xref: /openbmc/linux/arch/loongarch/kernel/smp.c (revision 4e40bc50)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/processor.h>
33 #include <asm/setup.h>
34 #include <asm/time.h>
35 
36 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
37 EXPORT_SYMBOL(__cpu_number_map);
38 
39 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
40 EXPORT_SYMBOL(__cpu_logical_map);
41 
42 /* Representing the threads (siblings) of each logical CPU */
43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
44 EXPORT_SYMBOL(cpu_sibling_map);
45 
46 /* Representing the core map of multi-core chips of each logical CPU */
47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
48 EXPORT_SYMBOL(cpu_core_map);
49 
50 static DECLARE_COMPLETION(cpu_starting);
51 static DECLARE_COMPLETION(cpu_running);
52 
53 /*
54  * A logcal cpu mask containing only one VPE per core to
55  * reduce the number of IPIs on large MT systems.
56  */
57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_foreign_map);
59 
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62 
63 /* representing cpus for which core maps can be computed */
64 static cpumask_t cpu_core_setup_map;
65 
66 struct secondary_data cpuboot_data;
67 static DEFINE_PER_CPU(int, cpu_state);
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNCTION,
72 };
73 
74 static const char *ipi_types[NR_IPI] __tracepoint_string = {
75 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
76 	[IPI_CALL_FUNCTION] = "Function call interrupts",
77 };
78 
79 void show_ipi_list(struct seq_file *p, int prec)
80 {
81 	unsigned int cpu, i;
82 
83 	for (i = 0; i < NR_IPI; i++) {
84 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
85 		for_each_online_cpu(cpu)
86 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
87 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
88 	}
89 }
90 
91 static inline void set_cpu_core_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
96 
97 	for_each_cpu(i, &cpu_core_setup_map) {
98 		if (cpu_data[cpu].package == cpu_data[i].package) {
99 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
100 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
101 		}
102 	}
103 }
104 
105 static inline void set_cpu_sibling_map(int cpu)
106 {
107 	int i;
108 
109 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
110 
111 	for_each_cpu(i, &cpu_sibling_setup_map) {
112 		if (cpus_are_siblings(cpu, i)) {
113 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
114 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
115 		}
116 	}
117 }
118 
119 static inline void clear_cpu_sibling_map(int cpu)
120 {
121 	int i;
122 
123 	for_each_cpu(i, &cpu_sibling_setup_map) {
124 		if (cpus_are_siblings(cpu, i)) {
125 			cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
126 			cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
127 		}
128 	}
129 
130 	cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
131 }
132 
133 /*
134  * Calculate a new cpu_foreign_map mask whenever a
135  * new cpu appears or disappears.
136  */
137 void calculate_cpu_foreign_map(void)
138 {
139 	int i, k, core_present;
140 	cpumask_t temp_foreign_map;
141 
142 	/* Re-calculate the mask */
143 	cpumask_clear(&temp_foreign_map);
144 	for_each_online_cpu(i) {
145 		core_present = 0;
146 		for_each_cpu(k, &temp_foreign_map)
147 			if (cpus_are_siblings(i, k))
148 				core_present = 1;
149 		if (!core_present)
150 			cpumask_set_cpu(i, &temp_foreign_map);
151 	}
152 
153 	for_each_online_cpu(i)
154 		cpumask_andnot(&cpu_foreign_map[i],
155 			       &temp_foreign_map, &cpu_sibling_map[i]);
156 }
157 
158 /* Send mailbox buffer via Mail_Send */
159 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
160 {
161 	uint64_t val;
162 
163 	/* Send high 32 bits */
164 	val = IOCSR_MBUF_SEND_BLOCKING;
165 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
166 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
167 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
168 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
169 
170 	/* Send low 32 bits */
171 	val = IOCSR_MBUF_SEND_BLOCKING;
172 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
173 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
174 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
175 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
176 };
177 
178 static u32 ipi_read_clear(int cpu)
179 {
180 	u32 action;
181 
182 	/* Load the ipi register to figure out what we're supposed to do */
183 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
184 	/* Clear the ipi register to clear the interrupt */
185 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
186 	wbflush();
187 
188 	return action;
189 }
190 
191 static void ipi_write_action(int cpu, u32 action)
192 {
193 	unsigned int irq = 0;
194 
195 	while ((irq = ffs(action))) {
196 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
197 
198 		val |= (irq - 1);
199 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
200 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
201 		action &= ~BIT(irq - 1);
202 	}
203 }
204 
205 void loongson_send_ipi_single(int cpu, unsigned int action)
206 {
207 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
208 }
209 
210 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
211 {
212 	unsigned int i;
213 
214 	for_each_cpu(i, mask)
215 		ipi_write_action(cpu_logical_map(i), (u32)action);
216 }
217 
218 /*
219  * This function sends a 'reschedule' IPI to another CPU.
220  * it goes straight through and wastes no time serializing
221  * anything. Worst case is that we lose a reschedule ...
222  */
223 void arch_smp_send_reschedule(int cpu)
224 {
225 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
226 }
227 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
228 
229 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
230 {
231 	unsigned int action;
232 	unsigned int cpu = smp_processor_id();
233 
234 	action = ipi_read_clear(cpu_logical_map(cpu));
235 
236 	if (action & SMP_RESCHEDULE) {
237 		scheduler_ipi();
238 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
239 	}
240 
241 	if (action & SMP_CALL_FUNCTION) {
242 		generic_smp_call_function_interrupt();
243 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
244 	}
245 
246 	return IRQ_HANDLED;
247 }
248 
249 static void __init fdt_smp_setup(void)
250 {
251 #ifdef CONFIG_OF
252 	unsigned int cpu, cpuid;
253 	struct device_node *node = NULL;
254 
255 	for_each_of_cpu_node(node) {
256 		if (!of_device_is_available(node))
257 			continue;
258 
259 		cpuid = of_get_cpu_hwid(node, 0);
260 		if (cpuid >= nr_cpu_ids)
261 			continue;
262 
263 		if (cpuid == loongson_sysconf.boot_cpu_id) {
264 			cpu = 0;
265 		} else {
266 			cpu = cpumask_next_zero(-1, cpu_present_mask);
267 		}
268 
269 		num_processors++;
270 		set_cpu_possible(cpu, true);
271 		set_cpu_present(cpu, true);
272 		__cpu_number_map[cpuid] = cpu;
273 		__cpu_logical_map[cpu] = cpuid;
274 
275 		early_numa_add_cpu(cpu, 0);
276 		set_cpuid_to_node(cpuid, 0);
277 	}
278 
279 	loongson_sysconf.nr_cpus = num_processors;
280 	set_bit(0, &(loongson_sysconf.cores_io_master));
281 #endif
282 }
283 
284 void __init loongson_smp_setup(void)
285 {
286 	fdt_smp_setup();
287 
288 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
289 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
290 
291 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
292 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
293 }
294 
295 void __init loongson_prepare_cpus(unsigned int max_cpus)
296 {
297 	int i = 0;
298 
299 	parse_acpi_topology();
300 
301 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
302 		set_cpu_present(i, true);
303 		csr_mail_send(0, __cpu_logical_map[i], 0);
304 		cpu_data[i].global_id = __cpu_logical_map[i];
305 	}
306 
307 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
308 }
309 
310 /*
311  * Setup the PC, SP, and TP of a secondary processor and start it running!
312  */
313 void loongson_boot_secondary(int cpu, struct task_struct *idle)
314 {
315 	unsigned long entry;
316 
317 	pr_info("Booting CPU#%d...\n", cpu);
318 
319 	entry = __pa_symbol((unsigned long)&smpboot_entry);
320 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
321 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
322 
323 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
324 
325 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
326 }
327 
328 /*
329  * SMP init and finish on secondary CPUs
330  */
331 void loongson_init_secondary(void)
332 {
333 	unsigned int cpu = smp_processor_id();
334 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
335 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
336 
337 	change_csr_ecfg(ECFG0_IM, imask);
338 
339 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
340 
341 #ifdef CONFIG_NUMA
342 	numa_add_cpu(cpu);
343 #endif
344 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
345 	cpu_data[cpu].package =
346 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
347 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
348 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
349 }
350 
351 void loongson_smp_finish(void)
352 {
353 	local_irq_enable();
354 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
355 	pr_info("CPU#%d finished\n", smp_processor_id());
356 }
357 
358 #ifdef CONFIG_HOTPLUG_CPU
359 
360 int loongson_cpu_disable(void)
361 {
362 	unsigned long flags;
363 	unsigned int cpu = smp_processor_id();
364 
365 	if (io_master(cpu))
366 		return -EBUSY;
367 
368 #ifdef CONFIG_NUMA
369 	numa_remove_cpu(cpu);
370 #endif
371 	set_cpu_online(cpu, false);
372 	clear_cpu_sibling_map(cpu);
373 	calculate_cpu_foreign_map();
374 	local_irq_save(flags);
375 	irq_migrate_all_off_this_cpu();
376 	clear_csr_ecfg(ECFG0_IM);
377 	local_irq_restore(flags);
378 	local_flush_tlb_all();
379 
380 	return 0;
381 }
382 
383 void loongson_cpu_die(unsigned int cpu)
384 {
385 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
386 		cpu_relax();
387 
388 	mb();
389 }
390 
391 void __noreturn arch_cpu_idle_dead(void)
392 {
393 	register uint64_t addr;
394 	register void (*init_fn)(void);
395 
396 	idle_task_exit();
397 	local_irq_enable();
398 	set_csr_ecfg(ECFGF_IPI);
399 	__this_cpu_write(cpu_state, CPU_DEAD);
400 
401 	__smp_mb();
402 	do {
403 		__asm__ __volatile__("idle 0\n\t");
404 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
405 	} while (addr == 0);
406 
407 	local_irq_disable();
408 	init_fn = (void *)TO_CACHE(addr);
409 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
410 
411 	init_fn();
412 	BUG();
413 }
414 
415 #endif
416 
417 /*
418  * Power management
419  */
420 #ifdef CONFIG_PM
421 
422 static int loongson_ipi_suspend(void)
423 {
424 	return 0;
425 }
426 
427 static void loongson_ipi_resume(void)
428 {
429 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
430 }
431 
432 static struct syscore_ops loongson_ipi_syscore_ops = {
433 	.resume         = loongson_ipi_resume,
434 	.suspend        = loongson_ipi_suspend,
435 };
436 
437 /*
438  * Enable boot cpu ipi before enabling nonboot cpus
439  * during syscore_resume.
440  */
441 static int __init ipi_pm_init(void)
442 {
443 	register_syscore_ops(&loongson_ipi_syscore_ops);
444 	return 0;
445 }
446 
447 core_initcall(ipi_pm_init);
448 #endif
449 
450 /* Preload SMP state for boot cpu */
451 void smp_prepare_boot_cpu(void)
452 {
453 	unsigned int cpu, node, rr_node;
454 
455 	set_cpu_possible(0, true);
456 	set_cpu_online(0, true);
457 	set_my_cpu_offset(per_cpu_offset(0));
458 	numa_add_cpu(0);
459 
460 	rr_node = first_node(node_online_map);
461 	for_each_possible_cpu(cpu) {
462 		node = early_cpu_to_node(cpu);
463 
464 		/*
465 		 * The mapping between present cpus and nodes has been
466 		 * built during MADT and SRAT parsing.
467 		 *
468 		 * If possible cpus = present cpus here, early_cpu_to_node
469 		 * will return valid node.
470 		 *
471 		 * If possible cpus > present cpus here (e.g. some possible
472 		 * cpus will be added by cpu-hotplug later), for possible but
473 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
474 		 * and we just map them to online nodes in round-robin way.
475 		 * Once hotplugged, new correct mapping will be built for them.
476 		 */
477 		if (node != NUMA_NO_NODE)
478 			set_cpu_numa_node(cpu, node);
479 		else {
480 			set_cpu_numa_node(cpu, rr_node);
481 			rr_node = next_node_in(rr_node, node_online_map);
482 		}
483 	}
484 }
485 
486 /* called from main before smp_init() */
487 void __init smp_prepare_cpus(unsigned int max_cpus)
488 {
489 	init_new_context(current, &init_mm);
490 	current_thread_info()->cpu = 0;
491 	loongson_prepare_cpus(max_cpus);
492 	set_cpu_sibling_map(0);
493 	set_cpu_core_map(0);
494 	calculate_cpu_foreign_map();
495 #ifndef CONFIG_HOTPLUG_CPU
496 	init_cpu_present(cpu_possible_mask);
497 #endif
498 }
499 
500 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
501 {
502 	loongson_boot_secondary(cpu, tidle);
503 
504 	/* Wait for CPU to start and be ready to sync counters */
505 	if (!wait_for_completion_timeout(&cpu_starting,
506 					 msecs_to_jiffies(5000))) {
507 		pr_crit("CPU%u: failed to start\n", cpu);
508 		return -EIO;
509 	}
510 
511 	/* Wait for CPU to finish startup & mark itself online before return */
512 	wait_for_completion(&cpu_running);
513 
514 	return 0;
515 }
516 
517 /*
518  * First C code run on the secondary CPUs after being started up by
519  * the master.
520  */
521 asmlinkage void start_secondary(void)
522 {
523 	unsigned int cpu;
524 
525 	sync_counter();
526 	cpu = raw_smp_processor_id();
527 	set_my_cpu_offset(per_cpu_offset(cpu));
528 
529 	cpu_probe();
530 	constant_clockevent_init();
531 	loongson_init_secondary();
532 
533 	set_cpu_sibling_map(cpu);
534 	set_cpu_core_map(cpu);
535 
536 	notify_cpu_starting(cpu);
537 
538 	/* Notify boot CPU that we're starting */
539 	complete(&cpu_starting);
540 
541 	/* The CPU is running, now mark it online */
542 	set_cpu_online(cpu, true);
543 
544 	calculate_cpu_foreign_map();
545 
546 	/*
547 	 * Notify boot CPU that we're up & online and it can safely return
548 	 * from __cpu_up()
549 	 */
550 	complete(&cpu_running);
551 
552 	/*
553 	 * irq will be enabled in loongson_smp_finish(), enabling it too
554 	 * early is dangerous.
555 	 */
556 	WARN_ON_ONCE(!irqs_disabled());
557 	loongson_smp_finish();
558 
559 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
560 }
561 
562 void __init smp_cpus_done(unsigned int max_cpus)
563 {
564 }
565 
566 static void stop_this_cpu(void *dummy)
567 {
568 	set_cpu_online(smp_processor_id(), false);
569 	calculate_cpu_foreign_map();
570 	local_irq_disable();
571 	while (true);
572 }
573 
574 void smp_send_stop(void)
575 {
576 	smp_call_function(stop_this_cpu, NULL, 0);
577 }
578 
579 #ifdef CONFIG_PROFILING
580 int setup_profiling_timer(unsigned int multiplier)
581 {
582 	return 0;
583 }
584 #endif
585 
586 static void flush_tlb_all_ipi(void *info)
587 {
588 	local_flush_tlb_all();
589 }
590 
591 void flush_tlb_all(void)
592 {
593 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
594 }
595 
596 static void flush_tlb_mm_ipi(void *mm)
597 {
598 	local_flush_tlb_mm((struct mm_struct *)mm);
599 }
600 
601 void flush_tlb_mm(struct mm_struct *mm)
602 {
603 	if (atomic_read(&mm->mm_users) == 0)
604 		return;		/* happens as a result of exit_mmap() */
605 
606 	preempt_disable();
607 
608 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
609 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
610 	} else {
611 		unsigned int cpu;
612 
613 		for_each_online_cpu(cpu) {
614 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
615 				cpu_context(cpu, mm) = 0;
616 		}
617 		local_flush_tlb_mm(mm);
618 	}
619 
620 	preempt_enable();
621 }
622 
623 struct flush_tlb_data {
624 	struct vm_area_struct *vma;
625 	unsigned long addr1;
626 	unsigned long addr2;
627 };
628 
629 static void flush_tlb_range_ipi(void *info)
630 {
631 	struct flush_tlb_data *fd = info;
632 
633 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
634 }
635 
636 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
637 {
638 	struct mm_struct *mm = vma->vm_mm;
639 
640 	preempt_disable();
641 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
642 		struct flush_tlb_data fd = {
643 			.vma = vma,
644 			.addr1 = start,
645 			.addr2 = end,
646 		};
647 
648 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
649 	} else {
650 		unsigned int cpu;
651 
652 		for_each_online_cpu(cpu) {
653 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
654 				cpu_context(cpu, mm) = 0;
655 		}
656 		local_flush_tlb_range(vma, start, end);
657 	}
658 	preempt_enable();
659 }
660 
661 static void flush_tlb_kernel_range_ipi(void *info)
662 {
663 	struct flush_tlb_data *fd = info;
664 
665 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
666 }
667 
668 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
669 {
670 	struct flush_tlb_data fd = {
671 		.addr1 = start,
672 		.addr2 = end,
673 	};
674 
675 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
676 }
677 
678 static void flush_tlb_page_ipi(void *info)
679 {
680 	struct flush_tlb_data *fd = info;
681 
682 	local_flush_tlb_page(fd->vma, fd->addr1);
683 }
684 
685 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
686 {
687 	preempt_disable();
688 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
689 		struct flush_tlb_data fd = {
690 			.vma = vma,
691 			.addr1 = page,
692 		};
693 
694 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
695 	} else {
696 		unsigned int cpu;
697 
698 		for_each_online_cpu(cpu) {
699 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
700 				cpu_context(cpu, vma->vm_mm) = 0;
701 		}
702 		local_flush_tlb_page(vma, page);
703 	}
704 	preempt_enable();
705 }
706 EXPORT_SYMBOL(flush_tlb_page);
707 
708 static void flush_tlb_one_ipi(void *info)
709 {
710 	unsigned long vaddr = (unsigned long) info;
711 
712 	local_flush_tlb_one(vaddr);
713 }
714 
715 void flush_tlb_one(unsigned long vaddr)
716 {
717 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
718 }
719 EXPORT_SYMBOL(flush_tlb_one);
720