xref: /openbmc/linux/arch/loongarch/kernel/smp.c (revision 4cfb9080)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/seq_file.h>
17 #include <linux/smp.h>
18 #include <linux/threads.h>
19 #include <linux/export.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/time.h>
22 #include <linux/tracepoint.h>
23 #include <linux/sched/hotplug.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <asm/cpu.h>
27 #include <asm/idle.h>
28 #include <asm/loongson.h>
29 #include <asm/mmu_context.h>
30 #include <asm/numa.h>
31 #include <asm/processor.h>
32 #include <asm/setup.h>
33 #include <asm/time.h>
34 
35 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
36 EXPORT_SYMBOL(__cpu_number_map);
37 
38 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
39 EXPORT_SYMBOL(__cpu_logical_map);
40 
41 /* Representing the threads (siblings) of each logical CPU */
42 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
43 EXPORT_SYMBOL(cpu_sibling_map);
44 
45 /* Representing the core map of multi-core chips of each logical CPU */
46 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
47 EXPORT_SYMBOL(cpu_core_map);
48 
49 static DECLARE_COMPLETION(cpu_starting);
50 static DECLARE_COMPLETION(cpu_running);
51 
52 /*
53  * A logcal cpu mask containing only one VPE per core to
54  * reduce the number of IPIs on large MT systems.
55  */
56 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
57 EXPORT_SYMBOL(cpu_foreign_map);
58 
59 /* representing cpus for which sibling maps can be computed */
60 static cpumask_t cpu_sibling_setup_map;
61 
62 /* representing cpus for which core maps can be computed */
63 static cpumask_t cpu_core_setup_map;
64 
65 struct secondary_data cpuboot_data;
66 static DEFINE_PER_CPU(int, cpu_state);
67 
68 enum ipi_msg_type {
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNCTION,
71 };
72 
73 static const char *ipi_types[NR_IPI] __tracepoint_string = {
74 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
75 	[IPI_CALL_FUNCTION] = "Function call interrupts",
76 };
77 
78 void show_ipi_list(struct seq_file *p, int prec)
79 {
80 	unsigned int cpu, i;
81 
82 	for (i = 0; i < NR_IPI; i++) {
83 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
84 		for_each_online_cpu(cpu)
85 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
86 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
87 	}
88 }
89 
90 /* Send mailbox buffer via Mail_Send */
91 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
92 {
93 	uint64_t val;
94 
95 	/* Send high 32 bits */
96 	val = IOCSR_MBUF_SEND_BLOCKING;
97 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
98 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
99 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
100 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
101 
102 	/* Send low 32 bits */
103 	val = IOCSR_MBUF_SEND_BLOCKING;
104 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
105 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
106 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
107 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
108 };
109 
110 static u32 ipi_read_clear(int cpu)
111 {
112 	u32 action;
113 
114 	/* Load the ipi register to figure out what we're supposed to do */
115 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
116 	/* Clear the ipi register to clear the interrupt */
117 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
118 	wbflush();
119 
120 	return action;
121 }
122 
123 static void ipi_write_action(int cpu, u32 action)
124 {
125 	unsigned int irq = 0;
126 
127 	while ((irq = ffs(action))) {
128 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
129 
130 		val |= (irq - 1);
131 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
132 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
133 		action &= ~BIT(irq - 1);
134 	}
135 }
136 
137 void loongson_send_ipi_single(int cpu, unsigned int action)
138 {
139 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
140 }
141 
142 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
143 {
144 	unsigned int i;
145 
146 	for_each_cpu(i, mask)
147 		ipi_write_action(cpu_logical_map(i), (u32)action);
148 }
149 
150 /*
151  * This function sends a 'reschedule' IPI to another CPU.
152  * it goes straight through and wastes no time serializing
153  * anything. Worst case is that we lose a reschedule ...
154  */
155 void arch_smp_send_reschedule(int cpu)
156 {
157 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
158 }
159 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
160 
161 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
162 {
163 	unsigned int action;
164 	unsigned int cpu = smp_processor_id();
165 
166 	action = ipi_read_clear(cpu_logical_map(cpu));
167 
168 	if (action & SMP_RESCHEDULE) {
169 		scheduler_ipi();
170 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
171 	}
172 
173 	if (action & SMP_CALL_FUNCTION) {
174 		generic_smp_call_function_interrupt();
175 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
176 	}
177 
178 	return IRQ_HANDLED;
179 }
180 
181 static void __init fdt_smp_setup(void)
182 {
183 #ifdef CONFIG_OF
184 	unsigned int cpu, cpuid;
185 	struct device_node *node = NULL;
186 
187 	for_each_of_cpu_node(node) {
188 		if (!of_device_is_available(node))
189 			continue;
190 
191 		cpuid = of_get_cpu_hwid(node, 0);
192 		if (cpuid >= nr_cpu_ids)
193 			continue;
194 
195 		if (cpuid == loongson_sysconf.boot_cpu_id) {
196 			cpu = 0;
197 			numa_add_cpu(cpu);
198 		} else {
199 			cpu = cpumask_next_zero(-1, cpu_present_mask);
200 		}
201 
202 		num_processors++;
203 		set_cpu_possible(cpu, true);
204 		set_cpu_present(cpu, true);
205 		__cpu_number_map[cpuid] = cpu;
206 		__cpu_logical_map[cpu] = cpuid;
207 	}
208 
209 	loongson_sysconf.nr_cpus = num_processors;
210 	set_bit(0, &(loongson_sysconf.cores_io_master));
211 #endif
212 }
213 
214 void __init loongson_smp_setup(void)
215 {
216 	fdt_smp_setup();
217 
218 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
219 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
220 
221 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
222 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
223 }
224 
225 void __init loongson_prepare_cpus(unsigned int max_cpus)
226 {
227 	int i = 0;
228 
229 	parse_acpi_topology();
230 
231 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
232 		set_cpu_present(i, true);
233 		csr_mail_send(0, __cpu_logical_map[i], 0);
234 		cpu_data[i].global_id = __cpu_logical_map[i];
235 	}
236 
237 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
238 }
239 
240 /*
241  * Setup the PC, SP, and TP of a secondary processor and start it running!
242  */
243 void loongson_boot_secondary(int cpu, struct task_struct *idle)
244 {
245 	unsigned long entry;
246 
247 	pr_info("Booting CPU#%d...\n", cpu);
248 
249 	entry = __pa_symbol((unsigned long)&smpboot_entry);
250 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
251 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
252 
253 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
254 
255 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
256 }
257 
258 /*
259  * SMP init and finish on secondary CPUs
260  */
261 void loongson_init_secondary(void)
262 {
263 	unsigned int cpu = smp_processor_id();
264 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
265 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
266 
267 	change_csr_ecfg(ECFG0_IM, imask);
268 
269 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
270 
271 #ifdef CONFIG_NUMA
272 	numa_add_cpu(cpu);
273 #endif
274 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
275 	cpu_data[cpu].package =
276 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
277 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
278 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
279 }
280 
281 void loongson_smp_finish(void)
282 {
283 	local_irq_enable();
284 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
285 	pr_info("CPU#%d finished\n", smp_processor_id());
286 }
287 
288 #ifdef CONFIG_HOTPLUG_CPU
289 
290 int loongson_cpu_disable(void)
291 {
292 	unsigned long flags;
293 	unsigned int cpu = smp_processor_id();
294 
295 	if (io_master(cpu))
296 		return -EBUSY;
297 
298 #ifdef CONFIG_NUMA
299 	numa_remove_cpu(cpu);
300 #endif
301 	set_cpu_online(cpu, false);
302 	calculate_cpu_foreign_map();
303 	local_irq_save(flags);
304 	irq_migrate_all_off_this_cpu();
305 	clear_csr_ecfg(ECFG0_IM);
306 	local_irq_restore(flags);
307 	local_flush_tlb_all();
308 
309 	return 0;
310 }
311 
312 void loongson_cpu_die(unsigned int cpu)
313 {
314 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
315 		cpu_relax();
316 
317 	mb();
318 }
319 
320 void play_dead(void)
321 {
322 	register uint64_t addr;
323 	register void (*init_fn)(void);
324 
325 	idle_task_exit();
326 	local_irq_enable();
327 	set_csr_ecfg(ECFGF_IPI);
328 	__this_cpu_write(cpu_state, CPU_DEAD);
329 
330 	__smp_mb();
331 	do {
332 		__asm__ __volatile__("idle 0\n\t");
333 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
334 	} while (addr == 0);
335 
336 	init_fn = (void *)TO_CACHE(addr);
337 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
338 
339 	init_fn();
340 	BUG();
341 }
342 
343 #endif
344 
345 /*
346  * Power management
347  */
348 #ifdef CONFIG_PM
349 
350 static int loongson_ipi_suspend(void)
351 {
352 	return 0;
353 }
354 
355 static void loongson_ipi_resume(void)
356 {
357 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
358 }
359 
360 static struct syscore_ops loongson_ipi_syscore_ops = {
361 	.resume         = loongson_ipi_resume,
362 	.suspend        = loongson_ipi_suspend,
363 };
364 
365 /*
366  * Enable boot cpu ipi before enabling nonboot cpus
367  * during syscore_resume.
368  */
369 static int __init ipi_pm_init(void)
370 {
371 	register_syscore_ops(&loongson_ipi_syscore_ops);
372 	return 0;
373 }
374 
375 core_initcall(ipi_pm_init);
376 #endif
377 
378 static inline void set_cpu_sibling_map(int cpu)
379 {
380 	int i;
381 
382 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
383 
384 	for_each_cpu(i, &cpu_sibling_setup_map) {
385 		if (cpus_are_siblings(cpu, i)) {
386 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
387 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
388 		}
389 	}
390 }
391 
392 static inline void set_cpu_core_map(int cpu)
393 {
394 	int i;
395 
396 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
397 
398 	for_each_cpu(i, &cpu_core_setup_map) {
399 		if (cpu_data[cpu].package == cpu_data[i].package) {
400 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
401 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
402 		}
403 	}
404 }
405 
406 /*
407  * Calculate a new cpu_foreign_map mask whenever a
408  * new cpu appears or disappears.
409  */
410 void calculate_cpu_foreign_map(void)
411 {
412 	int i, k, core_present;
413 	cpumask_t temp_foreign_map;
414 
415 	/* Re-calculate the mask */
416 	cpumask_clear(&temp_foreign_map);
417 	for_each_online_cpu(i) {
418 		core_present = 0;
419 		for_each_cpu(k, &temp_foreign_map)
420 			if (cpus_are_siblings(i, k))
421 				core_present = 1;
422 		if (!core_present)
423 			cpumask_set_cpu(i, &temp_foreign_map);
424 	}
425 
426 	for_each_online_cpu(i)
427 		cpumask_andnot(&cpu_foreign_map[i],
428 			       &temp_foreign_map, &cpu_sibling_map[i]);
429 }
430 
431 /* Preload SMP state for boot cpu */
432 void smp_prepare_boot_cpu(void)
433 {
434 	unsigned int cpu, node, rr_node;
435 
436 	set_cpu_possible(0, true);
437 	set_cpu_online(0, true);
438 	set_my_cpu_offset(per_cpu_offset(0));
439 
440 	rr_node = first_node(node_online_map);
441 	for_each_possible_cpu(cpu) {
442 		node = early_cpu_to_node(cpu);
443 
444 		/*
445 		 * The mapping between present cpus and nodes has been
446 		 * built during MADT and SRAT parsing.
447 		 *
448 		 * If possible cpus = present cpus here, early_cpu_to_node
449 		 * will return valid node.
450 		 *
451 		 * If possible cpus > present cpus here (e.g. some possible
452 		 * cpus will be added by cpu-hotplug later), for possible but
453 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
454 		 * and we just map them to online nodes in round-robin way.
455 		 * Once hotplugged, new correct mapping will be built for them.
456 		 */
457 		if (node != NUMA_NO_NODE)
458 			set_cpu_numa_node(cpu, node);
459 		else {
460 			set_cpu_numa_node(cpu, rr_node);
461 			rr_node = next_node_in(rr_node, node_online_map);
462 		}
463 	}
464 }
465 
466 /* called from main before smp_init() */
467 void __init smp_prepare_cpus(unsigned int max_cpus)
468 {
469 	init_new_context(current, &init_mm);
470 	current_thread_info()->cpu = 0;
471 	loongson_prepare_cpus(max_cpus);
472 	set_cpu_sibling_map(0);
473 	set_cpu_core_map(0);
474 	calculate_cpu_foreign_map();
475 #ifndef CONFIG_HOTPLUG_CPU
476 	init_cpu_present(cpu_possible_mask);
477 #endif
478 }
479 
480 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
481 {
482 	loongson_boot_secondary(cpu, tidle);
483 
484 	/* Wait for CPU to start and be ready to sync counters */
485 	if (!wait_for_completion_timeout(&cpu_starting,
486 					 msecs_to_jiffies(5000))) {
487 		pr_crit("CPU%u: failed to start\n", cpu);
488 		return -EIO;
489 	}
490 
491 	/* Wait for CPU to finish startup & mark itself online before return */
492 	wait_for_completion(&cpu_running);
493 
494 	return 0;
495 }
496 
497 /*
498  * First C code run on the secondary CPUs after being started up by
499  * the master.
500  */
501 asmlinkage void start_secondary(void)
502 {
503 	unsigned int cpu;
504 
505 	sync_counter();
506 	cpu = smp_processor_id();
507 	set_my_cpu_offset(per_cpu_offset(cpu));
508 
509 	cpu_probe();
510 	constant_clockevent_init();
511 	loongson_init_secondary();
512 
513 	set_cpu_sibling_map(cpu);
514 	set_cpu_core_map(cpu);
515 
516 	notify_cpu_starting(cpu);
517 
518 	/* Notify boot CPU that we're starting */
519 	complete(&cpu_starting);
520 
521 	/* The CPU is running, now mark it online */
522 	set_cpu_online(cpu, true);
523 
524 	calculate_cpu_foreign_map();
525 
526 	/*
527 	 * Notify boot CPU that we're up & online and it can safely return
528 	 * from __cpu_up()
529 	 */
530 	complete(&cpu_running);
531 
532 	/*
533 	 * irq will be enabled in loongson_smp_finish(), enabling it too
534 	 * early is dangerous.
535 	 */
536 	WARN_ON_ONCE(!irqs_disabled());
537 	loongson_smp_finish();
538 
539 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
540 }
541 
542 void __init smp_cpus_done(unsigned int max_cpus)
543 {
544 }
545 
546 static void stop_this_cpu(void *dummy)
547 {
548 	set_cpu_online(smp_processor_id(), false);
549 	calculate_cpu_foreign_map();
550 	local_irq_disable();
551 	while (true);
552 }
553 
554 void smp_send_stop(void)
555 {
556 	smp_call_function(stop_this_cpu, NULL, 0);
557 }
558 
559 int setup_profiling_timer(unsigned int multiplier)
560 {
561 	return 0;
562 }
563 
564 static void flush_tlb_all_ipi(void *info)
565 {
566 	local_flush_tlb_all();
567 }
568 
569 void flush_tlb_all(void)
570 {
571 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
572 }
573 
574 static void flush_tlb_mm_ipi(void *mm)
575 {
576 	local_flush_tlb_mm((struct mm_struct *)mm);
577 }
578 
579 void flush_tlb_mm(struct mm_struct *mm)
580 {
581 	if (atomic_read(&mm->mm_users) == 0)
582 		return;		/* happens as a result of exit_mmap() */
583 
584 	preempt_disable();
585 
586 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
587 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
588 	} else {
589 		unsigned int cpu;
590 
591 		for_each_online_cpu(cpu) {
592 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
593 				cpu_context(cpu, mm) = 0;
594 		}
595 		local_flush_tlb_mm(mm);
596 	}
597 
598 	preempt_enable();
599 }
600 
601 struct flush_tlb_data {
602 	struct vm_area_struct *vma;
603 	unsigned long addr1;
604 	unsigned long addr2;
605 };
606 
607 static void flush_tlb_range_ipi(void *info)
608 {
609 	struct flush_tlb_data *fd = info;
610 
611 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
612 }
613 
614 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
615 {
616 	struct mm_struct *mm = vma->vm_mm;
617 
618 	preempt_disable();
619 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
620 		struct flush_tlb_data fd = {
621 			.vma = vma,
622 			.addr1 = start,
623 			.addr2 = end,
624 		};
625 
626 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
627 	} else {
628 		unsigned int cpu;
629 
630 		for_each_online_cpu(cpu) {
631 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
632 				cpu_context(cpu, mm) = 0;
633 		}
634 		local_flush_tlb_range(vma, start, end);
635 	}
636 	preempt_enable();
637 }
638 
639 static void flush_tlb_kernel_range_ipi(void *info)
640 {
641 	struct flush_tlb_data *fd = info;
642 
643 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
644 }
645 
646 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
647 {
648 	struct flush_tlb_data fd = {
649 		.addr1 = start,
650 		.addr2 = end,
651 	};
652 
653 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
654 }
655 
656 static void flush_tlb_page_ipi(void *info)
657 {
658 	struct flush_tlb_data *fd = info;
659 
660 	local_flush_tlb_page(fd->vma, fd->addr1);
661 }
662 
663 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
664 {
665 	preempt_disable();
666 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
667 		struct flush_tlb_data fd = {
668 			.vma = vma,
669 			.addr1 = page,
670 		};
671 
672 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
673 	} else {
674 		unsigned int cpu;
675 
676 		for_each_online_cpu(cpu) {
677 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
678 				cpu_context(cpu, vma->vm_mm) = 0;
679 		}
680 		local_flush_tlb_page(vma, page);
681 	}
682 	preempt_enable();
683 }
684 EXPORT_SYMBOL(flush_tlb_page);
685 
686 static void flush_tlb_one_ipi(void *info)
687 {
688 	unsigned long vaddr = (unsigned long) info;
689 
690 	local_flush_tlb_one(vaddr);
691 }
692 
693 void flush_tlb_one(unsigned long vaddr)
694 {
695 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
696 }
697 EXPORT_SYMBOL(flush_tlb_one);
698