xref: /openbmc/linux/arch/loongarch/kernel/smp.c (revision ce6cc6f7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/cpu.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/smp.h>
17 #include <linux/threads.h>
18 #include <linux/export.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/time.h>
21 #include <linux/tracepoint.h>
22 #include <linux/sched/hotplug.h>
23 #include <linux/sched/task_stack.h>
24 
25 #include <asm/cpu.h>
26 #include <asm/idle.h>
27 #include <asm/loongson.h>
28 #include <asm/mmu_context.h>
29 #include <asm/numa.h>
30 #include <asm/processor.h>
31 #include <asm/setup.h>
32 #include <asm/time.h>
33 
34 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
35 EXPORT_SYMBOL(__cpu_number_map);
36 
37 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
38 EXPORT_SYMBOL(__cpu_logical_map);
39 
40 /* Number of threads (siblings) per CPU core */
41 int smp_num_siblings = 1;
42 EXPORT_SYMBOL(smp_num_siblings);
43 
44 /* Representing the threads (siblings) of each logical CPU */
45 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
46 EXPORT_SYMBOL(cpu_sibling_map);
47 
48 /* Representing the core map of multi-core chips of each logical CPU */
49 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
50 EXPORT_SYMBOL(cpu_core_map);
51 
52 static DECLARE_COMPLETION(cpu_starting);
53 static DECLARE_COMPLETION(cpu_running);
54 
55 /*
56  * A logcal cpu mask containing only one VPE per core to
57  * reduce the number of IPIs on large MT systems.
58  */
59 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_foreign_map);
61 
62 /* representing cpus for which sibling maps can be computed */
63 static cpumask_t cpu_sibling_setup_map;
64 
65 /* representing cpus for which core maps can be computed */
66 static cpumask_t cpu_core_setup_map;
67 
68 struct secondary_data cpuboot_data;
69 static DEFINE_PER_CPU(int, cpu_state);
70 
71 enum ipi_msg_type {
72 	IPI_RESCHEDULE,
73 	IPI_CALL_FUNCTION,
74 };
75 
76 static const char *ipi_types[NR_IPI] __tracepoint_string = {
77 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
78 	[IPI_CALL_FUNCTION] = "Function call interrupts",
79 };
80 
81 void show_ipi_list(struct seq_file *p, int prec)
82 {
83 	unsigned int cpu, i;
84 
85 	for (i = 0; i < NR_IPI; i++) {
86 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
87 		for_each_online_cpu(cpu)
88 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
89 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
90 	}
91 }
92 
93 /* Send mailbox buffer via Mail_Send */
94 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
95 {
96 	uint64_t val;
97 
98 	/* Send high 32 bits */
99 	val = IOCSR_MBUF_SEND_BLOCKING;
100 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
101 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
102 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
103 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
104 
105 	/* Send low 32 bits */
106 	val = IOCSR_MBUF_SEND_BLOCKING;
107 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
108 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
109 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
110 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
111 };
112 
113 static u32 ipi_read_clear(int cpu)
114 {
115 	u32 action;
116 
117 	/* Load the ipi register to figure out what we're supposed to do */
118 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
119 	/* Clear the ipi register to clear the interrupt */
120 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
121 	smp_mb();
122 
123 	return action;
124 }
125 
126 static void ipi_write_action(int cpu, u32 action)
127 {
128 	unsigned int irq = 0;
129 
130 	while ((irq = ffs(action))) {
131 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
132 
133 		val |= (irq - 1);
134 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
135 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
136 		action &= ~BIT(irq - 1);
137 	}
138 }
139 
140 void loongson_send_ipi_single(int cpu, unsigned int action)
141 {
142 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
143 }
144 
145 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
146 {
147 	unsigned int i;
148 
149 	for_each_cpu(i, mask)
150 		ipi_write_action(cpu_logical_map(i), (u32)action);
151 }
152 
153 /*
154  * This function sends a 'reschedule' IPI to another CPU.
155  * it goes straight through and wastes no time serializing
156  * anything. Worst case is that we lose a reschedule ...
157  */
158 void smp_send_reschedule(int cpu)
159 {
160 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
161 }
162 EXPORT_SYMBOL_GPL(smp_send_reschedule);
163 
164 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
165 {
166 	unsigned int action;
167 	unsigned int cpu = smp_processor_id();
168 
169 	action = ipi_read_clear(cpu_logical_map(cpu));
170 
171 	if (action & SMP_RESCHEDULE) {
172 		scheduler_ipi();
173 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
174 	}
175 
176 	if (action & SMP_CALL_FUNCTION) {
177 		generic_smp_call_function_interrupt();
178 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
179 	}
180 
181 	return IRQ_HANDLED;
182 }
183 
184 static void __init fdt_smp_setup(void)
185 {
186 #ifdef CONFIG_OF
187 	unsigned int cpu, cpuid;
188 	struct device_node *node = NULL;
189 
190 	for_each_of_cpu_node(node) {
191 		if (!of_device_is_available(node))
192 			continue;
193 
194 		cpuid = of_get_cpu_hwid(node, 0);
195 		if (cpuid >= nr_cpu_ids)
196 			continue;
197 
198 		if (cpuid == loongson_sysconf.boot_cpu_id) {
199 			cpu = 0;
200 			numa_add_cpu(cpu);
201 		} else {
202 			cpu = cpumask_next_zero(-1, cpu_present_mask);
203 		}
204 
205 		num_processors++;
206 		set_cpu_possible(cpu, true);
207 		set_cpu_present(cpu, true);
208 		__cpu_number_map[cpuid] = cpu;
209 		__cpu_logical_map[cpu] = cpuid;
210 	}
211 
212 	loongson_sysconf.nr_cpus = num_processors;
213 #endif
214 }
215 
216 void __init loongson_smp_setup(void)
217 {
218 	fdt_smp_setup();
219 
220 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
221 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
222 
223 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
224 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
225 }
226 
227 void __init loongson_prepare_cpus(unsigned int max_cpus)
228 {
229 	int i = 0;
230 
231 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
232 		set_cpu_present(i, true);
233 		csr_mail_send(0, __cpu_logical_map[i], 0);
234 	}
235 
236 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
237 }
238 
239 /*
240  * Setup the PC, SP, and TP of a secondary processor and start it running!
241  */
242 void loongson_boot_secondary(int cpu, struct task_struct *idle)
243 {
244 	unsigned long entry;
245 
246 	pr_info("Booting CPU#%d...\n", cpu);
247 
248 	entry = __pa_symbol((unsigned long)&smpboot_entry);
249 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
250 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
251 
252 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
253 
254 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
255 }
256 
257 /*
258  * SMP init and finish on secondary CPUs
259  */
260 void loongson_init_secondary(void)
261 {
262 	unsigned int cpu = smp_processor_id();
263 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
264 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
265 
266 	change_csr_ecfg(ECFG0_IM, imask);
267 
268 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
269 
270 #ifdef CONFIG_NUMA
271 	numa_add_cpu(cpu);
272 #endif
273 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
274 	cpu_data[cpu].core =
275 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
276 	cpu_data[cpu].package =
277 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
278 }
279 
280 void loongson_smp_finish(void)
281 {
282 	local_irq_enable();
283 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
284 	pr_info("CPU#%d finished\n", smp_processor_id());
285 }
286 
287 #ifdef CONFIG_HOTPLUG_CPU
288 
289 int loongson_cpu_disable(void)
290 {
291 	unsigned long flags;
292 	unsigned int cpu = smp_processor_id();
293 
294 	if (io_master(cpu))
295 		return -EBUSY;
296 
297 #ifdef CONFIG_NUMA
298 	numa_remove_cpu(cpu);
299 #endif
300 	set_cpu_online(cpu, false);
301 	calculate_cpu_foreign_map();
302 	local_irq_save(flags);
303 	irq_migrate_all_off_this_cpu();
304 	clear_csr_ecfg(ECFG0_IM);
305 	local_irq_restore(flags);
306 	local_flush_tlb_all();
307 
308 	return 0;
309 }
310 
311 void loongson_cpu_die(unsigned int cpu)
312 {
313 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
314 		cpu_relax();
315 
316 	mb();
317 }
318 
319 void play_dead(void)
320 {
321 	register uint64_t addr;
322 	register void (*init_fn)(void);
323 
324 	idle_task_exit();
325 	local_irq_enable();
326 	set_csr_ecfg(ECFGF_IPI);
327 	__this_cpu_write(cpu_state, CPU_DEAD);
328 
329 	__smp_mb();
330 	do {
331 		__asm__ __volatile__("idle 0\n\t");
332 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
333 	} while (addr == 0);
334 
335 	init_fn = (void *)TO_CACHE(addr);
336 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
337 
338 	init_fn();
339 	unreachable();
340 }
341 
342 #endif
343 
344 /*
345  * Power management
346  */
347 #ifdef CONFIG_PM
348 
349 static int loongson_ipi_suspend(void)
350 {
351 	return 0;
352 }
353 
354 static void loongson_ipi_resume(void)
355 {
356 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
357 }
358 
359 static struct syscore_ops loongson_ipi_syscore_ops = {
360 	.resume         = loongson_ipi_resume,
361 	.suspend        = loongson_ipi_suspend,
362 };
363 
364 /*
365  * Enable boot cpu ipi before enabling nonboot cpus
366  * during syscore_resume.
367  */
368 static int __init ipi_pm_init(void)
369 {
370 	register_syscore_ops(&loongson_ipi_syscore_ops);
371 	return 0;
372 }
373 
374 core_initcall(ipi_pm_init);
375 #endif
376 
377 static inline void set_cpu_sibling_map(int cpu)
378 {
379 	int i;
380 
381 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
382 
383 	if (smp_num_siblings <= 1)
384 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
385 	else {
386 		for_each_cpu(i, &cpu_sibling_setup_map) {
387 			if (cpus_are_siblings(cpu, i)) {
388 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
389 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
390 			}
391 		}
392 	}
393 }
394 
395 static inline void set_cpu_core_map(int cpu)
396 {
397 	int i;
398 
399 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
400 
401 	for_each_cpu(i, &cpu_core_setup_map) {
402 		if (cpu_data[cpu].package == cpu_data[i].package) {
403 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
404 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
405 		}
406 	}
407 }
408 
409 /*
410  * Calculate a new cpu_foreign_map mask whenever a
411  * new cpu appears or disappears.
412  */
413 void calculate_cpu_foreign_map(void)
414 {
415 	int i, k, core_present;
416 	cpumask_t temp_foreign_map;
417 
418 	/* Re-calculate the mask */
419 	cpumask_clear(&temp_foreign_map);
420 	for_each_online_cpu(i) {
421 		core_present = 0;
422 		for_each_cpu(k, &temp_foreign_map)
423 			if (cpus_are_siblings(i, k))
424 				core_present = 1;
425 		if (!core_present)
426 			cpumask_set_cpu(i, &temp_foreign_map);
427 	}
428 
429 	for_each_online_cpu(i)
430 		cpumask_andnot(&cpu_foreign_map[i],
431 			       &temp_foreign_map, &cpu_sibling_map[i]);
432 }
433 
434 /* Preload SMP state for boot cpu */
435 void smp_prepare_boot_cpu(void)
436 {
437 	unsigned int cpu, node, rr_node;
438 
439 	set_cpu_possible(0, true);
440 	set_cpu_online(0, true);
441 	set_my_cpu_offset(per_cpu_offset(0));
442 
443 	rr_node = first_node(node_online_map);
444 	for_each_possible_cpu(cpu) {
445 		node = early_cpu_to_node(cpu);
446 
447 		/*
448 		 * The mapping between present cpus and nodes has been
449 		 * built during MADT and SRAT parsing.
450 		 *
451 		 * If possible cpus = present cpus here, early_cpu_to_node
452 		 * will return valid node.
453 		 *
454 		 * If possible cpus > present cpus here (e.g. some possible
455 		 * cpus will be added by cpu-hotplug later), for possible but
456 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
457 		 * and we just map them to online nodes in round-robin way.
458 		 * Once hotplugged, new correct mapping will be built for them.
459 		 */
460 		if (node != NUMA_NO_NODE)
461 			set_cpu_numa_node(cpu, node);
462 		else {
463 			set_cpu_numa_node(cpu, rr_node);
464 			rr_node = next_node_in(rr_node, node_online_map);
465 		}
466 	}
467 }
468 
469 /* called from main before smp_init() */
470 void __init smp_prepare_cpus(unsigned int max_cpus)
471 {
472 	init_new_context(current, &init_mm);
473 	current_thread_info()->cpu = 0;
474 	loongson_prepare_cpus(max_cpus);
475 	set_cpu_sibling_map(0);
476 	set_cpu_core_map(0);
477 	calculate_cpu_foreign_map();
478 #ifndef CONFIG_HOTPLUG_CPU
479 	init_cpu_present(cpu_possible_mask);
480 #endif
481 }
482 
483 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
484 {
485 	loongson_boot_secondary(cpu, tidle);
486 
487 	/* Wait for CPU to start and be ready to sync counters */
488 	if (!wait_for_completion_timeout(&cpu_starting,
489 					 msecs_to_jiffies(5000))) {
490 		pr_crit("CPU%u: failed to start\n", cpu);
491 		return -EIO;
492 	}
493 
494 	/* Wait for CPU to finish startup & mark itself online before return */
495 	wait_for_completion(&cpu_running);
496 
497 	return 0;
498 }
499 
500 /*
501  * First C code run on the secondary CPUs after being started up by
502  * the master.
503  */
504 asmlinkage void start_secondary(void)
505 {
506 	unsigned int cpu;
507 
508 	sync_counter();
509 	cpu = smp_processor_id();
510 	set_my_cpu_offset(per_cpu_offset(cpu));
511 
512 	cpu_probe();
513 	constant_clockevent_init();
514 	loongson_init_secondary();
515 
516 	set_cpu_sibling_map(cpu);
517 	set_cpu_core_map(cpu);
518 
519 	notify_cpu_starting(cpu);
520 
521 	/* Notify boot CPU that we're starting */
522 	complete(&cpu_starting);
523 
524 	/* The CPU is running, now mark it online */
525 	set_cpu_online(cpu, true);
526 
527 	calculate_cpu_foreign_map();
528 
529 	/*
530 	 * Notify boot CPU that we're up & online and it can safely return
531 	 * from __cpu_up()
532 	 */
533 	complete(&cpu_running);
534 
535 	/*
536 	 * irq will be enabled in loongson_smp_finish(), enabling it too
537 	 * early is dangerous.
538 	 */
539 	WARN_ON_ONCE(!irqs_disabled());
540 	loongson_smp_finish();
541 
542 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
543 }
544 
545 void __init smp_cpus_done(unsigned int max_cpus)
546 {
547 }
548 
549 static void stop_this_cpu(void *dummy)
550 {
551 	set_cpu_online(smp_processor_id(), false);
552 	calculate_cpu_foreign_map();
553 	local_irq_disable();
554 	while (true);
555 }
556 
557 void smp_send_stop(void)
558 {
559 	smp_call_function(stop_this_cpu, NULL, 0);
560 }
561 
562 int setup_profiling_timer(unsigned int multiplier)
563 {
564 	return 0;
565 }
566 
567 static void flush_tlb_all_ipi(void *info)
568 {
569 	local_flush_tlb_all();
570 }
571 
572 void flush_tlb_all(void)
573 {
574 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
575 }
576 
577 static void flush_tlb_mm_ipi(void *mm)
578 {
579 	local_flush_tlb_mm((struct mm_struct *)mm);
580 }
581 
582 void flush_tlb_mm(struct mm_struct *mm)
583 {
584 	if (atomic_read(&mm->mm_users) == 0)
585 		return;		/* happens as a result of exit_mmap() */
586 
587 	preempt_disable();
588 
589 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
590 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
591 	} else {
592 		unsigned int cpu;
593 
594 		for_each_online_cpu(cpu) {
595 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
596 				cpu_context(cpu, mm) = 0;
597 		}
598 		local_flush_tlb_mm(mm);
599 	}
600 
601 	preempt_enable();
602 }
603 
604 struct flush_tlb_data {
605 	struct vm_area_struct *vma;
606 	unsigned long addr1;
607 	unsigned long addr2;
608 };
609 
610 static void flush_tlb_range_ipi(void *info)
611 {
612 	struct flush_tlb_data *fd = info;
613 
614 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
615 }
616 
617 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
618 {
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	preempt_disable();
622 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
623 		struct flush_tlb_data fd = {
624 			.vma = vma,
625 			.addr1 = start,
626 			.addr2 = end,
627 		};
628 
629 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
630 	} else {
631 		unsigned int cpu;
632 
633 		for_each_online_cpu(cpu) {
634 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
635 				cpu_context(cpu, mm) = 0;
636 		}
637 		local_flush_tlb_range(vma, start, end);
638 	}
639 	preempt_enable();
640 }
641 
642 static void flush_tlb_kernel_range_ipi(void *info)
643 {
644 	struct flush_tlb_data *fd = info;
645 
646 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
647 }
648 
649 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
650 {
651 	struct flush_tlb_data fd = {
652 		.addr1 = start,
653 		.addr2 = end,
654 	};
655 
656 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
657 }
658 
659 static void flush_tlb_page_ipi(void *info)
660 {
661 	struct flush_tlb_data *fd = info;
662 
663 	local_flush_tlb_page(fd->vma, fd->addr1);
664 }
665 
666 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
667 {
668 	preempt_disable();
669 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
670 		struct flush_tlb_data fd = {
671 			.vma = vma,
672 			.addr1 = page,
673 		};
674 
675 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
676 	} else {
677 		unsigned int cpu;
678 
679 		for_each_online_cpu(cpu) {
680 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
681 				cpu_context(cpu, vma->vm_mm) = 0;
682 		}
683 		local_flush_tlb_page(vma, page);
684 	}
685 	preempt_enable();
686 }
687 EXPORT_SYMBOL(flush_tlb_page);
688 
689 static void flush_tlb_one_ipi(void *info)
690 {
691 	unsigned long vaddr = (unsigned long) info;
692 
693 	local_flush_tlb_one(vaddr);
694 }
695 
696 void flush_tlb_one(unsigned long vaddr)
697 {
698 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
699 }
700 EXPORT_SYMBOL(flush_tlb_one);
701