xref: /openbmc/linux/arch/m68k/fpsp040/ssin.S (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1|
2|	ssin.sa 3.3 7/29/91
3|
4|	The entry point sSIN computes the sine of an input argument
5|	sCOS computes the cosine, and sSINCOS computes both. The
6|	corresponding entry points with a "d" computes the same
7|	corresponding function values for denormalized inputs.
8|
9|	Input: Double-extended number X in location pointed to
10|		by address register a0.
11|
12|	Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
13|		COS is requested. Otherwise, for SINCOS, sin(X) is returned
14|		in Fp0, and cos(X) is returned in Fp1.
15|
16|	Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
17|
18|	Accuracy and Monotonicity: The returned result is within 1 ulp in
19|		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
20|		result is subsequently rounded to double precision. The
21|		result is provably monotonic in double precision.
22|
23|	Speed: The programs sSIN and sCOS take approximately 150 cycles for
24|		input argument X such that |X| < 15Pi, which is the usual
25|		situation. The speed for sSINCOS is approximately 190 cycles.
26|
27|	Algorithm:
28|
29|	SIN and COS:
30|	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
31|
32|	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
33|
34|	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
35|		k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
36|		k by k := k + AdjN.
37|
38|	4. If k is even, go to 6.
39|
40|	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
41|		where cos(r) is approximated by an even polynomial in r,
42|		1 + r*r*(B1+s*(B2+ ... + s*B8)),	s = r*r.
43|		Exit.
44|
45|	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
46|		where sin(r) is approximated by an odd polynomial in r
47|		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.
48|		Exit.
49|
50|	7. If |X| > 1, go to 9.
51|
52|	8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
53|
54|	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
55|
56|	SINCOS:
57|	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
58|
59|	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
60|		k = N mod 4, so in particular, k = 0,1,2,or 3.
61|
62|	3. If k is even, go to 5.
63|
64|	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
65|		j1 exclusive or with the l.s.b. of k.
66|		sgn1 := (-1)**j1, sgn2 := (-1)**j2.
67|		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
68|		sin(r) and cos(r) are computed as odd and even polynomials
69|		in r, respectively. Exit
70|
71|	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
72|		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
73|		sin(r) and cos(r) are computed as odd and even polynomials
74|		in r, respectively. Exit
75|
76|	6. If |X| > 1, go to 8.
77|
78|	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
79|
80|	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
81|
82
83|		Copyright (C) Motorola, Inc. 1990
84|			All Rights Reserved
85|
86|       For details on the license for this file, please see the
87|       file, README, in this same directory.
88
89|SSIN	idnt	2,1 | Motorola 040 Floating Point Software Package
90
91	|section	8
92
93#include "fpsp.h"
94
95BOUNDS1:	.long 0x3FD78000,0x4004BC7E
96TWOBYPI:	.long 0x3FE45F30,0x6DC9C883
97
98SINA7:	.long 0xBD6AAA77,0xCCC994F5
99SINA6:	.long 0x3DE61209,0x7AAE8DA1
100
101SINA5:	.long 0xBE5AE645,0x2A118AE4
102SINA4:	.long 0x3EC71DE3,0xA5341531
103
104SINA3:	.long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
105
106SINA2:	.long 0x3FF80000,0x88888888,0x888859AF,0x00000000
107
108SINA1:	.long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
109
110COSB8:	.long 0x3D2AC4D0,0xD6011EE3
111COSB7:	.long 0xBDA9396F,0x9F45AC19
112
113COSB6:	.long 0x3E21EED9,0x0612C972
114COSB5:	.long 0xBE927E4F,0xB79D9FCF
115
116COSB4:	.long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
117
118COSB3:	.long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
119
120COSB2:	.long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
121COSB1:	.long 0xBF000000
122
123INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
124
125TWOPI1:	.long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
126TWOPI2:	.long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
127
128	|xref	PITBL
129
130	.set	INARG,FP_SCR4
131
132	.set	X,FP_SCR5
133	.set	XDCARE,X+2
134	.set	XFRAC,X+4
135
136	.set	RPRIME,FP_SCR1
137	.set	SPRIME,FP_SCR2
138
139	.set	POSNEG1,L_SCR1
140	.set	TWOTO63,L_SCR1
141
142	.set	ENDFLAG,L_SCR2
143	.set	N,L_SCR2
144
145	.set	ADJN,L_SCR3
146
147	| xref	t_frcinx
148	|xref	t_extdnrm
149	|xref	sto_cos
150
151	.global	ssind
152ssind:
153|--SIN(X) = X FOR DENORMALIZED X
154	bra		t_extdnrm
155
156	.global	scosd
157scosd:
158|--COS(X) = 1 FOR DENORMALIZED X
159
160	fmoves		#0x3F800000,%fp0
161|
162|	9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
163|
164	fmovel		#0,%fpsr
165|
166	bra		t_frcinx
167
168	.global	ssin
169ssin:
170|--SET ADJN TO 0
171	movel		#0,ADJN(%a6)
172	bras		SINBGN
173
174	.global	scos
175scos:
176|--SET ADJN TO 1
177	movel		#1,ADJN(%a6)
178
179SINBGN:
180|--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
181
182	fmovex		(%a0),%fp0	| ...LOAD INPUT
183
184	movel		(%a0),%d0
185	movew		4(%a0),%d0
186	fmovex		%fp0,X(%a6)
187	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X
188
189	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
190	bges		SOK1
191	bra		SINSM
192
193SOK1:
194	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
195	blts		SINMAIN
196	bra		REDUCEX
197
198SINMAIN:
199|--THIS IS THE USUAL CASE, |X| <= 15 PI.
200|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
201	fmovex		%fp0,%fp1
202	fmuld		TWOBYPI,%fp1	| ...X*2/PI
203
204|--HIDE THE NEXT THREE INSTRUCTIONS
205	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
206
207
208|--FP1 IS NOW READY
209	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER
210
211	movel		N(%a6),%d0
212	asll		#4,%d0
213	addal		%d0,%a1	| ...A1 IS THE ADDRESS OF N*PIBY2
214|				...WHICH IS IN TWO PIECES Y1 & Y2
215
216	fsubx		(%a1)+,%fp0	| ...X-Y1
217|--HIDE THE NEXT ONE
218	fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
219
220SINCONT:
221|--continuation from REDUCEX
222
223|--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
224	movel		N(%a6),%d0
225	addl		ADJN(%a6),%d0	| ...SEE IF D0 IS ODD OR EVEN
226	rorl		#1,%d0	| ...D0 WAS ODD IFF D0 IS NEGATIVE
227	cmpil		#0,%d0
228	blt		COSPOLY
229
230SINPOLY:
231|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
232|--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
233|--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
234|--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
235|--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
236|--WHERE T=S*S.
237|--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
238|--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
239	fmovex		%fp0,X(%a6)	| ...X IS R
240	fmulx		%fp0,%fp0	| ...FP0 IS S
241|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
242	fmoved		SINA7,%fp3
243	fmoved		SINA6,%fp2
244|--FP0 IS NOW READY
245	fmovex		%fp0,%fp1
246	fmulx		%fp1,%fp1	| ...FP1 IS T
247|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
248
249	rorl		#1,%d0
250	andil		#0x80000000,%d0
251|				...LEAST SIG. BIT OF D0 IN SIGN POSITION
252	eorl		%d0,X(%a6)	| ...X IS NOW R'= SGN*R
253
254	fmulx		%fp1,%fp3	| ...TA7
255	fmulx		%fp1,%fp2	| ...TA6
256
257	faddd		SINA5,%fp3 | ...A5+TA7
258	faddd		SINA4,%fp2 | ...A4+TA6
259
260	fmulx		%fp1,%fp3	| ...T(A5+TA7)
261	fmulx		%fp1,%fp2	| ...T(A4+TA6)
262
263	faddd		SINA3,%fp3 | ...A3+T(A5+TA7)
264	faddx		SINA2,%fp2 | ...A2+T(A4+TA6)
265
266	fmulx		%fp3,%fp1	| ...T(A3+T(A5+TA7))
267
268	fmulx		%fp0,%fp2	| ...S(A2+T(A4+TA6))
269	faddx		SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
270	fmulx		X(%a6),%fp0	| ...R'*S
271
272	faddx		%fp2,%fp1	| ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
273|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
274|--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
275
276
277	fmulx		%fp1,%fp0		| ...SIN(R')-R'
278|--FP1 RELEASED.
279
280	fmovel		%d1,%FPCR		|restore users exceptions
281	faddx		X(%a6),%fp0		|last inst - possible exception set
282	bra		t_frcinx
283
284
285COSPOLY:
286|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
287|--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY
288|--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
289|--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
290|--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
291|--WHERE T=S*S.
292|--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
293|--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
294|--AND IS THEREFORE STORED AS SINGLE PRECISION.
295
296	fmulx		%fp0,%fp0	| ...FP0 IS S
297|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
298	fmoved		COSB8,%fp2
299	fmoved		COSB7,%fp3
300|--FP0 IS NOW READY
301	fmovex		%fp0,%fp1
302	fmulx		%fp1,%fp1	| ...FP1 IS T
303|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
304	fmovex		%fp0,X(%a6)	| ...X IS S
305	rorl		#1,%d0
306	andil		#0x80000000,%d0
307|			...LEAST SIG. BIT OF D0 IN SIGN POSITION
308
309	fmulx		%fp1,%fp2	| ...TB8
310|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
311	eorl		%d0,X(%a6)	| ...X IS NOW S'= SGN*S
312	andil		#0x80000000,%d0
313
314	fmulx		%fp1,%fp3	| ...TB7
315|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
316	oril		#0x3F800000,%d0	| ...D0 IS SGN IN SINGLE
317	movel		%d0,POSNEG1(%a6)
318
319	faddd		COSB6,%fp2 | ...B6+TB8
320	faddd		COSB5,%fp3 | ...B5+TB7
321
322	fmulx		%fp1,%fp2	| ...T(B6+TB8)
323	fmulx		%fp1,%fp3	| ...T(B5+TB7)
324
325	faddd		COSB4,%fp2 | ...B4+T(B6+TB8)
326	faddx		COSB3,%fp3 | ...B3+T(B5+TB7)
327
328	fmulx		%fp1,%fp2	| ...T(B4+T(B6+TB8))
329	fmulx		%fp3,%fp1	| ...T(B3+T(B5+TB7))
330
331	faddx		COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
332	fadds		COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
333
334	fmulx		%fp2,%fp0	| ...S(B2+T(B4+T(B6+TB8)))
335|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
336|--FP2 RELEASED.
337
338
339	faddx		%fp1,%fp0
340|--FP1 RELEASED
341
342	fmulx		X(%a6),%fp0
343
344	fmovel		%d1,%FPCR		|restore users exceptions
345	fadds		POSNEG1(%a6),%fp0	|last inst - possible exception set
346	bra		t_frcinx
347
348
349SINBORS:
350|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
351|--IF |X| < 2**(-40), RETURN X OR 1.
352	cmpil		#0x3FFF8000,%d0
353	bgts		REDUCEX
354
355
356SINSM:
357	movel		ADJN(%a6),%d0
358	cmpil		#0,%d0
359	bgts		COSTINY
360
361SINTINY:
362	movew		#0x0000,XDCARE(%a6)	| ...JUST IN CASE
363	fmovel		%d1,%FPCR		|restore users exceptions
364	fmovex		X(%a6),%fp0		|last inst - possible exception set
365	bra		t_frcinx
366
367
368COSTINY:
369	fmoves		#0x3F800000,%fp0
370
371	fmovel		%d1,%FPCR		|restore users exceptions
372	fsubs		#0x00800000,%fp0	|last inst - possible exception set
373	bra		t_frcinx
374
375
376REDUCEX:
377|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
378|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
379|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
380
381	fmovemx	%fp2-%fp5,-(%a7)	| ...save FP2 through FP5
382	movel		%d2,-(%a7)
383        fmoves         #0x00000000,%fp1
384|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
385|--there is a danger of unwanted overflow in first LOOP iteration.  In this
386|--case, reduce argument by one remainder step to make subsequent reduction
387|--safe.
388	cmpil	#0x7ffeffff,%d0		|is argument dangerously large?
389	bnes	LOOP
390	movel	#0x7ffe0000,FP_SCR2(%a6)	|yes
391|					;create 2**16383*PI/2
392	movel	#0xc90fdaa2,FP_SCR2+4(%a6)
393	clrl	FP_SCR2+8(%a6)
394	ftstx	%fp0			|test sign of argument
395	movel	#0x7fdc0000,FP_SCR3(%a6)	|create low half of 2**16383*
396|					;PI/2 at FP_SCR3
397	movel	#0x85a308d3,FP_SCR3+4(%a6)
398	clrl   FP_SCR3+8(%a6)
399	fblt	red_neg
400	orw	#0x8000,FP_SCR2(%a6)	|positive arg
401	orw	#0x8000,FP_SCR3(%a6)
402red_neg:
403	faddx  FP_SCR2(%a6),%fp0		|high part of reduction is exact
404	fmovex  %fp0,%fp1		|save high result in fp1
405	faddx  FP_SCR3(%a6),%fp0		|low part of reduction
406	fsubx  %fp0,%fp1			|determine low component of result
407	faddx  FP_SCR3(%a6),%fp1		|fp0/fp1 are reduced argument.
408
409|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
410|--integer quotient will be stored in N
411|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
412
413LOOP:
414	fmovex		%fp0,INARG(%a6)	| ...+-2**K * F, 1 <= F < 2
415	movew		INARG(%a6),%d0
416        movel          %d0,%a1		| ...save a copy of D0
417	andil		#0x00007FFF,%d0
418	subil		#0x00003FFF,%d0	| ...D0 IS K
419	cmpil		#28,%d0
420	bles		LASTLOOP
421CONTLOOP:
422	subil		#27,%d0	 | ...D0 IS L := K-27
423	movel		#0,ENDFLAG(%a6)
424	bras		WORK
425LASTLOOP:
426	clrl		%d0		| ...D0 IS L := 0
427	movel		#1,ENDFLAG(%a6)
428
429WORK:
430|--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
431|--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.
432
433|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
434|--2**L * (PIby2_1), 2**L * (PIby2_2)
435
436	movel		#0x00003FFE,%d2	| ...BIASED EXPO OF 2/PI
437	subl		%d0,%d2		| ...BIASED EXPO OF 2**(-L)*(2/PI)
438
439	movel		#0xA2F9836E,FP_SCR1+4(%a6)
440	movel		#0x4E44152A,FP_SCR1+8(%a6)
441	movew		%d2,FP_SCR1(%a6)	| ...FP_SCR1 is 2**(-L)*(2/PI)
442
443	fmovex		%fp0,%fp2
444	fmulx		FP_SCR1(%a6),%fp2
445|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
446|--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
447|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
448|--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
449|--US THE DESIRED VALUE IN FLOATING POINT.
450
451|--HIDE SIX CYCLES OF INSTRUCTION
452        movel		%a1,%d2
453        swap		%d2
454	andil		#0x80000000,%d2
455	oril		#0x5F000000,%d2	| ...D2 IS SIGN(INARG)*2**63 IN SGL
456	movel		%d2,TWOTO63(%a6)
457
458	movel		%d0,%d2
459	addil		#0x00003FFF,%d2	| ...BIASED EXPO OF 2**L * (PI/2)
460
461|--FP2 IS READY
462	fadds		TWOTO63(%a6),%fp2	| ...THE FRACTIONAL PART OF FP1 IS ROUNDED
463
464|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
465        movew		%d2,FP_SCR2(%a6)
466	clrw           FP_SCR2+2(%a6)
467	movel		#0xC90FDAA2,FP_SCR2+4(%a6)
468	clrl		FP_SCR2+8(%a6)		| ...FP_SCR2 is  2**(L) * Piby2_1
469
470|--FP2 IS READY
471	fsubs		TWOTO63(%a6),%fp2		| ...FP2 is N
472
473	addil		#0x00003FDD,%d0
474        movew		%d0,FP_SCR3(%a6)
475	clrw           FP_SCR3+2(%a6)
476	movel		#0x85A308D3,FP_SCR3+4(%a6)
477	clrl		FP_SCR3+8(%a6)		| ...FP_SCR3 is 2**(L) * Piby2_2
478
479	movel		ENDFLAG(%a6),%d0
480
481|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
482|--P2 = 2**(L) * Piby2_2
483	fmovex		%fp2,%fp4
484	fmulx		FP_SCR2(%a6),%fp4		| ...W = N*P1
485	fmovex		%fp2,%fp5
486	fmulx		FP_SCR3(%a6),%fp5		| ...w = N*P2
487	fmovex		%fp4,%fp3
488|--we want P+p = W+w  but  |p| <= half ulp of P
489|--Then, we need to compute  A := R-P   and  a := r-p
490	faddx		%fp5,%fp3			| ...FP3 is P
491	fsubx		%fp3,%fp4			| ...W-P
492
493	fsubx		%fp3,%fp0			| ...FP0 is A := R - P
494        faddx		%fp5,%fp4			| ...FP4 is p = (W-P)+w
495
496	fmovex		%fp0,%fp3			| ...FP3 A
497	fsubx		%fp4,%fp1			| ...FP1 is a := r - p
498
499|--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
500|--|r| <= half ulp of R.
501	faddx		%fp1,%fp0			| ...FP0 is R := A+a
502|--No need to calculate r if this is the last loop
503	cmpil		#0,%d0
504	bgt		RESTORE
505
506|--Need to calculate r
507	fsubx		%fp0,%fp3			| ...A-R
508	faddx		%fp3,%fp1			| ...FP1 is r := (A-R)+a
509	bra		LOOP
510
511RESTORE:
512        fmovel		%fp2,N(%a6)
513	movel		(%a7)+,%d2
514	fmovemx	(%a7)+,%fp2-%fp5
515
516
517	movel		ADJN(%a6),%d0
518	cmpil		#4,%d0
519
520	blt		SINCONT
521	bras		SCCONT
522
523	.global	ssincosd
524ssincosd:
525|--SIN AND COS OF X FOR DENORMALIZED X
526
527	fmoves		#0x3F800000,%fp1
528	bsr		sto_cos		|store cosine result
529	bra		t_extdnrm
530
531	.global	ssincos
532ssincos:
533|--SET ADJN TO 4
534	movel		#4,ADJN(%a6)
535
536	fmovex		(%a0),%fp0	| ...LOAD INPUT
537
538	movel		(%a0),%d0
539	movew		4(%a0),%d0
540	fmovex		%fp0,X(%a6)
541	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X
542
543	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
544	bges		SCOK1
545	bra		SCSM
546
547SCOK1:
548	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
549	blts		SCMAIN
550	bra		REDUCEX
551
552
553SCMAIN:
554|--THIS IS THE USUAL CASE, |X| <= 15 PI.
555|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
556	fmovex		%fp0,%fp1
557	fmuld		TWOBYPI,%fp1	| ...X*2/PI
558
559|--HIDE THE NEXT THREE INSTRUCTIONS
560	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
561
562
563|--FP1 IS NOW READY
564	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER
565
566	movel		N(%a6),%d0
567	asll		#4,%d0
568	addal		%d0,%a1		| ...ADDRESS OF N*PIBY2, IN Y1, Y2
569
570	fsubx		(%a1)+,%fp0	| ...X-Y1
571        fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
572
573SCCONT:
574|--continuation point from REDUCEX
575
576|--HIDE THE NEXT TWO
577	movel		N(%a6),%d0
578	rorl		#1,%d0
579
580	cmpil		#0,%d0		| ...D0 < 0 IFF N IS ODD
581	bge		NEVEN
582
583NODD:
584|--REGISTERS SAVED SO FAR: D0, A0, FP2.
585
586	fmovex		%fp0,RPRIME(%a6)
587	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
588	fmoved		SINA7,%fp1	| ...A7
589	fmoved		COSB8,%fp2	| ...B8
590	fmulx		%fp0,%fp1	 | ...SA7
591	movel		%d2,-(%a7)
592	movel		%d0,%d2
593	fmulx		%fp0,%fp2	 | ...SB8
594	rorl		#1,%d2
595	andil		#0x80000000,%d2
596
597	faddd		SINA6,%fp1	| ...A6+SA7
598	eorl		%d0,%d2
599	andil		#0x80000000,%d2
600	faddd		COSB7,%fp2	| ...B7+SB8
601
602	fmulx		%fp0,%fp1	 | ...S(A6+SA7)
603	eorl		%d2,RPRIME(%a6)
604	movel		(%a7)+,%d2
605	fmulx		%fp0,%fp2	 | ...S(B7+SB8)
606	rorl		#1,%d0
607	andil		#0x80000000,%d0
608
609	faddd		SINA5,%fp1	| ...A5+S(A6+SA7)
610	movel		#0x3F800000,POSNEG1(%a6)
611	eorl		%d0,POSNEG1(%a6)
612	faddd		COSB6,%fp2	| ...B6+S(B7+SB8)
613
614	fmulx		%fp0,%fp1	 | ...S(A5+S(A6+SA7))
615	fmulx		%fp0,%fp2	 | ...S(B6+S(B7+SB8))
616	fmovex		%fp0,SPRIME(%a6)
617
618	faddd		SINA4,%fp1	| ...A4+S(A5+S(A6+SA7))
619	eorl		%d0,SPRIME(%a6)
620	faddd		COSB5,%fp2	| ...B5+S(B6+S(B7+SB8))
621
622	fmulx		%fp0,%fp1	 | ...S(A4+...)
623	fmulx		%fp0,%fp2	 | ...S(B5+...)
624
625	faddd		SINA3,%fp1	| ...A3+S(A4+...)
626	faddd		COSB4,%fp2	| ...B4+S(B5+...)
627
628	fmulx		%fp0,%fp1	 | ...S(A3+...)
629	fmulx		%fp0,%fp2	 | ...S(B4+...)
630
631	faddx		SINA2,%fp1	| ...A2+S(A3+...)
632	faddx		COSB3,%fp2	| ...B3+S(B4+...)
633
634	fmulx		%fp0,%fp1	 | ...S(A2+...)
635	fmulx		%fp0,%fp2	 | ...S(B3+...)
636
637	faddx		SINA1,%fp1	| ...A1+S(A2+...)
638	faddx		COSB2,%fp2	| ...B2+S(B3+...)
639
640	fmulx		%fp0,%fp1	 | ...S(A1+...)
641	fmulx		%fp2,%fp0	 | ...S(B2+...)
642
643
644
645	fmulx		RPRIME(%a6),%fp1	| ...R'S(A1+...)
646	fadds		COSB1,%fp0	| ...B1+S(B2...)
647	fmulx		SPRIME(%a6),%fp0	| ...S'(B1+S(B2+...))
648
649	movel		%d1,-(%sp)	|restore users mode & precision
650	andil		#0xff,%d1		|mask off all exceptions
651	fmovel		%d1,%FPCR
652	faddx		RPRIME(%a6),%fp1	| ...COS(X)
653	bsr		sto_cos		|store cosine result
654	fmovel		(%sp)+,%FPCR	|restore users exceptions
655	fadds		POSNEG1(%a6),%fp0	| ...SIN(X)
656
657	bra		t_frcinx
658
659
660NEVEN:
661|--REGISTERS SAVED SO FAR: FP2.
662
663	fmovex		%fp0,RPRIME(%a6)
664	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
665	fmoved		COSB8,%fp1			| ...B8
666	fmoved		SINA7,%fp2			| ...A7
667	fmulx		%fp0,%fp1	 | ...SB8
668	fmovex		%fp0,SPRIME(%a6)
669	fmulx		%fp0,%fp2	 | ...SA7
670	rorl		#1,%d0
671	andil		#0x80000000,%d0
672	faddd		COSB7,%fp1	| ...B7+SB8
673	faddd		SINA6,%fp2	| ...A6+SA7
674	eorl		%d0,RPRIME(%a6)
675	eorl		%d0,SPRIME(%a6)
676	fmulx		%fp0,%fp1	 | ...S(B7+SB8)
677	oril		#0x3F800000,%d0
678	movel		%d0,POSNEG1(%a6)
679	fmulx		%fp0,%fp2	 | ...S(A6+SA7)
680
681	faddd		COSB6,%fp1	| ...B6+S(B7+SB8)
682	faddd		SINA5,%fp2	| ...A5+S(A6+SA7)
683
684	fmulx		%fp0,%fp1	 | ...S(B6+S(B7+SB8))
685	fmulx		%fp0,%fp2	 | ...S(A5+S(A6+SA7))
686
687	faddd		COSB5,%fp1	| ...B5+S(B6+S(B7+SB8))
688	faddd		SINA4,%fp2	| ...A4+S(A5+S(A6+SA7))
689
690	fmulx		%fp0,%fp1	 | ...S(B5+...)
691	fmulx		%fp0,%fp2	 | ...S(A4+...)
692
693	faddd		COSB4,%fp1	| ...B4+S(B5+...)
694	faddd		SINA3,%fp2	| ...A3+S(A4+...)
695
696	fmulx		%fp0,%fp1	 | ...S(B4+...)
697	fmulx		%fp0,%fp2	 | ...S(A3+...)
698
699	faddx		COSB3,%fp1	| ...B3+S(B4+...)
700	faddx		SINA2,%fp2	| ...A2+S(A3+...)
701
702	fmulx		%fp0,%fp1	 | ...S(B3+...)
703	fmulx		%fp0,%fp2	 | ...S(A2+...)
704
705	faddx		COSB2,%fp1	| ...B2+S(B3+...)
706	faddx		SINA1,%fp2	| ...A1+S(A2+...)
707
708	fmulx		%fp0,%fp1	 | ...S(B2+...)
709	fmulx		%fp2,%fp0	 | ...s(a1+...)
710
711
712
713	fadds		COSB1,%fp1	| ...B1+S(B2...)
714	fmulx		RPRIME(%a6),%fp0	| ...R'S(A1+...)
715	fmulx		SPRIME(%a6),%fp1	| ...S'(B1+S(B2+...))
716
717	movel		%d1,-(%sp)	|save users mode & precision
718	andil		#0xff,%d1		|mask off all exceptions
719	fmovel		%d1,%FPCR
720	fadds		POSNEG1(%a6),%fp1	| ...COS(X)
721	bsr		sto_cos		|store cosine result
722	fmovel		(%sp)+,%FPCR	|restore users exceptions
723	faddx		RPRIME(%a6),%fp0	| ...SIN(X)
724
725	bra		t_frcinx
726
727SCBORS:
728	cmpil		#0x3FFF8000,%d0
729	bgt		REDUCEX
730
731
732SCSM:
733	movew		#0x0000,XDCARE(%a6)
734	fmoves		#0x3F800000,%fp1
735
736	movel		%d1,-(%sp)	|save users mode & precision
737	andil		#0xff,%d1		|mask off all exceptions
738	fmovel		%d1,%FPCR
739	fsubs		#0x00800000,%fp1
740	bsr		sto_cos		|store cosine result
741	fmovel		(%sp)+,%FPCR	|restore users exceptions
742	fmovex		X(%a6),%fp0
743	bra		t_frcinx
744
745	|end
746