xref: /openbmc/linux/arch/loongarch/kernel/smp.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/processor.h>
33 #include <asm/setup.h>
34 #include <asm/time.h>
35 
36 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
37 EXPORT_SYMBOL(__cpu_number_map);
38 
39 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
40 EXPORT_SYMBOL(__cpu_logical_map);
41 
42 /* Representing the threads (siblings) of each logical CPU */
43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
44 EXPORT_SYMBOL(cpu_sibling_map);
45 
46 /* Representing the core map of multi-core chips of each logical CPU */
47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
48 EXPORT_SYMBOL(cpu_core_map);
49 
50 static DECLARE_COMPLETION(cpu_starting);
51 static DECLARE_COMPLETION(cpu_running);
52 
53 /*
54  * A logcal cpu mask containing only one VPE per core to
55  * reduce the number of IPIs on large MT systems.
56  */
57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_foreign_map);
59 
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62 
63 /* representing cpus for which core maps can be computed */
64 static cpumask_t cpu_core_setup_map;
65 
66 struct secondary_data cpuboot_data;
67 static DEFINE_PER_CPU(int, cpu_state);
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNCTION,
72 };
73 
74 static const char *ipi_types[NR_IPI] __tracepoint_string = {
75 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
76 	[IPI_CALL_FUNCTION] = "Function call interrupts",
77 };
78 
79 void show_ipi_list(struct seq_file *p, int prec)
80 {
81 	unsigned int cpu, i;
82 
83 	for (i = 0; i < NR_IPI; i++) {
84 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
85 		for_each_online_cpu(cpu)
86 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
87 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
88 	}
89 }
90 
91 static inline void set_cpu_core_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
96 
97 	for_each_cpu(i, &cpu_core_setup_map) {
98 		if (cpu_data[cpu].package == cpu_data[i].package) {
99 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
100 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
101 		}
102 	}
103 }
104 
105 static inline void set_cpu_sibling_map(int cpu)
106 {
107 	int i;
108 
109 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
110 
111 	for_each_cpu(i, &cpu_sibling_setup_map) {
112 		if (cpus_are_siblings(cpu, i)) {
113 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
114 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
115 		}
116 	}
117 }
118 
119 static inline void clear_cpu_sibling_map(int cpu)
120 {
121 	int i;
122 
123 	for_each_cpu(i, &cpu_sibling_setup_map) {
124 		if (cpus_are_siblings(cpu, i)) {
125 			cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
126 			cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
127 		}
128 	}
129 
130 	cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
131 }
132 
133 /*
134  * Calculate a new cpu_foreign_map mask whenever a
135  * new cpu appears or disappears.
136  */
137 void calculate_cpu_foreign_map(void)
138 {
139 	int i, k, core_present;
140 	cpumask_t temp_foreign_map;
141 
142 	/* Re-calculate the mask */
143 	cpumask_clear(&temp_foreign_map);
144 	for_each_online_cpu(i) {
145 		core_present = 0;
146 		for_each_cpu(k, &temp_foreign_map)
147 			if (cpus_are_siblings(i, k))
148 				core_present = 1;
149 		if (!core_present)
150 			cpumask_set_cpu(i, &temp_foreign_map);
151 	}
152 
153 	for_each_online_cpu(i)
154 		cpumask_andnot(&cpu_foreign_map[i],
155 			       &temp_foreign_map, &cpu_sibling_map[i]);
156 }
157 
158 /* Send mailbox buffer via Mail_Send */
159 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
160 {
161 	uint64_t val;
162 
163 	/* Send high 32 bits */
164 	val = IOCSR_MBUF_SEND_BLOCKING;
165 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
166 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
167 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
168 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
169 
170 	/* Send low 32 bits */
171 	val = IOCSR_MBUF_SEND_BLOCKING;
172 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
173 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
174 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
175 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
176 };
177 
178 static u32 ipi_read_clear(int cpu)
179 {
180 	u32 action;
181 
182 	/* Load the ipi register to figure out what we're supposed to do */
183 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
184 	/* Clear the ipi register to clear the interrupt */
185 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
186 	wbflush();
187 
188 	return action;
189 }
190 
191 static void ipi_write_action(int cpu, u32 action)
192 {
193 	unsigned int irq = 0;
194 
195 	while ((irq = ffs(action))) {
196 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
197 
198 		val |= (irq - 1);
199 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
200 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
201 		action &= ~BIT(irq - 1);
202 	}
203 }
204 
205 void loongson_send_ipi_single(int cpu, unsigned int action)
206 {
207 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
208 }
209 
210 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
211 {
212 	unsigned int i;
213 
214 	for_each_cpu(i, mask)
215 		ipi_write_action(cpu_logical_map(i), (u32)action);
216 }
217 
218 /*
219  * This function sends a 'reschedule' IPI to another CPU.
220  * it goes straight through and wastes no time serializing
221  * anything. Worst case is that we lose a reschedule ...
222  */
223 void arch_smp_send_reschedule(int cpu)
224 {
225 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
226 }
227 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
228 
229 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
230 {
231 	unsigned int action;
232 	unsigned int cpu = smp_processor_id();
233 
234 	action = ipi_read_clear(cpu_logical_map(cpu));
235 
236 	if (action & SMP_RESCHEDULE) {
237 		scheduler_ipi();
238 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
239 	}
240 
241 	if (action & SMP_CALL_FUNCTION) {
242 		generic_smp_call_function_interrupt();
243 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
244 	}
245 
246 	return IRQ_HANDLED;
247 }
248 
249 static void __init fdt_smp_setup(void)
250 {
251 #ifdef CONFIG_OF
252 	unsigned int cpu, cpuid;
253 	struct device_node *node = NULL;
254 
255 	for_each_of_cpu_node(node) {
256 		if (!of_device_is_available(node))
257 			continue;
258 
259 		cpuid = of_get_cpu_hwid(node, 0);
260 		if (cpuid >= nr_cpu_ids)
261 			continue;
262 
263 		if (cpuid == loongson_sysconf.boot_cpu_id) {
264 			cpu = 0;
265 			numa_add_cpu(cpu);
266 		} else {
267 			cpu = cpumask_next_zero(-1, cpu_present_mask);
268 		}
269 
270 		num_processors++;
271 		set_cpu_possible(cpu, true);
272 		set_cpu_present(cpu, true);
273 		__cpu_number_map[cpuid] = cpu;
274 		__cpu_logical_map[cpu] = cpuid;
275 	}
276 
277 	loongson_sysconf.nr_cpus = num_processors;
278 	set_bit(0, &(loongson_sysconf.cores_io_master));
279 #endif
280 }
281 
282 void __init loongson_smp_setup(void)
283 {
284 	fdt_smp_setup();
285 
286 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
287 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
288 
289 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
290 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
291 }
292 
293 void __init loongson_prepare_cpus(unsigned int max_cpus)
294 {
295 	int i = 0;
296 
297 	parse_acpi_topology();
298 
299 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
300 		set_cpu_present(i, true);
301 		csr_mail_send(0, __cpu_logical_map[i], 0);
302 		cpu_data[i].global_id = __cpu_logical_map[i];
303 	}
304 
305 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
306 }
307 
308 /*
309  * Setup the PC, SP, and TP of a secondary processor and start it running!
310  */
311 void loongson_boot_secondary(int cpu, struct task_struct *idle)
312 {
313 	unsigned long entry;
314 
315 	pr_info("Booting CPU#%d...\n", cpu);
316 
317 	entry = __pa_symbol((unsigned long)&smpboot_entry);
318 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
319 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
320 
321 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
322 
323 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
324 }
325 
326 /*
327  * SMP init and finish on secondary CPUs
328  */
329 void loongson_init_secondary(void)
330 {
331 	unsigned int cpu = smp_processor_id();
332 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
333 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
334 
335 	change_csr_ecfg(ECFG0_IM, imask);
336 
337 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
338 
339 #ifdef CONFIG_NUMA
340 	numa_add_cpu(cpu);
341 #endif
342 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
343 	cpu_data[cpu].package =
344 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
345 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
346 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
347 }
348 
349 void loongson_smp_finish(void)
350 {
351 	local_irq_enable();
352 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
353 	pr_info("CPU#%d finished\n", smp_processor_id());
354 }
355 
356 #ifdef CONFIG_HOTPLUG_CPU
357 
358 int loongson_cpu_disable(void)
359 {
360 	unsigned long flags;
361 	unsigned int cpu = smp_processor_id();
362 
363 	if (io_master(cpu))
364 		return -EBUSY;
365 
366 #ifdef CONFIG_NUMA
367 	numa_remove_cpu(cpu);
368 #endif
369 	set_cpu_online(cpu, false);
370 	clear_cpu_sibling_map(cpu);
371 	calculate_cpu_foreign_map();
372 	local_irq_save(flags);
373 	irq_migrate_all_off_this_cpu();
374 	clear_csr_ecfg(ECFG0_IM);
375 	local_irq_restore(flags);
376 	local_flush_tlb_all();
377 
378 	return 0;
379 }
380 
381 void loongson_cpu_die(unsigned int cpu)
382 {
383 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
384 		cpu_relax();
385 
386 	mb();
387 }
388 
389 void __noreturn arch_cpu_idle_dead(void)
390 {
391 	register uint64_t addr;
392 	register void (*init_fn)(void);
393 
394 	idle_task_exit();
395 	local_irq_enable();
396 	set_csr_ecfg(ECFGF_IPI);
397 	__this_cpu_write(cpu_state, CPU_DEAD);
398 
399 	__smp_mb();
400 	do {
401 		__asm__ __volatile__("idle 0\n\t");
402 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
403 	} while (addr == 0);
404 
405 	local_irq_disable();
406 	init_fn = (void *)TO_CACHE(addr);
407 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
408 
409 	init_fn();
410 	BUG();
411 }
412 
413 #endif
414 
415 /*
416  * Power management
417  */
418 #ifdef CONFIG_PM
419 
420 static int loongson_ipi_suspend(void)
421 {
422 	return 0;
423 }
424 
425 static void loongson_ipi_resume(void)
426 {
427 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
428 }
429 
430 static struct syscore_ops loongson_ipi_syscore_ops = {
431 	.resume         = loongson_ipi_resume,
432 	.suspend        = loongson_ipi_suspend,
433 };
434 
435 /*
436  * Enable boot cpu ipi before enabling nonboot cpus
437  * during syscore_resume.
438  */
439 static int __init ipi_pm_init(void)
440 {
441 	register_syscore_ops(&loongson_ipi_syscore_ops);
442 	return 0;
443 }
444 
445 core_initcall(ipi_pm_init);
446 #endif
447 
448 /* Preload SMP state for boot cpu */
449 void smp_prepare_boot_cpu(void)
450 {
451 	unsigned int cpu, node, rr_node;
452 
453 	set_cpu_possible(0, true);
454 	set_cpu_online(0, true);
455 	set_my_cpu_offset(per_cpu_offset(0));
456 
457 	rr_node = first_node(node_online_map);
458 	for_each_possible_cpu(cpu) {
459 		node = early_cpu_to_node(cpu);
460 
461 		/*
462 		 * The mapping between present cpus and nodes has been
463 		 * built during MADT and SRAT parsing.
464 		 *
465 		 * If possible cpus = present cpus here, early_cpu_to_node
466 		 * will return valid node.
467 		 *
468 		 * If possible cpus > present cpus here (e.g. some possible
469 		 * cpus will be added by cpu-hotplug later), for possible but
470 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
471 		 * and we just map them to online nodes in round-robin way.
472 		 * Once hotplugged, new correct mapping will be built for them.
473 		 */
474 		if (node != NUMA_NO_NODE)
475 			set_cpu_numa_node(cpu, node);
476 		else {
477 			set_cpu_numa_node(cpu, rr_node);
478 			rr_node = next_node_in(rr_node, node_online_map);
479 		}
480 	}
481 }
482 
483 /* called from main before smp_init() */
484 void __init smp_prepare_cpus(unsigned int max_cpus)
485 {
486 	init_new_context(current, &init_mm);
487 	current_thread_info()->cpu = 0;
488 	loongson_prepare_cpus(max_cpus);
489 	set_cpu_sibling_map(0);
490 	set_cpu_core_map(0);
491 	calculate_cpu_foreign_map();
492 #ifndef CONFIG_HOTPLUG_CPU
493 	init_cpu_present(cpu_possible_mask);
494 #endif
495 }
496 
497 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
498 {
499 	loongson_boot_secondary(cpu, tidle);
500 
501 	/* Wait for CPU to start and be ready to sync counters */
502 	if (!wait_for_completion_timeout(&cpu_starting,
503 					 msecs_to_jiffies(5000))) {
504 		pr_crit("CPU%u: failed to start\n", cpu);
505 		return -EIO;
506 	}
507 
508 	/* Wait for CPU to finish startup & mark itself online before return */
509 	wait_for_completion(&cpu_running);
510 
511 	return 0;
512 }
513 
514 /*
515  * First C code run on the secondary CPUs after being started up by
516  * the master.
517  */
518 asmlinkage void start_secondary(void)
519 {
520 	unsigned int cpu;
521 
522 	sync_counter();
523 	cpu = raw_smp_processor_id();
524 	set_my_cpu_offset(per_cpu_offset(cpu));
525 
526 	cpu_probe();
527 	constant_clockevent_init();
528 	loongson_init_secondary();
529 
530 	set_cpu_sibling_map(cpu);
531 	set_cpu_core_map(cpu);
532 
533 	notify_cpu_starting(cpu);
534 
535 	/* Notify boot CPU that we're starting */
536 	complete(&cpu_starting);
537 
538 	/* The CPU is running, now mark it online */
539 	set_cpu_online(cpu, true);
540 
541 	calculate_cpu_foreign_map();
542 
543 	/*
544 	 * Notify boot CPU that we're up & online and it can safely return
545 	 * from __cpu_up()
546 	 */
547 	complete(&cpu_running);
548 
549 	/*
550 	 * irq will be enabled in loongson_smp_finish(), enabling it too
551 	 * early is dangerous.
552 	 */
553 	WARN_ON_ONCE(!irqs_disabled());
554 	loongson_smp_finish();
555 
556 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
557 }
558 
559 void __init smp_cpus_done(unsigned int max_cpus)
560 {
561 }
562 
563 static void stop_this_cpu(void *dummy)
564 {
565 	set_cpu_online(smp_processor_id(), false);
566 	calculate_cpu_foreign_map();
567 	local_irq_disable();
568 	while (true);
569 }
570 
571 void smp_send_stop(void)
572 {
573 	smp_call_function(stop_this_cpu, NULL, 0);
574 }
575 
576 #ifdef CONFIG_PROFILING
577 int setup_profiling_timer(unsigned int multiplier)
578 {
579 	return 0;
580 }
581 #endif
582 
583 static void flush_tlb_all_ipi(void *info)
584 {
585 	local_flush_tlb_all();
586 }
587 
588 void flush_tlb_all(void)
589 {
590 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
591 }
592 
593 static void flush_tlb_mm_ipi(void *mm)
594 {
595 	local_flush_tlb_mm((struct mm_struct *)mm);
596 }
597 
598 void flush_tlb_mm(struct mm_struct *mm)
599 {
600 	if (atomic_read(&mm->mm_users) == 0)
601 		return;		/* happens as a result of exit_mmap() */
602 
603 	preempt_disable();
604 
605 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
606 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
607 	} else {
608 		unsigned int cpu;
609 
610 		for_each_online_cpu(cpu) {
611 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
612 				cpu_context(cpu, mm) = 0;
613 		}
614 		local_flush_tlb_mm(mm);
615 	}
616 
617 	preempt_enable();
618 }
619 
620 struct flush_tlb_data {
621 	struct vm_area_struct *vma;
622 	unsigned long addr1;
623 	unsigned long addr2;
624 };
625 
626 static void flush_tlb_range_ipi(void *info)
627 {
628 	struct flush_tlb_data *fd = info;
629 
630 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
631 }
632 
633 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
634 {
635 	struct mm_struct *mm = vma->vm_mm;
636 
637 	preempt_disable();
638 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
639 		struct flush_tlb_data fd = {
640 			.vma = vma,
641 			.addr1 = start,
642 			.addr2 = end,
643 		};
644 
645 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
646 	} else {
647 		unsigned int cpu;
648 
649 		for_each_online_cpu(cpu) {
650 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
651 				cpu_context(cpu, mm) = 0;
652 		}
653 		local_flush_tlb_range(vma, start, end);
654 	}
655 	preempt_enable();
656 }
657 
658 static void flush_tlb_kernel_range_ipi(void *info)
659 {
660 	struct flush_tlb_data *fd = info;
661 
662 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
663 }
664 
665 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
666 {
667 	struct flush_tlb_data fd = {
668 		.addr1 = start,
669 		.addr2 = end,
670 	};
671 
672 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
673 }
674 
675 static void flush_tlb_page_ipi(void *info)
676 {
677 	struct flush_tlb_data *fd = info;
678 
679 	local_flush_tlb_page(fd->vma, fd->addr1);
680 }
681 
682 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
683 {
684 	preempt_disable();
685 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
686 		struct flush_tlb_data fd = {
687 			.vma = vma,
688 			.addr1 = page,
689 		};
690 
691 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
692 	} else {
693 		unsigned int cpu;
694 
695 		for_each_online_cpu(cpu) {
696 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
697 				cpu_context(cpu, vma->vm_mm) = 0;
698 		}
699 		local_flush_tlb_page(vma, page);
700 	}
701 	preempt_enable();
702 }
703 EXPORT_SYMBOL(flush_tlb_page);
704 
705 static void flush_tlb_one_ipi(void *info)
706 {
707 	unsigned long vaddr = (unsigned long) info;
708 
709 	local_flush_tlb_one(vaddr);
710 }
711 
712 void flush_tlb_one(unsigned long vaddr)
713 {
714 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
715 }
716 EXPORT_SYMBOL(flush_tlb_one);
717