1 /* 2 * linux/arch/m68k/hp300/config.c 3 * 4 * Copyright (C) 1998 Philip Blundell <philb@gnu.org> 5 * 6 * This file contains the HP300-specific initialisation code. It gets 7 * called by setup.c. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/string.h> 13 #include <linux/kernel.h> 14 #include <linux/console.h> 15 16 #include <asm/bootinfo.h> 17 #include <asm/bootinfo-hp300.h> 18 #include <asm/byteorder.h> 19 #include <asm/machdep.h> 20 #include <asm/blinken.h> 21 #include <asm/io.h> /* readb() and writeb() */ 22 #include <asm/hp300hw.h> 23 #include <asm/rtc.h> 24 25 #include "time.h" 26 27 unsigned long hp300_model; 28 unsigned long hp300_uart_scode = -1; 29 unsigned char hp300_ledstate; 30 EXPORT_SYMBOL(hp300_ledstate); 31 32 static char s_hp330[] __initdata = "330"; 33 static char s_hp340[] __initdata = "340"; 34 static char s_hp345[] __initdata = "345"; 35 static char s_hp360[] __initdata = "360"; 36 static char s_hp370[] __initdata = "370"; 37 static char s_hp375[] __initdata = "375"; 38 static char s_hp380[] __initdata = "380"; 39 static char s_hp385[] __initdata = "385"; 40 static char s_hp400[] __initdata = "400"; 41 static char s_hp425t[] __initdata = "425t"; 42 static char s_hp425s[] __initdata = "425s"; 43 static char s_hp425e[] __initdata = "425e"; 44 static char s_hp433t[] __initdata = "433t"; 45 static char s_hp433s[] __initdata = "433s"; 46 static char *hp300_models[] __initdata = { 47 [HP_320] = NULL, 48 [HP_330] = s_hp330, 49 [HP_340] = s_hp340, 50 [HP_345] = s_hp345, 51 [HP_350] = NULL, 52 [HP_360] = s_hp360, 53 [HP_370] = s_hp370, 54 [HP_375] = s_hp375, 55 [HP_380] = s_hp380, 56 [HP_385] = s_hp385, 57 [HP_400] = s_hp400, 58 [HP_425T] = s_hp425t, 59 [HP_425S] = s_hp425s, 60 [HP_425E] = s_hp425e, 61 [HP_433T] = s_hp433t, 62 [HP_433S] = s_hp433s, 63 }; 64 65 static char hp300_model_name[13] = "HP9000/"; 66 67 extern void hp300_reset(void); 68 #ifdef CONFIG_SERIAL_8250_CONSOLE 69 extern int hp300_setup_serial_console(void) __init; 70 #endif 71 72 int __init hp300_parse_bootinfo(const struct bi_record *record) 73 { 74 int unknown = 0; 75 const void *data = record->data; 76 77 switch (be16_to_cpu(record->tag)) { 78 case BI_HP300_MODEL: 79 hp300_model = be32_to_cpup(data); 80 break; 81 82 case BI_HP300_UART_SCODE: 83 hp300_uart_scode = be32_to_cpup(data); 84 break; 85 86 case BI_HP300_UART_ADDR: 87 /* serial port address: ignored here */ 88 break; 89 90 default: 91 unknown = 1; 92 } 93 94 return unknown; 95 } 96 97 #ifdef CONFIG_HEARTBEAT 98 static void hp300_pulse(int x) 99 { 100 if (x) 101 blinken_leds(0x10, 0); 102 else 103 blinken_leds(0, 0x10); 104 } 105 #endif 106 107 static void hp300_get_model(char *model) 108 { 109 strcpy(model, hp300_model_name); 110 } 111 112 #define RTCBASE 0xf0420000 113 #define RTC_DATA 0x1 114 #define RTC_CMD 0x3 115 116 #define RTC_BUSY 0x02 117 #define RTC_DATA_RDY 0x01 118 119 #define rtc_busy() (in_8(RTCBASE + RTC_CMD) & RTC_BUSY) 120 #define rtc_data_available() (in_8(RTCBASE + RTC_CMD) & RTC_DATA_RDY) 121 #define rtc_status() (in_8(RTCBASE + RTC_CMD)) 122 #define rtc_command(x) out_8(RTCBASE + RTC_CMD, (x)) 123 #define rtc_read_data() (in_8(RTCBASE + RTC_DATA)) 124 #define rtc_write_data(x) out_8(RTCBASE + RTC_DATA, (x)) 125 126 #define RTC_SETREG 0xe0 127 #define RTC_WRITEREG 0xc2 128 #define RTC_READREG 0xc3 129 130 #define RTC_REG_SEC2 0 131 #define RTC_REG_SEC1 1 132 #define RTC_REG_MIN2 2 133 #define RTC_REG_MIN1 3 134 #define RTC_REG_HOUR2 4 135 #define RTC_REG_HOUR1 5 136 #define RTC_REG_WDAY 6 137 #define RTC_REG_DAY2 7 138 #define RTC_REG_DAY1 8 139 #define RTC_REG_MON2 9 140 #define RTC_REG_MON1 10 141 #define RTC_REG_YEAR2 11 142 #define RTC_REG_YEAR1 12 143 144 #define RTC_HOUR1_24HMODE 0x8 145 146 #define RTC_STAT_MASK 0xf0 147 #define RTC_STAT_RDY 0x40 148 149 static inline unsigned char hp300_rtc_read(unsigned char reg) 150 { 151 unsigned char s, ret; 152 unsigned long flags; 153 154 local_irq_save(flags); 155 156 while (rtc_busy()); 157 rtc_command(RTC_SETREG); 158 while (rtc_busy()); 159 rtc_write_data(reg); 160 while (rtc_busy()); 161 rtc_command(RTC_READREG); 162 163 do { 164 while (!rtc_data_available()); 165 s = rtc_status(); 166 ret = rtc_read_data(); 167 } while ((s & RTC_STAT_MASK) != RTC_STAT_RDY); 168 169 local_irq_restore(flags); 170 171 return ret; 172 } 173 174 static inline unsigned char hp300_rtc_write(unsigned char reg, 175 unsigned char val) 176 { 177 unsigned char s, ret; 178 unsigned long flags; 179 180 local_irq_save(flags); 181 182 while (rtc_busy()); 183 rtc_command(RTC_SETREG); 184 while (rtc_busy()); 185 rtc_write_data((val << 4) | reg); 186 while (rtc_busy()); 187 rtc_command(RTC_WRITEREG); 188 while (rtc_busy()); 189 rtc_command(RTC_READREG); 190 191 do { 192 while (!rtc_data_available()); 193 s = rtc_status(); 194 ret = rtc_read_data(); 195 } while ((s & RTC_STAT_MASK) != RTC_STAT_RDY); 196 197 local_irq_restore(flags); 198 199 return ret; 200 } 201 202 static int hp300_hwclk(int op, struct rtc_time *t) 203 { 204 if (!op) { /* read */ 205 t->tm_sec = hp300_rtc_read(RTC_REG_SEC1) * 10 + 206 hp300_rtc_read(RTC_REG_SEC2); 207 t->tm_min = hp300_rtc_read(RTC_REG_MIN1) * 10 + 208 hp300_rtc_read(RTC_REG_MIN2); 209 t->tm_hour = (hp300_rtc_read(RTC_REG_HOUR1) & 3) * 10 + 210 hp300_rtc_read(RTC_REG_HOUR2); 211 t->tm_wday = -1; 212 t->tm_mday = hp300_rtc_read(RTC_REG_DAY1) * 10 + 213 hp300_rtc_read(RTC_REG_DAY2); 214 t->tm_mon = hp300_rtc_read(RTC_REG_MON1) * 10 + 215 hp300_rtc_read(RTC_REG_MON2) - 1; 216 t->tm_year = hp300_rtc_read(RTC_REG_YEAR1) * 10 + 217 hp300_rtc_read(RTC_REG_YEAR2); 218 if (t->tm_year <= 69) 219 t->tm_year += 100; 220 } else { 221 hp300_rtc_write(RTC_REG_SEC1, t->tm_sec / 10); 222 hp300_rtc_write(RTC_REG_SEC2, t->tm_sec % 10); 223 hp300_rtc_write(RTC_REG_MIN1, t->tm_min / 10); 224 hp300_rtc_write(RTC_REG_MIN2, t->tm_min % 10); 225 hp300_rtc_write(RTC_REG_HOUR1, 226 ((t->tm_hour / 10) & 3) | RTC_HOUR1_24HMODE); 227 hp300_rtc_write(RTC_REG_HOUR2, t->tm_hour % 10); 228 hp300_rtc_write(RTC_REG_DAY1, t->tm_mday / 10); 229 hp300_rtc_write(RTC_REG_DAY2, t->tm_mday % 10); 230 hp300_rtc_write(RTC_REG_MON1, (t->tm_mon + 1) / 10); 231 hp300_rtc_write(RTC_REG_MON2, (t->tm_mon + 1) % 10); 232 if (t->tm_year >= 100) 233 t->tm_year -= 100; 234 hp300_rtc_write(RTC_REG_YEAR1, t->tm_year / 10); 235 hp300_rtc_write(RTC_REG_YEAR2, t->tm_year % 10); 236 } 237 238 return 0; 239 } 240 241 static unsigned int hp300_get_ss(void) 242 { 243 return hp300_rtc_read(RTC_REG_SEC1) * 10 + 244 hp300_rtc_read(RTC_REG_SEC2); 245 } 246 247 static void __init hp300_init_IRQ(void) 248 { 249 } 250 251 void __init config_hp300(void) 252 { 253 mach_sched_init = hp300_sched_init; 254 mach_init_IRQ = hp300_init_IRQ; 255 mach_get_model = hp300_get_model; 256 arch_gettimeoffset = hp300_gettimeoffset; 257 mach_hwclk = hp300_hwclk; 258 mach_get_ss = hp300_get_ss; 259 mach_reset = hp300_reset; 260 #ifdef CONFIG_HEARTBEAT 261 mach_heartbeat = hp300_pulse; 262 #endif 263 mach_max_dma_address = 0xffffffff; 264 265 if (hp300_model >= HP_330 && hp300_model <= HP_433S && 266 hp300_model != HP_350) { 267 pr_info("Detected HP9000 model %s\n", 268 hp300_models[hp300_model-HP_320]); 269 strcat(hp300_model_name, hp300_models[hp300_model-HP_320]); 270 } else { 271 panic("Unknown HP9000 Model"); 272 } 273 #ifdef CONFIG_SERIAL_8250_CONSOLE 274 hp300_setup_serial_console(); 275 #endif 276 } 277