xref: /openbmc/linux/arch/loongarch/kernel/smp.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/processor.h>
33 #include <asm/setup.h>
34 #include <asm/time.h>
35 
36 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
37 EXPORT_SYMBOL(__cpu_number_map);
38 
39 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
40 EXPORT_SYMBOL(__cpu_logical_map);
41 
42 /* Representing the threads (siblings) of each logical CPU */
43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
44 EXPORT_SYMBOL(cpu_sibling_map);
45 
46 /* Representing the core map of multi-core chips of each logical CPU */
47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
48 EXPORT_SYMBOL(cpu_core_map);
49 
50 static DECLARE_COMPLETION(cpu_starting);
51 static DECLARE_COMPLETION(cpu_running);
52 
53 /*
54  * A logcal cpu mask containing only one VPE per core to
55  * reduce the number of IPIs on large MT systems.
56  */
57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_foreign_map);
59 
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62 
63 /* representing cpus for which core maps can be computed */
64 static cpumask_t cpu_core_setup_map;
65 
66 struct secondary_data cpuboot_data;
67 static DEFINE_PER_CPU(int, cpu_state);
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNCTION,
72 };
73 
74 static const char *ipi_types[NR_IPI] __tracepoint_string = {
75 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
76 	[IPI_CALL_FUNCTION] = "Function call interrupts",
77 };
78 
79 void show_ipi_list(struct seq_file *p, int prec)
80 {
81 	unsigned int cpu, i;
82 
83 	for (i = 0; i < NR_IPI; i++) {
84 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
85 		for_each_online_cpu(cpu)
86 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
87 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
88 	}
89 }
90 
91 /* Send mailbox buffer via Mail_Send */
92 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
93 {
94 	uint64_t val;
95 
96 	/* Send high 32 bits */
97 	val = IOCSR_MBUF_SEND_BLOCKING;
98 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
99 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
100 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
101 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
102 
103 	/* Send low 32 bits */
104 	val = IOCSR_MBUF_SEND_BLOCKING;
105 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
106 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
107 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
108 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
109 };
110 
111 static u32 ipi_read_clear(int cpu)
112 {
113 	u32 action;
114 
115 	/* Load the ipi register to figure out what we're supposed to do */
116 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
117 	/* Clear the ipi register to clear the interrupt */
118 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
119 	wbflush();
120 
121 	return action;
122 }
123 
124 static void ipi_write_action(int cpu, u32 action)
125 {
126 	unsigned int irq = 0;
127 
128 	while ((irq = ffs(action))) {
129 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
130 
131 		val |= (irq - 1);
132 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
133 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
134 		action &= ~BIT(irq - 1);
135 	}
136 }
137 
138 void loongson_send_ipi_single(int cpu, unsigned int action)
139 {
140 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
141 }
142 
143 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
144 {
145 	unsigned int i;
146 
147 	for_each_cpu(i, mask)
148 		ipi_write_action(cpu_logical_map(i), (u32)action);
149 }
150 
151 /*
152  * This function sends a 'reschedule' IPI to another CPU.
153  * it goes straight through and wastes no time serializing
154  * anything. Worst case is that we lose a reschedule ...
155  */
156 void arch_smp_send_reschedule(int cpu)
157 {
158 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
159 }
160 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
161 
162 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
163 {
164 	unsigned int action;
165 	unsigned int cpu = smp_processor_id();
166 
167 	action = ipi_read_clear(cpu_logical_map(cpu));
168 
169 	if (action & SMP_RESCHEDULE) {
170 		scheduler_ipi();
171 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
172 	}
173 
174 	if (action & SMP_CALL_FUNCTION) {
175 		generic_smp_call_function_interrupt();
176 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
177 	}
178 
179 	return IRQ_HANDLED;
180 }
181 
182 static void __init fdt_smp_setup(void)
183 {
184 #ifdef CONFIG_OF
185 	unsigned int cpu, cpuid;
186 	struct device_node *node = NULL;
187 
188 	for_each_of_cpu_node(node) {
189 		if (!of_device_is_available(node))
190 			continue;
191 
192 		cpuid = of_get_cpu_hwid(node, 0);
193 		if (cpuid >= nr_cpu_ids)
194 			continue;
195 
196 		if (cpuid == loongson_sysconf.boot_cpu_id) {
197 			cpu = 0;
198 			numa_add_cpu(cpu);
199 		} else {
200 			cpu = cpumask_next_zero(-1, cpu_present_mask);
201 		}
202 
203 		num_processors++;
204 		set_cpu_possible(cpu, true);
205 		set_cpu_present(cpu, true);
206 		__cpu_number_map[cpuid] = cpu;
207 		__cpu_logical_map[cpu] = cpuid;
208 	}
209 
210 	loongson_sysconf.nr_cpus = num_processors;
211 	set_bit(0, &(loongson_sysconf.cores_io_master));
212 #endif
213 }
214 
215 void __init loongson_smp_setup(void)
216 {
217 	fdt_smp_setup();
218 
219 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
220 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
221 
222 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
223 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
224 }
225 
226 void __init loongson_prepare_cpus(unsigned int max_cpus)
227 {
228 	int i = 0;
229 
230 	parse_acpi_topology();
231 
232 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
233 		set_cpu_present(i, true);
234 		csr_mail_send(0, __cpu_logical_map[i], 0);
235 		cpu_data[i].global_id = __cpu_logical_map[i];
236 	}
237 
238 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
239 }
240 
241 /*
242  * Setup the PC, SP, and TP of a secondary processor and start it running!
243  */
244 void loongson_boot_secondary(int cpu, struct task_struct *idle)
245 {
246 	unsigned long entry;
247 
248 	pr_info("Booting CPU#%d...\n", cpu);
249 
250 	entry = __pa_symbol((unsigned long)&smpboot_entry);
251 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
252 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
253 
254 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
255 
256 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
257 }
258 
259 /*
260  * SMP init and finish on secondary CPUs
261  */
262 void loongson_init_secondary(void)
263 {
264 	unsigned int cpu = smp_processor_id();
265 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
266 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
267 
268 	change_csr_ecfg(ECFG0_IM, imask);
269 
270 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
271 
272 #ifdef CONFIG_NUMA
273 	numa_add_cpu(cpu);
274 #endif
275 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
276 	cpu_data[cpu].package =
277 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
278 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
279 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
280 }
281 
282 void loongson_smp_finish(void)
283 {
284 	local_irq_enable();
285 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
286 	pr_info("CPU#%d finished\n", smp_processor_id());
287 }
288 
289 #ifdef CONFIG_HOTPLUG_CPU
290 
291 int loongson_cpu_disable(void)
292 {
293 	unsigned long flags;
294 	unsigned int cpu = smp_processor_id();
295 
296 	if (io_master(cpu))
297 		return -EBUSY;
298 
299 #ifdef CONFIG_NUMA
300 	numa_remove_cpu(cpu);
301 #endif
302 	set_cpu_online(cpu, false);
303 	calculate_cpu_foreign_map();
304 	local_irq_save(flags);
305 	irq_migrate_all_off_this_cpu();
306 	clear_csr_ecfg(ECFG0_IM);
307 	local_irq_restore(flags);
308 	local_flush_tlb_all();
309 
310 	return 0;
311 }
312 
313 void loongson_cpu_die(unsigned int cpu)
314 {
315 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
316 		cpu_relax();
317 
318 	mb();
319 }
320 
321 void __noreturn arch_cpu_idle_dead(void)
322 {
323 	register uint64_t addr;
324 	register void (*init_fn)(void);
325 
326 	idle_task_exit();
327 	local_irq_enable();
328 	set_csr_ecfg(ECFGF_IPI);
329 	__this_cpu_write(cpu_state, CPU_DEAD);
330 
331 	__smp_mb();
332 	do {
333 		__asm__ __volatile__("idle 0\n\t");
334 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
335 	} while (addr == 0);
336 
337 	init_fn = (void *)TO_CACHE(addr);
338 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
339 
340 	init_fn();
341 	BUG();
342 }
343 
344 #endif
345 
346 /*
347  * Power management
348  */
349 #ifdef CONFIG_PM
350 
351 static int loongson_ipi_suspend(void)
352 {
353 	return 0;
354 }
355 
356 static void loongson_ipi_resume(void)
357 {
358 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
359 }
360 
361 static struct syscore_ops loongson_ipi_syscore_ops = {
362 	.resume         = loongson_ipi_resume,
363 	.suspend        = loongson_ipi_suspend,
364 };
365 
366 /*
367  * Enable boot cpu ipi before enabling nonboot cpus
368  * during syscore_resume.
369  */
370 static int __init ipi_pm_init(void)
371 {
372 	register_syscore_ops(&loongson_ipi_syscore_ops);
373 	return 0;
374 }
375 
376 core_initcall(ipi_pm_init);
377 #endif
378 
379 static inline void set_cpu_sibling_map(int cpu)
380 {
381 	int i;
382 
383 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
384 
385 	for_each_cpu(i, &cpu_sibling_setup_map) {
386 		if (cpus_are_siblings(cpu, i)) {
387 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
388 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
389 		}
390 	}
391 }
392 
393 static inline void set_cpu_core_map(int cpu)
394 {
395 	int i;
396 
397 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
398 
399 	for_each_cpu(i, &cpu_core_setup_map) {
400 		if (cpu_data[cpu].package == cpu_data[i].package) {
401 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
402 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
403 		}
404 	}
405 }
406 
407 /*
408  * Calculate a new cpu_foreign_map mask whenever a
409  * new cpu appears or disappears.
410  */
411 void calculate_cpu_foreign_map(void)
412 {
413 	int i, k, core_present;
414 	cpumask_t temp_foreign_map;
415 
416 	/* Re-calculate the mask */
417 	cpumask_clear(&temp_foreign_map);
418 	for_each_online_cpu(i) {
419 		core_present = 0;
420 		for_each_cpu(k, &temp_foreign_map)
421 			if (cpus_are_siblings(i, k))
422 				core_present = 1;
423 		if (!core_present)
424 			cpumask_set_cpu(i, &temp_foreign_map);
425 	}
426 
427 	for_each_online_cpu(i)
428 		cpumask_andnot(&cpu_foreign_map[i],
429 			       &temp_foreign_map, &cpu_sibling_map[i]);
430 }
431 
432 /* Preload SMP state for boot cpu */
433 void smp_prepare_boot_cpu(void)
434 {
435 	unsigned int cpu, node, rr_node;
436 
437 	set_cpu_possible(0, true);
438 	set_cpu_online(0, true);
439 	set_my_cpu_offset(per_cpu_offset(0));
440 
441 	rr_node = first_node(node_online_map);
442 	for_each_possible_cpu(cpu) {
443 		node = early_cpu_to_node(cpu);
444 
445 		/*
446 		 * The mapping between present cpus and nodes has been
447 		 * built during MADT and SRAT parsing.
448 		 *
449 		 * If possible cpus = present cpus here, early_cpu_to_node
450 		 * will return valid node.
451 		 *
452 		 * If possible cpus > present cpus here (e.g. some possible
453 		 * cpus will be added by cpu-hotplug later), for possible but
454 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
455 		 * and we just map them to online nodes in round-robin way.
456 		 * Once hotplugged, new correct mapping will be built for them.
457 		 */
458 		if (node != NUMA_NO_NODE)
459 			set_cpu_numa_node(cpu, node);
460 		else {
461 			set_cpu_numa_node(cpu, rr_node);
462 			rr_node = next_node_in(rr_node, node_online_map);
463 		}
464 	}
465 }
466 
467 /* called from main before smp_init() */
468 void __init smp_prepare_cpus(unsigned int max_cpus)
469 {
470 	init_new_context(current, &init_mm);
471 	current_thread_info()->cpu = 0;
472 	loongson_prepare_cpus(max_cpus);
473 	set_cpu_sibling_map(0);
474 	set_cpu_core_map(0);
475 	calculate_cpu_foreign_map();
476 #ifndef CONFIG_HOTPLUG_CPU
477 	init_cpu_present(cpu_possible_mask);
478 #endif
479 }
480 
481 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
482 {
483 	loongson_boot_secondary(cpu, tidle);
484 
485 	/* Wait for CPU to start and be ready to sync counters */
486 	if (!wait_for_completion_timeout(&cpu_starting,
487 					 msecs_to_jiffies(5000))) {
488 		pr_crit("CPU%u: failed to start\n", cpu);
489 		return -EIO;
490 	}
491 
492 	/* Wait for CPU to finish startup & mark itself online before return */
493 	wait_for_completion(&cpu_running);
494 
495 	return 0;
496 }
497 
498 /*
499  * First C code run on the secondary CPUs after being started up by
500  * the master.
501  */
502 asmlinkage void start_secondary(void)
503 {
504 	unsigned int cpu;
505 
506 	sync_counter();
507 	cpu = smp_processor_id();
508 	set_my_cpu_offset(per_cpu_offset(cpu));
509 
510 	cpu_probe();
511 	constant_clockevent_init();
512 	loongson_init_secondary();
513 
514 	set_cpu_sibling_map(cpu);
515 	set_cpu_core_map(cpu);
516 
517 	notify_cpu_starting(cpu);
518 
519 	/* Notify boot CPU that we're starting */
520 	complete(&cpu_starting);
521 
522 	/* The CPU is running, now mark it online */
523 	set_cpu_online(cpu, true);
524 
525 	calculate_cpu_foreign_map();
526 
527 	/*
528 	 * Notify boot CPU that we're up & online and it can safely return
529 	 * from __cpu_up()
530 	 */
531 	complete(&cpu_running);
532 
533 	/*
534 	 * irq will be enabled in loongson_smp_finish(), enabling it too
535 	 * early is dangerous.
536 	 */
537 	WARN_ON_ONCE(!irqs_disabled());
538 	loongson_smp_finish();
539 
540 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
541 }
542 
543 void __init smp_cpus_done(unsigned int max_cpus)
544 {
545 }
546 
547 static void stop_this_cpu(void *dummy)
548 {
549 	set_cpu_online(smp_processor_id(), false);
550 	calculate_cpu_foreign_map();
551 	local_irq_disable();
552 	while (true);
553 }
554 
555 void smp_send_stop(void)
556 {
557 	smp_call_function(stop_this_cpu, NULL, 0);
558 }
559 
560 #ifdef CONFIG_PROFILING
561 int setup_profiling_timer(unsigned int multiplier)
562 {
563 	return 0;
564 }
565 #endif
566 
567 static void flush_tlb_all_ipi(void *info)
568 {
569 	local_flush_tlb_all();
570 }
571 
572 void flush_tlb_all(void)
573 {
574 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
575 }
576 
577 static void flush_tlb_mm_ipi(void *mm)
578 {
579 	local_flush_tlb_mm((struct mm_struct *)mm);
580 }
581 
582 void flush_tlb_mm(struct mm_struct *mm)
583 {
584 	if (atomic_read(&mm->mm_users) == 0)
585 		return;		/* happens as a result of exit_mmap() */
586 
587 	preempt_disable();
588 
589 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
590 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
591 	} else {
592 		unsigned int cpu;
593 
594 		for_each_online_cpu(cpu) {
595 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
596 				cpu_context(cpu, mm) = 0;
597 		}
598 		local_flush_tlb_mm(mm);
599 	}
600 
601 	preempt_enable();
602 }
603 
604 struct flush_tlb_data {
605 	struct vm_area_struct *vma;
606 	unsigned long addr1;
607 	unsigned long addr2;
608 };
609 
610 static void flush_tlb_range_ipi(void *info)
611 {
612 	struct flush_tlb_data *fd = info;
613 
614 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
615 }
616 
617 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
618 {
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	preempt_disable();
622 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
623 		struct flush_tlb_data fd = {
624 			.vma = vma,
625 			.addr1 = start,
626 			.addr2 = end,
627 		};
628 
629 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
630 	} else {
631 		unsigned int cpu;
632 
633 		for_each_online_cpu(cpu) {
634 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
635 				cpu_context(cpu, mm) = 0;
636 		}
637 		local_flush_tlb_range(vma, start, end);
638 	}
639 	preempt_enable();
640 }
641 
642 static void flush_tlb_kernel_range_ipi(void *info)
643 {
644 	struct flush_tlb_data *fd = info;
645 
646 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
647 }
648 
649 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
650 {
651 	struct flush_tlb_data fd = {
652 		.addr1 = start,
653 		.addr2 = end,
654 	};
655 
656 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
657 }
658 
659 static void flush_tlb_page_ipi(void *info)
660 {
661 	struct flush_tlb_data *fd = info;
662 
663 	local_flush_tlb_page(fd->vma, fd->addr1);
664 }
665 
666 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
667 {
668 	preempt_disable();
669 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
670 		struct flush_tlb_data fd = {
671 			.vma = vma,
672 			.addr1 = page,
673 		};
674 
675 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
676 	} else {
677 		unsigned int cpu;
678 
679 		for_each_online_cpu(cpu) {
680 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
681 				cpu_context(cpu, vma->vm_mm) = 0;
682 		}
683 		local_flush_tlb_page(vma, page);
684 	}
685 	preempt_enable();
686 }
687 EXPORT_SYMBOL(flush_tlb_page);
688 
689 static void flush_tlb_one_ipi(void *info)
690 {
691 	unsigned long vaddr = (unsigned long) info;
692 
693 	local_flush_tlb_one(vaddr);
694 }
695 
696 void flush_tlb_one(unsigned long vaddr)
697 {
698 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
699 }
700 EXPORT_SYMBOL(flush_tlb_one);
701