########################################################
129
130	mov.w		%cc,DIV64_CC(%a6)
131	sf		POSNEG(%a6)		# unsigned operation
132
133ldiv64_cont:
134	mov.l		0x8(%a6),%d7		# fetch divisor
135
136	beq.w		ldiv64eq0		# divisor is = 0!!!
137
138	mov.l		0xc(%a6), %d5		# get dividend hi
139	mov.l		0x10(%a6), %d6		# get dividend lo
140
141# separate signed and unsigned divide
142	tst.b		POSNEG(%a6)		# signed or unsigned?
143	beq.b		ldspecialcases		# use positive divide
144
145# save the sign of the divisor
146# make divisor unsigned if it's negative
147	tst.l		%d7			# chk sign of divisor
148	slt		NDIVISOR(%a6)		# save sign of divisor
149	bpl.b		ldsgndividend
150	neg.l		%d7			# complement negative divisor
151
152# save the sign of the dividend
153# make dividend unsigned if it's negative
154ldsgndividend:
155	tst.l		%d5			# chk sign of hi(dividend)
156	slt		NDIVIDEND(%a6)		# save sign of dividend
157	bpl.b		ldspecialcases
158
159	mov.w		&0x0, %cc		# clear 'X' cc bit
160	negx.l		%d6			# complement signed dividend
161	negx.l		%d5
162
163# extract some special cases:
164#	- is (dividend == 0) ?
165#	- is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)
166ldspecialcases:
167	tst.l		%d5			# is (hi(dividend) == 0)
168	bne.b		ldnormaldivide		# no, so try it the long way
169
170	tst.l		%d6			# is (lo(dividend) == 0), too
171	beq.w		lddone			# yes, so (dividend == 0)
172
173	cmp.l		%d7,%d6			# is (divisor <= lo(dividend))
174	bls.b		ld32bitdivide		# yes, so use 32 bit divide
175
176	exg		%d5,%d6			# q = 0, r = dividend
177	bra.w		ldivfinish		# can't divide, we're done.
178
179ld32bitdivide:
180	tdivu.l		%d7, %d5:%d6		# it's only a 32/32 bit div!
181
182	bra.b		ldivfinish
183
184ldnormaldivide:
185# last special case:
186#	- is hi(dividend) >= divisor ? if yes, then overflow
187	cmp.l		%d7,%d5
188	bls.b		lddovf			# answer won't fit in 32 bits
189
190# perform the divide algorithm:
191	bsr.l		ldclassical		# do int divide
192
193# separate into signed and unsigned finishes.
194ldivfinish:
195	tst.b		POSNEG(%a6)		# do divs, divu separately
196	beq.b		lddone			# divu has no processing!!!
197
198# it was a divs.l, so ccode setting is a little more complicated...
199	tst.b		NDIVIDEND(%a6)		# remainder has same sign
200	beq.b		ldcc			# as dividend.
201	neg.l		%d5			# sgn(rem) = sgn(dividend)
202ldcc:
203	mov.b		NDIVISOR(%a6), %d0
204	eor.b		%d0, NDIVIDEND(%a6)	# chk if quotient is negative
205	beq.b		ldqpos			# branch to quot positive
206
207# 0x80000000 is the largest number representable as a 32-bit negative
208# number. the negative of 0x80000000 is 0x80000000.
209	cmpi.l		%d6, &0x80000000	# will (-quot) fit in 32 bits?
210	bhi.b		lddovf
211
212	neg.l		%d6			# make (-quot) 2's comp
213
214	bra.b		lddone
215
216ldqpos:
217	btst		&0x1f, %d6		# will (+quot) fit in 32 bits?
218	bne.b		lddovf
219
220lddone:
221# if the register numbers are the same, only the quotient gets saved.
222# so, if we always save the quotient second, we save ourselves a cmp&beq
223	andi.w		&0x10,DIV64_CC(%a6)
224	mov.w		DIV64_CC(%a6),%cc
225	tst.l		%d6			# may set 'N' ccode bit
226
227# here, the result is in d1 and d0. the current strategy is to save
228# the values at the location pointed to by a0.
229# use movm here to not disturb the condition codes.
230ldexit:
231	movm.l		&0x0060,([0x14,%a6])	# save result
232
233# EPILOGUE BEGIN ########################################################
234#	fmovm.l		(%sp)+,&0x0		# restore no fpregs
235	movm.l		(%sp)+,&0x00fc		# restore d2-d7
236	unlk		%a6
237# EPILOGUE END ##########################################################
238
239	rts
240
241# the result should be the unchanged dividend
242lddovf:
243	mov.l		0xc(%a6), %d5		# get dividend hi
244	mov.l		0x10(%a6), %d6		# get dividend lo
245
246	andi.w		&0x1c,DIV64_CC(%a6)
247	ori.w		&0x02,DIV64_CC(%a6)	# set 'V' ccode bit
248	mov.w		DIV64_CC(%a6),%cc
249
250	bra.b		ldexit
251
252ldiv64eq0:
253	mov.l		0xc(%a6),([0x14,%a6])
254	mov.l		0x10(%a6),([0x14,%a6],0x4)
255
256	mov.w		DIV64_CC(%a6),%cc
257
258# EPILOGUE BEGIN ########################################################
259#	fmovm.l		(%sp)+,&0x0		# restore no fpregs
260	movm.l		(%sp)+,&0x00fc		# restore d2-d7
261	unlk		%a6
262# EPILOGUE END ##########################################################
263
264	divu.w		&0x0,%d0		# force a divbyzero exception
265	rts
266
267###########################################################################
268#########################################################################
269# This routine uses the 'classical' Algorithm D from Donald Knuth's	#
270# Art of Computer Programming, vol II, Seminumerical Algorithms.	#
271# For this implementation b=2**16, and the target is U1U2U3U4/V1V2,	#
272# where U,V are words of the quadword dividend and longword divisor,	#
273# and U1, V1 are the most significant words.				#
274#									#
275# The most sig. longword of the 64 bit dividend must be in %d5, least	#
276# in %d6. The divisor must be in the variable ddivisor, and the		#
277# signed/unsigned flag ddusign must be set (0=unsigned,1=signed).	#
278# The quotient is returned in %d6, remainder in %d5, unless the		#
279# v (overflow) bit is set in the saved %ccr. If overflow, the dividend	#
280# is unchanged.								#
281#########################################################################
282ldclassical:
283# if the divisor msw is 0, use simpler algorithm then the full blown
284# one at ddknuth:
285
286	cmpi.l		%d7, &0xffff
287	bhi.b		lddknuth		# go use D. Knuth algorithm
288
289# Since the divisor is only a word (and larger than the mslw of the dividend),
290# a simpler algorithm may be used :
291# In the general case, four quotient words would be created by
292# dividing the divisor word into each dividend word. In this case,
293# the first two quotient words must be zero, or overflow would occur.
294# Since we already checked this case above, we can treat the most significant
295# longword of the dividend as (0) remainder (see Knuth) and merely complete
296# the last two divisions to get a quotient longword and word remainder:
297
298	clr.l		%d1
299	swap		%d5			# same as r*b if previous step rqd
300	swap		%d6			# get u3 to lsw position
301	mov.w		%d6, %d5		# rb + u3
302
303	divu.w		%d7, %d5
304
305	mov.w		%d5, %d1		# first quotient word
306	swap		%d6			# get u4
307	mov.w		%d6, %d5		# rb + u4
308
309	divu.w		%d7, %d5
310
311	swap		%d1
312	mov.w		%d5, %d1		# 2nd quotient 'digit'
313	clr.w		%d5
314	swap		%d5			# now remainder
315	mov.l		%d1, %d6		# and quotient
316
317	rts
318
319lddknuth:
320# In this algorithm, the divisor is treated as a 2 digit (word) number
321# which is divided into a 3 digit (word) dividend to get one quotient
322# digit (word). After subtraction, the dividend is shifted and the
323# process repeated. Before beginning, the divisor and quotient are
324# 'normalized' so that the process of estimating the quotient digit
325# will yield verifiably correct results..
326
327	clr.l		DDNORMAL(%a6)		# count of shifts for normalization
328	clr.b		DDSECOND(%a6)		# clear flag for quotient digits
329	clr.l		%d1			# %d1 will hold trial quotient
330lddnchk:
331	btst		&31, %d7		# must we normalize? first word of
332	bne.b		lddnormalized		# divisor (V1) must be >= 65536/2
333	addq.l		&0x1, DDNORMAL(%a6)	# count normalization shifts
334	lsl.l		&0x1, %d7		# shift the divisor
335	lsl.l		&0x1, %d6		# shift u4,u3 with overflow to u2
336	roxl.l		&0x1, %d5		# shift u1,u2
337	bra.w		lddnchk
338lddnormalized:
339
340# Now calculate an estimate of the quotient words (msw first, then lsw).
341# The comments use subscripts for the first quotient digit determination.
342	mov.l		%d7, %d3		# divisor
343	mov.l		%d5, %d2		# dividend mslw
344	swap		%d2
345	swap		%d3
346	cmp.w		%d2, %d3		# V1 = U1 ?
347	bne.b		lddqcalc1
348	mov.w		&0xffff, %d1		# use max trial quotient word
349	bra.b		lddadj0
350lddqcalc1:
351	mov.l		%d5, %d1
352
353	divu.w		%d3, %d1		# use quotient of mslw/msw
354
355	andi.l		&0x0000ffff, %d1	# zero any remainder
356lddadj0:
357
358# now test the trial quotient and adjust. This step plus the
359# normalization assures (according to Knuth) that the trial
360# quotient will be at worst 1 too large.
361	mov.l		%d6, -(%sp)
362	clr.w		%d6			# word u3 left
363	swap		%d6			# in lsw position
364lddadj1: mov.l		%d7, %d3
365	mov.l		%d1, %d2
366	mulu.w		%d7, %d2		# V2q
367	swap		%d3
368	mulu.w		%d1, %d3		# V1q
369	mov.l		%d5, %d4		# U1U2
370	sub.l		%d3, %d4		# U1U2 - V1q
371
372	swap		%d4
373
374	mov.w		%d4,%d0
375	mov.w		%d6,%d4			# insert lower word (U3)
376
377	tst.w		%d0			# is upper word set?
378	bne.w		lddadjd1
379
380#	add.l		%d6, %d4		# (U1U2 - V1q) + U3
381
382	cmp.l		%d2, %d4
383	bls.b		lddadjd1		# is V2q > (U1U2-V1q) + U3 ?
384	subq.l		&0x1, %d1		# yes, decrement and recheck
385	bra.b		lddadj1
386lddadjd1:
387# now test the word by multiplying it by the divisor (V1V2) and comparing
388# the 3 digit (word) result with the current dividend words
389	mov.l		%d5, -(%sp)		# save %d5 (%d6 already saved)
390	mov.l		%d1, %d6
391	swap		%d6			# shift answer to ms 3 words
392	mov.l		%d7, %d5
393	bsr.l		ldmm2
394	mov.l		%d5, %d2		# now %d2,%d3 are trial*divisor
395	mov.l		%d6, %d3
396	mov.l		(%sp)+, %d5		# restore dividend
397	mov.l		(%sp)+, %d6
398	sub.l		%d3, %d6
399	subx.l		%d2, %d5		# subtract double precision
400	bcc		ldd2nd			# no carry, do next quotient digit
401	subq.l		&0x1, %d1		# q is one too large
402# need to add back divisor longword to current ms 3 digits of dividend
403# - according to Knuth, this is done only 2 out of 65536 times for random
404# divisor, dividend selection.
405	clr.l		%d2
406	mov.l		%d7, %d3
407	swap		%d3
408	clr.w		%d3			# %d3 now ls word of divisor
409	add.l		%d3, %d6		# aligned with 3rd word of dividend
410	addx.l		%d2, %d5
411	mov.l		%d7, %d3
412	clr.w		%d3			# %d3 now ms word of divisor
413	swap		%d3			# aligned with 2nd word of dividend
414	add.l		%d3, %d5
415ldd2nd:
416	tst.b		DDSECOND(%a6)	# both q words done?
417	bne.b		lddremain
418# first quotient digit now correct. store digit and shift the
419# (subtracted) dividend
420	mov.w		%d1, DDQUOTIENT(%a6)
421	clr.l		%d1
422	swap		%d5
423	swap		%d6
424	mov.w		%d6, %d5
425	clr.w		%d6
426	st		DDSECOND(%a6)		# second digit
427	bra.w		lddnormalized
428lddremain:
429# add 2nd word to quotient, get the remainder.
430	mov.w		%d1, DDQUOTIENT+2(%a6)
431# shift down one word/digit to renormalize remainder.
432	mov.w		%d5, %d6
433	swap		%d6
434	swap		%d5
435	mov.l		DDNORMAL(%a6), %d7	# get norm shift count
436	beq.b		lddrn
437	subq.l		&0x1, %d7		# set for loop count
438lddnlp:
439	lsr.l		&0x1, %d5		# shift into %d6
440	roxr.l		&0x1, %d6
441	dbf		%d7, lddnlp
442lddrn:
443	mov.l		%d6, %d5		# remainder
444	mov.l		DDQUOTIENT(%a6), %d6	# quotient
445
446	rts
447ldmm2:
448# factors for the 32X32->64 multiplication are in %d5 and %d6.
449# returns 64 bit result in %d5 (hi) %d6(lo).
450# destroys %d2,%d3,%d4.
451
452# multiply hi,lo words of each factor to get 4 intermediate products
453	mov.l		%d6, %d2
454	mov.l		%d6, %d3
455	mov.l		%d5, %d4
456	swap		%d3
457	swap		%d4
458	mulu.w		%d5, %d6		# %d6 <- lsw*lsw
459	mulu.w		%d3, %d5		# %d5 <- msw-dest*lsw-source
460	mulu.w		%d4, %d2		# %d2 <- msw-source*lsw-dest
461	mulu.w		%d4, %d3		# %d3 <- msw*msw
462# now use swap and addx to consolidate to two longwords
463	clr.l		%d4
464	swap		%d6
465	add.w		%d5, %d6		# add msw of l*l to lsw of m*l product
466	addx.w		%d4, %d3		# add any carry to m*m product
467	add.w		%d2, %d6		# add in lsw of other m*l product
468	addx.w		%d4, %d3		# add any carry to m*m product
469	swap		%d6			# %d6 is low 32 bits of final product
470	clr.w		%d5
471	clr.w		%d2			# lsw of two mixed products used,
472	swap		%d5			# now use msws of longwords
473	swap		%d2
474	add.l		%d2, %d5
475	add.l		%d3, %d5	# %d5 now ms 32 bits of final product
476	rts
477
478#########################################################################
479# XDEF ****************************************************************	#
480#	_060LSP__imulu64_(): Emulate 64-bit unsigned mul instruction	#
481#	_060LSP__imuls64_(): Emulate 64-bit signed mul instruction.	#
482#									#
483#	This is the library version which is accessed as a subroutine	#
484#	and therefore does not work exactly like the 680X0 mul{s,u}.l	#
485#	64-bit multiply instruction.					#
486#									#
487# XREF ****************************************************************	#
488#	None								#
489#									#
490# INPUT ***************************************************************	#
491#	0x4(sp) = multiplier						#
492#	0x8(sp) = multiplicand						#
493#	0xc(sp) = pointer to location to place 64-bit result		#
494#									#
495# OUTPUT **************************************************************	#
496#	0xc(sp) = points to location of 64-bit result			#
497#									#
498# ALGORITHM ***********************************************************	#
499#	Perform the multiply in pieces using 16x16->32 unsigned		#
500# multiplies and "add" instructions.					#
501#	Set the condition codes as appropriate before performing an	#
502# "rts".								#
503#									#
504#########################################################################
505
506set MUL64_CC, -4
507
508	global		_060LSP__imulu64_
509_060LSP__imulu64_:
510
511# PROLOGUE BEGIN ########################################################
512	link.w		%a6,&-4
513	movm.l		&0x3800,-(%sp)		# save d2-d4
514#	fmovm.l		&0x0,-(%sp)		# save no fpregs
515# PROLOGUE END ##########################################################
516
517	mov.w		%cc,MUL64_CC(%a6)	# save incoming ccodes
518
519	mov.l		0x8(%a6),%d0		# store multiplier in d0
520	beq.w		mulu64_zero		# handle zero separately
521
522	mov.l		0xc(%a6),%d1		# get multiplicand in d1
523	beq.w		mulu64_zero		# handle zero separately
524
525#########################################################################
526#	63			   32				0	#
527#	----------------------------					#
528#	| hi(mplier) * hi(mplicand)|					#
529#	----------------------------					#
530#		     -----------------------------			#
531#		     | hi(mplier) * lo(mplicand) |			#
532#		     -----------------------------			#
533#		     -----------------------------			#
534#		     | lo(mplier) * hi(mplicand) |			#
535#		     -----------------------------			#
536#	  |			   -----------------------------	#
537#	--|--			   | lo(mplier) * lo(mplicand) |	#
538#	  |			   -----------------------------	#
539#	========================================================	#
540#	--------------------------------------------------------	#
541#	|	hi(result)	   |	    lo(result)         |	#
542#	--------------------------------------------------------	#
543#########################################################################
544mulu64_alg:
545# load temp registers with operands
546	mov.l		%d0,%d2			# mr in d2
547	mov.l		%d0,%d3			# mr in d3
548	mov.l		%d1,%d4			# md in d4
549	swap		%d3			# hi(mr) in lo d3
550	swap		%d4			# hi(md) in lo d4
551
552# complete necessary multiplies:
553	mulu.w		%d1,%d0			# [1] lo(mr) * lo(md)
554	mulu.w		%d3,%d1			# [2] hi(mr) * lo(md)
555	mulu.w		%d4,%d2			# [3] lo(mr) * hi(md)
556	mulu.w		%d4,%d3			# [4] hi(mr) * hi(md)
557
558# add lo portions of [2],[3] to hi portion of [1].
559# add carries produced from these adds to [4].
560# lo([1]) is the final lo 16 bits of the result.
561	clr.l		%d4			# load d4 w/ zero value
562	swap		%d0			# hi([1]) <==> lo([1])
563	add.w		%d1,%d0			# hi([1]) + lo([2])
564	addx.l		%d4,%d3			#    [4]  + carry
565	add.w		%d2,%d0			# hi([1]) + lo([3])
566	addx.l		%d4,%d3			#    [4]  + carry
567	swap		%d0			# lo([1]) <==> hi([1])
568
569# lo portions of [2],[3] have been added in to final result.
570# now, clear lo, put hi in lo reg, and add to [4]
571	clr.w		%d1			# clear lo([2])
572	clr.w		%d2			# clear hi([3])
573	swap		%d1			# hi([2]) in lo d1
574	swap		%d2			# hi([3]) in lo d2
575	add.l		%d2,%d1			#    [4]  + hi([2])
576	add.l		%d3,%d1			#    [4]  + hi([3])
577
578# now, grab the condition codes. only one that can be set is 'N'.
579# 'N' CAN be set if the operation is unsigned if bit 63 is set.
580	mov.w		MUL64_CC(%a6),%d4
581	andi.b		&0x10,%d4		# keep old 'X' bit
582	tst.l		%d1			# may set 'N' bit
583	bpl.b		mulu64_ddone
584	ori.b		&0x8,%d4		# set 'N' bit
585mulu64_ddone:
586	mov.w		%d4,%cc
587
588# here, the result is in d1 and d0. the current strategy is to save
589# the values at the location pointed to by a0.
590# use movm here to not disturb the condition codes.
591mulu64_end:
592	exg		%d1,%d0
593	movm.l		&0x0003,([0x10,%a6])		# save result
594
595# EPILOGUE BEGIN ########################################################
596#	fmovm.l		(%sp)+,&0x0		# restore no fpregs
597	movm.l		(%sp)+,&0x001c		# restore d2-d4
598	unlk		%a6
599# EPILOGUE END ##########################################################
600
601	rts
602
603# one or both of the operands is zero so the result is also zero.
604# save the zero result to the register file and set the 'Z' ccode bit.
605mulu64_zero:
606	clr.l		%d0
607	clr.l		%d1
608
609	mov.w		MUL64_CC(%a6),%d4
610	andi.b		&0x10,%d4
611	ori.b		&0x4,%d4
612	mov.w		%d4,%cc			# set 'Z' ccode bit
613
614	bra.b		mulu64_end
615
616##########
617# muls.l #
618##########
619	global		_060LSP__imuls64_
620_060LSP__imuls64_:
621
622# PROLOGUE BEGIN ########################################################
623	link.w		%a6,&-4
624	movm.l		&0x3c00,-(%sp)		# save d2-d5
625#	fmovm.l		&0x0,-(%sp)		# save no fpregs
626# PROLOGUE END ##########################################################
627
628	mov.w		%cc,MUL64_CC(%a6)	# save incoming ccodes
629
630	mov.l		0x8(%a6),%d0		# store multiplier in d0
631	beq.b		mulu64_zero		# handle zero separately
632
633	mov.l		0xc(%a6),%d1		# get multiplicand in d1
634	beq.b		mulu64_zero		# handle zero separately
635
636	clr.b		%d5			# clear sign tag
637	tst.l		%d0			# is multiplier negative?
638	bge.b		muls64_chk_md_sgn	# no
639	neg.l		%d0			# make multiplier positive
640
641	ori.b		&0x1,%d5		# save multiplier sgn
642
643# the result sign is the exclusive or of the operand sign bits.
644muls64_chk_md_sgn:
645	tst.l		%d1			# is multiplicand negative?
646	bge.b		muls64_alg		# no
647	neg.l		%d1			# make multiplicand positive
648
649	eori.b		&0x1,%d5		# calculate correct sign
650
651#########################################################################
652#	63			   32				0	#
653#	----------------------------					#
654#	| hi(mplier) * hi(mplicand)|					#
655#	----------------------------					#
656#		     -----------------------------			#
657#		     | hi(mplier) * lo(mplicand) |			#
658#		     -----------------------------			#
659#		     -----------------------------			#
660#		     | lo(mplier) * hi(mplicand) |			#
661#		     -----------------------------			#
662#	  |			   -----------------------------	#
663#	--|--			   | lo(mplier) * lo(mplicand) |	#
664#	  |			   -----------------------------	#
665#	========================================================	#
666#	--------------------------------------------------------	#
667#	|	hi(result)	   |	    lo(result)         |	#
668#	--------------------------------------------------------	#
669#########################################################################
670muls64_alg:
671# load temp registers with operands
672	mov.l		%d0,%d2			# mr in d2
673	mov.l		%d0,%d3			# mr in d3
674	mov.l		%d1,%d4			# md in d4
675	swap		%d3			# hi(mr) in lo d3
676	swap		%d4			# hi(md) in lo d4
677
678# complete necessary multiplies:
679	mulu.w		%d1,%d0			# [1] lo(mr) * lo(md)
680	mulu.w		%d3,%d1			# [2] hi(mr) * lo(md)
681	mulu.w		%d4,%d2			# [3] lo(mr) * hi(md)
682	mulu.w		%d4,%d3			# [4] hi(mr) * hi(md)
683
684# add lo portions of [2],[3] to hi portion of [1].
685# add carries produced from these adds to [4].
686# lo([1]) is the final lo 16 bits of the result.
687	clr.l		%d4			# load d4 w/ zero value
688	swap		%d0			# hi([1]) <==> lo([1])
689	add.w		%d1,%d0			# hi([1]) + lo([2])
690	addx.l		%d4,%d3			#    [4]  + carry
691	add.w		%d2,%d0			# hi([1]) + lo([3])
692	addx.l		%d4,%d3			#    [4]  + carry
693	swap		%d0			# lo([1]) <==> hi([1])
694
695# lo portions of [2],[3] have been added in to final result.
696# now, clear lo, put hi in lo reg, and add to [4]
697	clr.w		%d1			# clear lo([2])
698	clr.w		%d2			# clear hi([3])
699	swap		%d1			# hi([2]) in lo d1
700	swap		%d2			# hi([3]) in lo d2
701	add.l		%d2,%d1			#    [4]  + hi([2])
702	add.l		%d3,%d1			#    [4]  + hi([3])
703
704	tst.b		%d5			# should result be signed?
705	beq.b		muls64_done		# no
706
707# result should be a signed negative number.
708# compute 2's complement of the unsigned number:
709#   -negate all bits and add 1
710muls64_neg:
711	not.l		%d0			# negate lo(result) bits
712	not.l		%d1			# negate hi(result) bits
713	addq.l		&1,%d0			# add 1 to lo(result)
714	addx.l		%d4,%d1			# add carry to hi(result)
715
716muls64_done:
717	mov.w		MUL64_CC(%a6),%d4
718	andi.b		&0x10,%d4		# keep old 'X' bit
719	tst.l		%d1			# may set 'N' bit
720	bpl.b		muls64_ddone
721	ori.b		&0x8,%d4		# set 'N' bit
722muls64_ddone:
723	mov.w		%d4,%cc
724
725# here, the result is in d1 and d0. the current strategy is to save
726# the values at the location pointed to by a0.
727# use movm here to not disturb the condition codes.
728muls64_end:
729	exg		%d1,%d0
730	movm.l		&0x0003,([0x10,%a6])	# save result at (a0)
731
732# EPILOGUE BEGIN ########################################################
733#	fmovm.l		(%sp)+,&0x0		# restore no fpregs
734	movm.l		(%sp)+,&0x003c		# restore d2-d5
735	unlk		%a6
736# EPILOGUE END ##########################################################
737
738	rts
739
740# one or both of the operands is zero so the result is also zero.
741# save the zero result to the register file and set the 'Z' ccode bit.
742muls64_zero:
743	clr.l		%d0
744	clr.l		%d1
745
746	mov.w		MUL64_CC(%a6),%d4
747	andi.b		&0x10,%d4
748	ori.b		&0x4,%d4
749	mov.w		%d4,%cc			# set 'Z' ccode bit
750
751	bra.b		muls64_end
752
753#########################################################################
754# XDEF ****************************************************************	#
755#	_060LSP__cmp2_Ab_(): Emulate "cmp2.b An,<ea>".			#
756#	_060LSP__cmp2_Aw_(): Emulate "cmp2.w An,<ea>".			#
757#	_060LSP__cmp2_Al_(): Emulate "cmp2.l An,<ea>".			#
758#	_060LSP__cmp2_Db_(): Emulate "cmp2.b Dn,<ea>".			#
759#	_060LSP__cmp2_Dw_(): Emulate "cmp2.w Dn,<ea>".			#
760#	_060LSP__cmp2_Dl_(): Emulate "cmp2.l Dn,<ea>".			#
761#									#
762#	This is the library version which is accessed as a subroutine	#
763#	and therefore does not work exactly like the 680X0 "cmp2"	#
764#	instruction.							#
765#									#
766# XREF ****************************************************************	#
767#	None								#
768#									#
769# INPUT ***************************************************************	#
770#	0x4(sp) = Rn							#
771#	0x8(sp) = pointer to boundary pair				#
772#									#
773# OUTPUT **************************************************************	#
774#	cc = condition codes are set correctly				#
775#									#
776# ALGORITHM ***********************************************************	#
777#	In the interest of simplicity, all operands are converted to	#
778# longword size whether the operation is byte, word, or long. The	#
779# bounds are sign extended accordingly. If Rn is a data regsiter, Rn is #
780# also sign extended. If Rn is an address register, it need not be sign #
781# extended since the full register is always used.			#
782#	The condition codes are set correctly before the final "rts".	#
783#									#
784#########################################################################
785
786set	CMP2_CC,	-4
787
788	global		_060LSP__cmp2_Ab_
789_060LSP__cmp2_Ab_:
790
791# PROLOGUE BEGIN ########################################################
792	link.w		%a6,&-4
793	movm.l		&0x3800,-(%sp)		# save d2-d4
794#	fmovm.l		&0x0,-(%sp)		# save no fpregs
795# PROLOGUE END ##########################################################
796
797	mov.w		%cc,CMP2_CC(%a6)
798	mov.l		0x8(%a6), %d2		# get regval
799
800	mov.b		([0xc,%a6],0x0),%d0
801	mov.b		([0xc,%a6],0x1),%d1
802
803	extb.l		%d0			# sign extend lo bnd
804	extb.l		%d1			# sign extend hi bnd
805	bra.w		l_cmp2_cmp		# go do the compare emulation
806
807	global		_060LSP__cmp2_Aw_
808_060LSP__cmp2_Aw_:
809
810# PROLOGUE BEGIN ########################################################
811	link.w		%a6,&-4
812	movm.l		&0x3800,-(%sp)		# save d2-d4
813#	fmovm.l		&0x0,-(%sp)		# save no fpregs
814# PROLOGUE END ##########################################################
815
816	mov.w		%cc,CMP2_CC(%a6)
817	mov.l		0x8(%a6), %d2		# get regval
818
819	mov.w		([0xc,%a6],0x0),%d0
820	mov.w		([0xc,%a6],0x2),%d1
821
822	ext.l		%d0			# sign extend lo bnd
823	ext.l		%d1			# sign extend hi bnd
824	bra.w		l_cmp2_cmp		# go do the compare emulation
825
826	global		_060LSP__cmp2_Al_
827_060LSP__cmp2_Al_:
828
829# PROLOGUE BEGIN ########################################################
830	link.w		%a6,&-4
831	movm.l		&0x3800,-(%sp)		# save d2-d4
832#	fmovm.l		&0x0,-(%sp)		# save no fpregs
833# PROLOGUE END ##########################################################
834
835	mov.w		%cc,CMP2_CC(%a6)
836	mov.l		0x8(%a6), %d2		# get regval
837
838	mov.l		([0xc,%a6],0x0),%d0
839	mov.l		([0xc,%a6],0x4),%d1
840	bra.w		l_cmp2_cmp		# go do the compare emulation
841
842	global		_060LSP__cmp2_Db_
843_060LSP__cmp2_Db_:
844
845# PROLOGUE BEGIN ########################################################
846	link.w		%a6,&-4
847	movm.l		&0x3800,-(%sp)		# save d2-d4
848#	fmovm.l		&0x0,-(%sp)		# save no fpregs
849# PROLOGUE END ##########################################################
850
851	mov.w		%cc,CMP2_CC(%a6)
852	mov.l		0x8(%a6), %d2		# get regval
853
854	mov.b		([0xc,%a6],0x0),%d0
855	mov.b		([0xc,%a6],0x1),%d1
856
857	extb.l		%d0			# sign extend lo bnd
858	extb.l		%d1			# sign extend hi bnd
859
860# operation is a data register compare.
861# sign extend byte to long so we can do simple longword compares.
862	extb.l		%d2			# sign extend data byte
863	bra.w		l_cmp2_cmp		# go do the compare emulation
864
865	global		_060LSP__cmp2_Dw_
866_060LSP__cmp2_Dw_:
867
868# PROLOGUE BEGIN ########################################################
869	link.w		%a6,&-4
870	movm.l		&0x3800,-(%sp)		# save d2-d4
871#	fmovm.l		&0x0,-(%sp)		# save no fpregs
872# PROLOGUE END ##########################################################
873
874	mov.w		%cc,CMP2_CC(%a6)
875	mov.l		0x8(%a6), %d2		# get regval
876
877	mov.w		([0xc,%a6],0x0),%d0
878	mov.w		([0xc,%a6],0x2),%d1
879
880	ext.l		%d0			# sign extend lo bnd
881	ext.l		%d1			# sign extend hi bnd
882
883# operation is a data register compare.
884# sign extend word to long so we can do simple longword compares.
885	ext.l		%d2			# sign extend data word
886	bra.w		l_cmp2_cmp		# go emulate compare
887
888	global		_060LSP__cmp2_Dl_
889_060LSP__cmp2_Dl_:
890
891# PROLOGUE BEGIN ########################################################
892	link.w		%a6,&-4
893	movm.l		&0x3800,-(%sp)		# save d2-d4
894#	fmovm.l		&0x0,-(%sp)		# save no fpregs
895# PROLOGUE END ##########################################################
896
897	mov.w		%cc,CMP2_CC(%a6)
898	mov.l		0x8(%a6), %d2		# get regval
899
900	mov.l		([0xc,%a6],0x0),%d0
901	mov.l		([0xc,%a6],0x4),%d1
902
903#
904# To set the ccodes correctly:
905#	(1) save 'Z' bit from (Rn - lo)
906#	(2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi))
907#	(3) keep 'X', 'N', and 'V' from before instruction
908#	(4) combine ccodes
909#
910l_cmp2_cmp:
911	sub.l		%d0, %d2		# (Rn - lo)
912	mov.w		%cc, %d3		# fetch resulting ccodes
913	andi.b		&0x4, %d3		# keep 'Z' bit
914	sub.l		%d0, %d1		# (hi - lo)
915	cmp.l		%d1,%d2			# ((hi - lo) - (Rn - hi))
916
917	mov.w		%cc, %d4		# fetch resulting ccodes
918	or.b		%d4, %d3		# combine w/ earlier ccodes
919	andi.b		&0x5, %d3		# keep 'Z' and 'N'
920
921	mov.w		CMP2_CC(%a6), %d4	# fetch old ccodes
922	andi.b		&0x1a, %d4		# keep 'X','N','V' bits
923	or.b		%d3, %d4		# insert new ccodes
924	mov.w		%d4,%cc			# save new ccodes
925
926# EPILOGUE BEGIN ########################################################
927#	fmovm.l		(%sp)+,&0x0		# restore no fpregs
928	movm.l		(%sp)+,&0x001c		# restore d2-d4
929	unlk		%a6
930# EPILOGUE END ##########################################################
931
932	rts
933