1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/acpi.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/profile.h> 17 #include <linux/seq_file.h> 18 #include <linux/smp.h> 19 #include <linux/threads.h> 20 #include <linux/export.h> 21 #include <linux/syscore_ops.h> 22 #include <linux/time.h> 23 #include <linux/tracepoint.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task_stack.h> 26 27 #include <asm/cpu.h> 28 #include <asm/idle.h> 29 #include <asm/loongson.h> 30 #include <asm/mmu_context.h> 31 #include <asm/numa.h> 32 #include <asm/processor.h> 33 #include <asm/setup.h> 34 #include <asm/time.h> 35 36 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 37 EXPORT_SYMBOL(__cpu_number_map); 38 39 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 40 EXPORT_SYMBOL(__cpu_logical_map); 41 42 /* Representing the threads (siblings) of each logical CPU */ 43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 44 EXPORT_SYMBOL(cpu_sibling_map); 45 46 /* Representing the core map of multi-core chips of each logical CPU */ 47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 48 EXPORT_SYMBOL(cpu_core_map); 49 50 static DECLARE_COMPLETION(cpu_starting); 51 static DECLARE_COMPLETION(cpu_running); 52 53 /* 54 * A logcal cpu mask containing only one VPE per core to 55 * reduce the number of IPIs on large MT systems. 56 */ 57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 58 EXPORT_SYMBOL(cpu_foreign_map); 59 60 /* representing cpus for which sibling maps can be computed */ 61 static cpumask_t cpu_sibling_setup_map; 62 63 /* representing cpus for which core maps can be computed */ 64 static cpumask_t cpu_core_setup_map; 65 66 struct secondary_data cpuboot_data; 67 static DEFINE_PER_CPU(int, cpu_state); 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNCTION, 72 }; 73 74 static const char *ipi_types[NR_IPI] __tracepoint_string = { 75 [IPI_RESCHEDULE] = "Rescheduling interrupts", 76 [IPI_CALL_FUNCTION] = "Function call interrupts", 77 }; 78 79 void show_ipi_list(struct seq_file *p, int prec) 80 { 81 unsigned int cpu, i; 82 83 for (i = 0; i < NR_IPI; i++) { 84 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 85 for_each_online_cpu(cpu) 86 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 87 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 88 } 89 } 90 91 /* Send mailbox buffer via Mail_Send */ 92 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 93 { 94 uint64_t val; 95 96 /* Send high 32 bits */ 97 val = IOCSR_MBUF_SEND_BLOCKING; 98 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 99 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 100 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 101 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 102 103 /* Send low 32 bits */ 104 val = IOCSR_MBUF_SEND_BLOCKING; 105 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 106 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 107 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 108 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 109 }; 110 111 static u32 ipi_read_clear(int cpu) 112 { 113 u32 action; 114 115 /* Load the ipi register to figure out what we're supposed to do */ 116 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 117 /* Clear the ipi register to clear the interrupt */ 118 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 119 wbflush(); 120 121 return action; 122 } 123 124 static void ipi_write_action(int cpu, u32 action) 125 { 126 unsigned int irq = 0; 127 128 while ((irq = ffs(action))) { 129 uint32_t val = IOCSR_IPI_SEND_BLOCKING; 130 131 val |= (irq - 1); 132 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 133 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 134 action &= ~BIT(irq - 1); 135 } 136 } 137 138 void loongson_send_ipi_single(int cpu, unsigned int action) 139 { 140 ipi_write_action(cpu_logical_map(cpu), (u32)action); 141 } 142 143 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 144 { 145 unsigned int i; 146 147 for_each_cpu(i, mask) 148 ipi_write_action(cpu_logical_map(i), (u32)action); 149 } 150 151 /* 152 * This function sends a 'reschedule' IPI to another CPU. 153 * it goes straight through and wastes no time serializing 154 * anything. Worst case is that we lose a reschedule ... 155 */ 156 void arch_smp_send_reschedule(int cpu) 157 { 158 loongson_send_ipi_single(cpu, SMP_RESCHEDULE); 159 } 160 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 161 162 irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 163 { 164 unsigned int action; 165 unsigned int cpu = smp_processor_id(); 166 167 action = ipi_read_clear(cpu_logical_map(cpu)); 168 169 if (action & SMP_RESCHEDULE) { 170 scheduler_ipi(); 171 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 172 } 173 174 if (action & SMP_CALL_FUNCTION) { 175 generic_smp_call_function_interrupt(); 176 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 177 } 178 179 return IRQ_HANDLED; 180 } 181 182 static void __init fdt_smp_setup(void) 183 { 184 #ifdef CONFIG_OF 185 unsigned int cpu, cpuid; 186 struct device_node *node = NULL; 187 188 for_each_of_cpu_node(node) { 189 if (!of_device_is_available(node)) 190 continue; 191 192 cpuid = of_get_cpu_hwid(node, 0); 193 if (cpuid >= nr_cpu_ids) 194 continue; 195 196 if (cpuid == loongson_sysconf.boot_cpu_id) { 197 cpu = 0; 198 numa_add_cpu(cpu); 199 } else { 200 cpu = cpumask_next_zero(-1, cpu_present_mask); 201 } 202 203 num_processors++; 204 set_cpu_possible(cpu, true); 205 set_cpu_present(cpu, true); 206 __cpu_number_map[cpuid] = cpu; 207 __cpu_logical_map[cpu] = cpuid; 208 } 209 210 loongson_sysconf.nr_cpus = num_processors; 211 set_bit(0, &(loongson_sysconf.cores_io_master)); 212 #endif 213 } 214 215 void __init loongson_smp_setup(void) 216 { 217 fdt_smp_setup(); 218 219 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 220 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 221 222 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 223 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 224 } 225 226 void __init loongson_prepare_cpus(unsigned int max_cpus) 227 { 228 int i = 0; 229 230 parse_acpi_topology(); 231 232 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 233 set_cpu_present(i, true); 234 csr_mail_send(0, __cpu_logical_map[i], 0); 235 cpu_data[i].global_id = __cpu_logical_map[i]; 236 } 237 238 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 239 } 240 241 /* 242 * Setup the PC, SP, and TP of a secondary processor and start it running! 243 */ 244 void loongson_boot_secondary(int cpu, struct task_struct *idle) 245 { 246 unsigned long entry; 247 248 pr_info("Booting CPU#%d...\n", cpu); 249 250 entry = __pa_symbol((unsigned long)&smpboot_entry); 251 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 252 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 253 254 csr_mail_send(entry, cpu_logical_map(cpu), 0); 255 256 loongson_send_ipi_single(cpu, SMP_BOOT_CPU); 257 } 258 259 /* 260 * SMP init and finish on secondary CPUs 261 */ 262 void loongson_init_secondary(void) 263 { 264 unsigned int cpu = smp_processor_id(); 265 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 266 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER; 267 268 change_csr_ecfg(ECFG0_IM, imask); 269 270 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 271 272 #ifdef CONFIG_NUMA 273 numa_add_cpu(cpu); 274 #endif 275 per_cpu(cpu_state, cpu) = CPU_ONLINE; 276 cpu_data[cpu].package = 277 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 278 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core : 279 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 280 } 281 282 void loongson_smp_finish(void) 283 { 284 local_irq_enable(); 285 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 286 pr_info("CPU#%d finished\n", smp_processor_id()); 287 } 288 289 #ifdef CONFIG_HOTPLUG_CPU 290 291 int loongson_cpu_disable(void) 292 { 293 unsigned long flags; 294 unsigned int cpu = smp_processor_id(); 295 296 if (io_master(cpu)) 297 return -EBUSY; 298 299 #ifdef CONFIG_NUMA 300 numa_remove_cpu(cpu); 301 #endif 302 set_cpu_online(cpu, false); 303 calculate_cpu_foreign_map(); 304 local_irq_save(flags); 305 irq_migrate_all_off_this_cpu(); 306 clear_csr_ecfg(ECFG0_IM); 307 local_irq_restore(flags); 308 local_flush_tlb_all(); 309 310 return 0; 311 } 312 313 void loongson_cpu_die(unsigned int cpu) 314 { 315 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 316 cpu_relax(); 317 318 mb(); 319 } 320 321 void __noreturn arch_cpu_idle_dead(void) 322 { 323 register uint64_t addr; 324 register void (*init_fn)(void); 325 326 idle_task_exit(); 327 local_irq_enable(); 328 set_csr_ecfg(ECFGF_IPI); 329 __this_cpu_write(cpu_state, CPU_DEAD); 330 331 __smp_mb(); 332 do { 333 __asm__ __volatile__("idle 0\n\t"); 334 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 335 } while (addr == 0); 336 337 init_fn = (void *)TO_CACHE(addr); 338 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 339 340 init_fn(); 341 BUG(); 342 } 343 344 #endif 345 346 /* 347 * Power management 348 */ 349 #ifdef CONFIG_PM 350 351 static int loongson_ipi_suspend(void) 352 { 353 return 0; 354 } 355 356 static void loongson_ipi_resume(void) 357 { 358 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 359 } 360 361 static struct syscore_ops loongson_ipi_syscore_ops = { 362 .resume = loongson_ipi_resume, 363 .suspend = loongson_ipi_suspend, 364 }; 365 366 /* 367 * Enable boot cpu ipi before enabling nonboot cpus 368 * during syscore_resume. 369 */ 370 static int __init ipi_pm_init(void) 371 { 372 register_syscore_ops(&loongson_ipi_syscore_ops); 373 return 0; 374 } 375 376 core_initcall(ipi_pm_init); 377 #endif 378 379 static inline void set_cpu_sibling_map(int cpu) 380 { 381 int i; 382 383 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 384 385 for_each_cpu(i, &cpu_sibling_setup_map) { 386 if (cpus_are_siblings(cpu, i)) { 387 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 388 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 389 } 390 } 391 } 392 393 static inline void set_cpu_core_map(int cpu) 394 { 395 int i; 396 397 cpumask_set_cpu(cpu, &cpu_core_setup_map); 398 399 for_each_cpu(i, &cpu_core_setup_map) { 400 if (cpu_data[cpu].package == cpu_data[i].package) { 401 cpumask_set_cpu(i, &cpu_core_map[cpu]); 402 cpumask_set_cpu(cpu, &cpu_core_map[i]); 403 } 404 } 405 } 406 407 /* 408 * Calculate a new cpu_foreign_map mask whenever a 409 * new cpu appears or disappears. 410 */ 411 void calculate_cpu_foreign_map(void) 412 { 413 int i, k, core_present; 414 cpumask_t temp_foreign_map; 415 416 /* Re-calculate the mask */ 417 cpumask_clear(&temp_foreign_map); 418 for_each_online_cpu(i) { 419 core_present = 0; 420 for_each_cpu(k, &temp_foreign_map) 421 if (cpus_are_siblings(i, k)) 422 core_present = 1; 423 if (!core_present) 424 cpumask_set_cpu(i, &temp_foreign_map); 425 } 426 427 for_each_online_cpu(i) 428 cpumask_andnot(&cpu_foreign_map[i], 429 &temp_foreign_map, &cpu_sibling_map[i]); 430 } 431 432 /* Preload SMP state for boot cpu */ 433 void smp_prepare_boot_cpu(void) 434 { 435 unsigned int cpu, node, rr_node; 436 437 set_cpu_possible(0, true); 438 set_cpu_online(0, true); 439 set_my_cpu_offset(per_cpu_offset(0)); 440 441 rr_node = first_node(node_online_map); 442 for_each_possible_cpu(cpu) { 443 node = early_cpu_to_node(cpu); 444 445 /* 446 * The mapping between present cpus and nodes has been 447 * built during MADT and SRAT parsing. 448 * 449 * If possible cpus = present cpus here, early_cpu_to_node 450 * will return valid node. 451 * 452 * If possible cpus > present cpus here (e.g. some possible 453 * cpus will be added by cpu-hotplug later), for possible but 454 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 455 * and we just map them to online nodes in round-robin way. 456 * Once hotplugged, new correct mapping will be built for them. 457 */ 458 if (node != NUMA_NO_NODE) 459 set_cpu_numa_node(cpu, node); 460 else { 461 set_cpu_numa_node(cpu, rr_node); 462 rr_node = next_node_in(rr_node, node_online_map); 463 } 464 } 465 } 466 467 /* called from main before smp_init() */ 468 void __init smp_prepare_cpus(unsigned int max_cpus) 469 { 470 init_new_context(current, &init_mm); 471 current_thread_info()->cpu = 0; 472 loongson_prepare_cpus(max_cpus); 473 set_cpu_sibling_map(0); 474 set_cpu_core_map(0); 475 calculate_cpu_foreign_map(); 476 #ifndef CONFIG_HOTPLUG_CPU 477 init_cpu_present(cpu_possible_mask); 478 #endif 479 } 480 481 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 482 { 483 loongson_boot_secondary(cpu, tidle); 484 485 /* Wait for CPU to start and be ready to sync counters */ 486 if (!wait_for_completion_timeout(&cpu_starting, 487 msecs_to_jiffies(5000))) { 488 pr_crit("CPU%u: failed to start\n", cpu); 489 return -EIO; 490 } 491 492 /* Wait for CPU to finish startup & mark itself online before return */ 493 wait_for_completion(&cpu_running); 494 495 return 0; 496 } 497 498 /* 499 * First C code run on the secondary CPUs after being started up by 500 * the master. 501 */ 502 asmlinkage void start_secondary(void) 503 { 504 unsigned int cpu; 505 506 sync_counter(); 507 cpu = raw_smp_processor_id(); 508 set_my_cpu_offset(per_cpu_offset(cpu)); 509 510 cpu_probe(); 511 constant_clockevent_init(); 512 loongson_init_secondary(); 513 514 set_cpu_sibling_map(cpu); 515 set_cpu_core_map(cpu); 516 517 notify_cpu_starting(cpu); 518 519 /* Notify boot CPU that we're starting */ 520 complete(&cpu_starting); 521 522 /* The CPU is running, now mark it online */ 523 set_cpu_online(cpu, true); 524 525 calculate_cpu_foreign_map(); 526 527 /* 528 * Notify boot CPU that we're up & online and it can safely return 529 * from __cpu_up() 530 */ 531 complete(&cpu_running); 532 533 /* 534 * irq will be enabled in loongson_smp_finish(), enabling it too 535 * early is dangerous. 536 */ 537 WARN_ON_ONCE(!irqs_disabled()); 538 loongson_smp_finish(); 539 540 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 541 } 542 543 void __init smp_cpus_done(unsigned int max_cpus) 544 { 545 } 546 547 static void stop_this_cpu(void *dummy) 548 { 549 set_cpu_online(smp_processor_id(), false); 550 calculate_cpu_foreign_map(); 551 local_irq_disable(); 552 while (true); 553 } 554 555 void smp_send_stop(void) 556 { 557 smp_call_function(stop_this_cpu, NULL, 0); 558 } 559 560 #ifdef CONFIG_PROFILING 561 int setup_profiling_timer(unsigned int multiplier) 562 { 563 return 0; 564 } 565 #endif 566 567 static void flush_tlb_all_ipi(void *info) 568 { 569 local_flush_tlb_all(); 570 } 571 572 void flush_tlb_all(void) 573 { 574 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 575 } 576 577 static void flush_tlb_mm_ipi(void *mm) 578 { 579 local_flush_tlb_mm((struct mm_struct *)mm); 580 } 581 582 void flush_tlb_mm(struct mm_struct *mm) 583 { 584 if (atomic_read(&mm->mm_users) == 0) 585 return; /* happens as a result of exit_mmap() */ 586 587 preempt_disable(); 588 589 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 590 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 591 } else { 592 unsigned int cpu; 593 594 for_each_online_cpu(cpu) { 595 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 596 cpu_context(cpu, mm) = 0; 597 } 598 local_flush_tlb_mm(mm); 599 } 600 601 preempt_enable(); 602 } 603 604 struct flush_tlb_data { 605 struct vm_area_struct *vma; 606 unsigned long addr1; 607 unsigned long addr2; 608 }; 609 610 static void flush_tlb_range_ipi(void *info) 611 { 612 struct flush_tlb_data *fd = info; 613 614 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 615 } 616 617 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 618 { 619 struct mm_struct *mm = vma->vm_mm; 620 621 preempt_disable(); 622 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 623 struct flush_tlb_data fd = { 624 .vma = vma, 625 .addr1 = start, 626 .addr2 = end, 627 }; 628 629 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 630 } else { 631 unsigned int cpu; 632 633 for_each_online_cpu(cpu) { 634 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 635 cpu_context(cpu, mm) = 0; 636 } 637 local_flush_tlb_range(vma, start, end); 638 } 639 preempt_enable(); 640 } 641 642 static void flush_tlb_kernel_range_ipi(void *info) 643 { 644 struct flush_tlb_data *fd = info; 645 646 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 647 } 648 649 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 650 { 651 struct flush_tlb_data fd = { 652 .addr1 = start, 653 .addr2 = end, 654 }; 655 656 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 657 } 658 659 static void flush_tlb_page_ipi(void *info) 660 { 661 struct flush_tlb_data *fd = info; 662 663 local_flush_tlb_page(fd->vma, fd->addr1); 664 } 665 666 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 667 { 668 preempt_disable(); 669 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 670 struct flush_tlb_data fd = { 671 .vma = vma, 672 .addr1 = page, 673 }; 674 675 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 676 } else { 677 unsigned int cpu; 678 679 for_each_online_cpu(cpu) { 680 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 681 cpu_context(cpu, vma->vm_mm) = 0; 682 } 683 local_flush_tlb_page(vma, page); 684 } 685 preempt_enable(); 686 } 687 EXPORT_SYMBOL(flush_tlb_page); 688 689 static void flush_tlb_one_ipi(void *info) 690 { 691 unsigned long vaddr = (unsigned long) info; 692 693 local_flush_tlb_one(vaddr); 694 } 695 696 void flush_tlb_one(unsigned long vaddr) 697 { 698 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 699 } 700 EXPORT_SYMBOL(flush_tlb_one); 701