1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/cpu.h> 12 #include <linux/cpumask.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/smp.h> 17 #include <linux/threads.h> 18 #include <linux/export.h> 19 #include <linux/time.h> 20 #include <linux/tracepoint.h> 21 #include <linux/sched/hotplug.h> 22 #include <linux/sched/task_stack.h> 23 24 #include <asm/cpu.h> 25 #include <asm/idle.h> 26 #include <asm/loongson.h> 27 #include <asm/mmu_context.h> 28 #include <asm/numa.h> 29 #include <asm/processor.h> 30 #include <asm/setup.h> 31 #include <asm/time.h> 32 33 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 34 EXPORT_SYMBOL(__cpu_number_map); 35 36 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 37 EXPORT_SYMBOL(__cpu_logical_map); 38 39 /* Number of threads (siblings) per CPU core */ 40 int smp_num_siblings = 1; 41 EXPORT_SYMBOL(smp_num_siblings); 42 43 /* Representing the threads (siblings) of each logical CPU */ 44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 45 EXPORT_SYMBOL(cpu_sibling_map); 46 47 /* Representing the core map of multi-core chips of each logical CPU */ 48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 49 EXPORT_SYMBOL(cpu_core_map); 50 51 static DECLARE_COMPLETION(cpu_starting); 52 static DECLARE_COMPLETION(cpu_running); 53 54 /* 55 * A logcal cpu mask containing only one VPE per core to 56 * reduce the number of IPIs on large MT systems. 57 */ 58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 59 EXPORT_SYMBOL(cpu_foreign_map); 60 61 /* representing cpus for which sibling maps can be computed */ 62 static cpumask_t cpu_sibling_setup_map; 63 64 /* representing cpus for which core maps can be computed */ 65 static cpumask_t cpu_core_setup_map; 66 67 struct secondary_data cpuboot_data; 68 static DEFINE_PER_CPU(int, cpu_state); 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNCTION, 73 }; 74 75 static const char *ipi_types[NR_IPI] __tracepoint_string = { 76 [IPI_RESCHEDULE] = "Rescheduling interrupts", 77 [IPI_CALL_FUNCTION] = "Function call interrupts", 78 }; 79 80 void show_ipi_list(struct seq_file *p, int prec) 81 { 82 unsigned int cpu, i; 83 84 for (i = 0; i < NR_IPI; i++) { 85 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 86 for_each_online_cpu(cpu) 87 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 88 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 89 } 90 } 91 92 /* Send mailbox buffer via Mail_Send */ 93 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 94 { 95 uint64_t val; 96 97 /* Send high 32 bits */ 98 val = IOCSR_MBUF_SEND_BLOCKING; 99 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 100 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 101 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 102 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 103 104 /* Send low 32 bits */ 105 val = IOCSR_MBUF_SEND_BLOCKING; 106 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 107 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 108 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 109 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 110 }; 111 112 static u32 ipi_read_clear(int cpu) 113 { 114 u32 action; 115 116 /* Load the ipi register to figure out what we're supposed to do */ 117 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 118 /* Clear the ipi register to clear the interrupt */ 119 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 120 smp_mb(); 121 122 return action; 123 } 124 125 static void ipi_write_action(int cpu, u32 action) 126 { 127 unsigned int irq = 0; 128 129 while ((irq = ffs(action))) { 130 uint32_t val = IOCSR_IPI_SEND_BLOCKING; 131 132 val |= (irq - 1); 133 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 134 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 135 action &= ~BIT(irq - 1); 136 } 137 } 138 139 void loongson3_send_ipi_single(int cpu, unsigned int action) 140 { 141 ipi_write_action(cpu_logical_map(cpu), (u32)action); 142 } 143 144 void loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action) 145 { 146 unsigned int i; 147 148 for_each_cpu(i, mask) 149 ipi_write_action(cpu_logical_map(i), (u32)action); 150 } 151 152 irqreturn_t loongson3_ipi_interrupt(int irq, void *dev) 153 { 154 unsigned int action; 155 unsigned int cpu = smp_processor_id(); 156 157 action = ipi_read_clear(cpu_logical_map(cpu)); 158 159 if (action & SMP_RESCHEDULE) { 160 scheduler_ipi(); 161 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 162 } 163 164 if (action & SMP_CALL_FUNCTION) { 165 generic_smp_call_function_interrupt(); 166 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 167 } 168 169 return IRQ_HANDLED; 170 } 171 172 void __init loongson3_smp_setup(void) 173 { 174 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 175 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 176 177 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 178 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 179 } 180 181 void __init loongson3_prepare_cpus(unsigned int max_cpus) 182 { 183 int i = 0; 184 185 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 186 set_cpu_present(i, true); 187 csr_mail_send(0, __cpu_logical_map[i], 0); 188 } 189 190 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 191 } 192 193 /* 194 * Setup the PC, SP, and TP of a secondary processor and start it running! 195 */ 196 void loongson3_boot_secondary(int cpu, struct task_struct *idle) 197 { 198 unsigned long entry; 199 200 pr_info("Booting CPU#%d...\n", cpu); 201 202 entry = __pa_symbol((unsigned long)&smpboot_entry); 203 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 204 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 205 206 csr_mail_send(entry, cpu_logical_map(cpu), 0); 207 208 loongson3_send_ipi_single(cpu, SMP_BOOT_CPU); 209 } 210 211 /* 212 * SMP init and finish on secondary CPUs 213 */ 214 void loongson3_init_secondary(void) 215 { 216 unsigned int cpu = smp_processor_id(); 217 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 218 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER; 219 220 change_csr_ecfg(ECFG0_IM, imask); 221 222 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 223 224 #ifdef CONFIG_NUMA 225 numa_add_cpu(cpu); 226 #endif 227 per_cpu(cpu_state, cpu) = CPU_ONLINE; 228 cpu_data[cpu].core = 229 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 230 cpu_data[cpu].package = 231 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 232 } 233 234 void loongson3_smp_finish(void) 235 { 236 local_irq_enable(); 237 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 238 pr_info("CPU#%d finished\n", smp_processor_id()); 239 } 240 241 #ifdef CONFIG_HOTPLUG_CPU 242 243 static bool io_master(int cpu) 244 { 245 if (cpu == 0) 246 return true; 247 248 return false; 249 } 250 251 int loongson3_cpu_disable(void) 252 { 253 unsigned long flags; 254 unsigned int cpu = smp_processor_id(); 255 256 if (io_master(cpu)) 257 return -EBUSY; 258 259 #ifdef CONFIG_NUMA 260 numa_remove_cpu(cpu); 261 #endif 262 set_cpu_online(cpu, false); 263 calculate_cpu_foreign_map(); 264 local_irq_save(flags); 265 irq_migrate_all_off_this_cpu(); 266 clear_csr_ecfg(ECFG0_IM); 267 local_irq_restore(flags); 268 local_flush_tlb_all(); 269 270 return 0; 271 } 272 273 void loongson3_cpu_die(unsigned int cpu) 274 { 275 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 276 cpu_relax(); 277 278 mb(); 279 } 280 281 void play_dead(void) 282 { 283 register uint64_t addr; 284 register void (*init_fn)(void); 285 286 idle_task_exit(); 287 local_irq_enable(); 288 set_csr_ecfg(ECFGF_IPI); 289 __this_cpu_write(cpu_state, CPU_DEAD); 290 291 __smp_mb(); 292 do { 293 __asm__ __volatile__("idle 0\n\t"); 294 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 295 } while (addr == 0); 296 297 init_fn = (void *)TO_CACHE(addr); 298 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 299 300 init_fn(); 301 unreachable(); 302 } 303 304 #endif 305 306 /* 307 * Power management 308 */ 309 #ifdef CONFIG_PM 310 311 static int loongson3_ipi_suspend(void) 312 { 313 return 0; 314 } 315 316 static void loongson3_ipi_resume(void) 317 { 318 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 319 } 320 321 static struct syscore_ops loongson3_ipi_syscore_ops = { 322 .resume = loongson3_ipi_resume, 323 .suspend = loongson3_ipi_suspend, 324 }; 325 326 /* 327 * Enable boot cpu ipi before enabling nonboot cpus 328 * during syscore_resume. 329 */ 330 static int __init ipi_pm_init(void) 331 { 332 register_syscore_ops(&loongson3_ipi_syscore_ops); 333 return 0; 334 } 335 336 core_initcall(ipi_pm_init); 337 #endif 338 339 static inline void set_cpu_sibling_map(int cpu) 340 { 341 int i; 342 343 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 344 345 if (smp_num_siblings <= 1) 346 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 347 else { 348 for_each_cpu(i, &cpu_sibling_setup_map) { 349 if (cpus_are_siblings(cpu, i)) { 350 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 351 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 352 } 353 } 354 } 355 } 356 357 static inline void set_cpu_core_map(int cpu) 358 { 359 int i; 360 361 cpumask_set_cpu(cpu, &cpu_core_setup_map); 362 363 for_each_cpu(i, &cpu_core_setup_map) { 364 if (cpu_data[cpu].package == cpu_data[i].package) { 365 cpumask_set_cpu(i, &cpu_core_map[cpu]); 366 cpumask_set_cpu(cpu, &cpu_core_map[i]); 367 } 368 } 369 } 370 371 /* 372 * Calculate a new cpu_foreign_map mask whenever a 373 * new cpu appears or disappears. 374 */ 375 void calculate_cpu_foreign_map(void) 376 { 377 int i, k, core_present; 378 cpumask_t temp_foreign_map; 379 380 /* Re-calculate the mask */ 381 cpumask_clear(&temp_foreign_map); 382 for_each_online_cpu(i) { 383 core_present = 0; 384 for_each_cpu(k, &temp_foreign_map) 385 if (cpus_are_siblings(i, k)) 386 core_present = 1; 387 if (!core_present) 388 cpumask_set_cpu(i, &temp_foreign_map); 389 } 390 391 for_each_online_cpu(i) 392 cpumask_andnot(&cpu_foreign_map[i], 393 &temp_foreign_map, &cpu_sibling_map[i]); 394 } 395 396 /* Preload SMP state for boot cpu */ 397 void smp_prepare_boot_cpu(void) 398 { 399 unsigned int cpu, node, rr_node; 400 401 set_cpu_possible(0, true); 402 set_cpu_online(0, true); 403 set_my_cpu_offset(per_cpu_offset(0)); 404 405 rr_node = first_node(node_online_map); 406 for_each_possible_cpu(cpu) { 407 node = early_cpu_to_node(cpu); 408 409 /* 410 * The mapping between present cpus and nodes has been 411 * built during MADT and SRAT parsing. 412 * 413 * If possible cpus = present cpus here, early_cpu_to_node 414 * will return valid node. 415 * 416 * If possible cpus > present cpus here (e.g. some possible 417 * cpus will be added by cpu-hotplug later), for possible but 418 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 419 * and we just map them to online nodes in round-robin way. 420 * Once hotplugged, new correct mapping will be built for them. 421 */ 422 if (node != NUMA_NO_NODE) 423 set_cpu_numa_node(cpu, node); 424 else { 425 set_cpu_numa_node(cpu, rr_node); 426 rr_node = next_node_in(rr_node, node_online_map); 427 } 428 } 429 } 430 431 /* called from main before smp_init() */ 432 void __init smp_prepare_cpus(unsigned int max_cpus) 433 { 434 init_new_context(current, &init_mm); 435 current_thread_info()->cpu = 0; 436 loongson3_prepare_cpus(max_cpus); 437 set_cpu_sibling_map(0); 438 set_cpu_core_map(0); 439 calculate_cpu_foreign_map(); 440 #ifndef CONFIG_HOTPLUG_CPU 441 init_cpu_present(cpu_possible_mask); 442 #endif 443 } 444 445 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 446 { 447 loongson3_boot_secondary(cpu, tidle); 448 449 /* Wait for CPU to start and be ready to sync counters */ 450 if (!wait_for_completion_timeout(&cpu_starting, 451 msecs_to_jiffies(5000))) { 452 pr_crit("CPU%u: failed to start\n", cpu); 453 return -EIO; 454 } 455 456 /* Wait for CPU to finish startup & mark itself online before return */ 457 wait_for_completion(&cpu_running); 458 459 return 0; 460 } 461 462 /* 463 * First C code run on the secondary CPUs after being started up by 464 * the master. 465 */ 466 asmlinkage void start_secondary(void) 467 { 468 unsigned int cpu; 469 470 sync_counter(); 471 cpu = smp_processor_id(); 472 set_my_cpu_offset(per_cpu_offset(cpu)); 473 474 cpu_probe(); 475 constant_clockevent_init(); 476 loongson3_init_secondary(); 477 478 set_cpu_sibling_map(cpu); 479 set_cpu_core_map(cpu); 480 481 notify_cpu_starting(cpu); 482 483 /* Notify boot CPU that we're starting */ 484 complete(&cpu_starting); 485 486 /* The CPU is running, now mark it online */ 487 set_cpu_online(cpu, true); 488 489 calculate_cpu_foreign_map(); 490 491 /* 492 * Notify boot CPU that we're up & online and it can safely return 493 * from __cpu_up() 494 */ 495 complete(&cpu_running); 496 497 /* 498 * irq will be enabled in loongson3_smp_finish(), enabling it too 499 * early is dangerous. 500 */ 501 WARN_ON_ONCE(!irqs_disabled()); 502 loongson3_smp_finish(); 503 504 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 505 } 506 507 void __init smp_cpus_done(unsigned int max_cpus) 508 { 509 } 510 511 static void stop_this_cpu(void *dummy) 512 { 513 set_cpu_online(smp_processor_id(), false); 514 calculate_cpu_foreign_map(); 515 local_irq_disable(); 516 while (true); 517 } 518 519 void smp_send_stop(void) 520 { 521 smp_call_function(stop_this_cpu, NULL, 0); 522 } 523 524 int setup_profiling_timer(unsigned int multiplier) 525 { 526 return 0; 527 } 528 529 static void flush_tlb_all_ipi(void *info) 530 { 531 local_flush_tlb_all(); 532 } 533 534 void flush_tlb_all(void) 535 { 536 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 537 } 538 539 static void flush_tlb_mm_ipi(void *mm) 540 { 541 local_flush_tlb_mm((struct mm_struct *)mm); 542 } 543 544 void flush_tlb_mm(struct mm_struct *mm) 545 { 546 if (atomic_read(&mm->mm_users) == 0) 547 return; /* happens as a result of exit_mmap() */ 548 549 preempt_disable(); 550 551 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 552 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 553 } else { 554 unsigned int cpu; 555 556 for_each_online_cpu(cpu) { 557 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 558 cpu_context(cpu, mm) = 0; 559 } 560 local_flush_tlb_mm(mm); 561 } 562 563 preempt_enable(); 564 } 565 566 struct flush_tlb_data { 567 struct vm_area_struct *vma; 568 unsigned long addr1; 569 unsigned long addr2; 570 }; 571 572 static void flush_tlb_range_ipi(void *info) 573 { 574 struct flush_tlb_data *fd = info; 575 576 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 577 } 578 579 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 580 { 581 struct mm_struct *mm = vma->vm_mm; 582 583 preempt_disable(); 584 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 585 struct flush_tlb_data fd = { 586 .vma = vma, 587 .addr1 = start, 588 .addr2 = end, 589 }; 590 591 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 592 } else { 593 unsigned int cpu; 594 595 for_each_online_cpu(cpu) { 596 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 597 cpu_context(cpu, mm) = 0; 598 } 599 local_flush_tlb_range(vma, start, end); 600 } 601 preempt_enable(); 602 } 603 604 static void flush_tlb_kernel_range_ipi(void *info) 605 { 606 struct flush_tlb_data *fd = info; 607 608 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 609 } 610 611 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 612 { 613 struct flush_tlb_data fd = { 614 .addr1 = start, 615 .addr2 = end, 616 }; 617 618 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 619 } 620 621 static void flush_tlb_page_ipi(void *info) 622 { 623 struct flush_tlb_data *fd = info; 624 625 local_flush_tlb_page(fd->vma, fd->addr1); 626 } 627 628 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 629 { 630 preempt_disable(); 631 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 632 struct flush_tlb_data fd = { 633 .vma = vma, 634 .addr1 = page, 635 }; 636 637 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 638 } else { 639 unsigned int cpu; 640 641 for_each_online_cpu(cpu) { 642 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 643 cpu_context(cpu, vma->vm_mm) = 0; 644 } 645 local_flush_tlb_page(vma, page); 646 } 647 preempt_enable(); 648 } 649 EXPORT_SYMBOL(flush_tlb_page); 650 651 static void flush_tlb_one_ipi(void *info) 652 { 653 unsigned long vaddr = (unsigned long) info; 654 655 local_flush_tlb_one(vaddr); 656 } 657 658 void flush_tlb_one(unsigned long vaddr) 659 { 660 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 661 } 662 EXPORT_SYMBOL(flush_tlb_one); 663