xref: /openbmc/linux/arch/ia64/pci/pci.c (revision f35e839a)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33 
34 /*
35  * Low-level SAL-based PCI configuration access functions. Note that SAL
36  * calls are already serialized (via sal_lock), so we don't need another
37  * synchronization mechanism here.
38  */
39 
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
41 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 
43 /* SAL 3.2 adds support for extended config space. */
44 
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
46 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 	      int reg, int len, u32 *value)
50 {
51 	u64 addr, data = 0;
52 	int mode, result;
53 
54 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 		return -EINVAL;
56 
57 	if ((seg | reg) <= 255) {
58 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 		mode = 0;
60 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 		mode = 1;
63 	} else {
64 		return -EINVAL;
65 	}
66 
67 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 	if (result != 0)
69 		return -EINVAL;
70 
71 	*value = (u32) data;
72 	return 0;
73 }
74 
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 	       int reg, int len, u32 value)
77 {
78 	u64 addr;
79 	int mode, result;
80 
81 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 		return -EINVAL;
83 
84 	if ((seg | reg) <= 255) {
85 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 		mode = 0;
87 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 		mode = 1;
90 	} else {
91 		return -EINVAL;
92 	}
93 	result = ia64_sal_pci_config_write(addr, mode, len, value);
94 	if (result != 0)
95 		return -EINVAL;
96 	return 0;
97 }
98 
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 							int size, u32 *value)
101 {
102 	return raw_pci_read(pci_domain_nr(bus), bus->number,
103 				 devfn, where, size, value);
104 }
105 
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 							int size, u32 value)
108 {
109 	return raw_pci_write(pci_domain_nr(bus), bus->number,
110 				  devfn, where, size, value);
111 }
112 
113 struct pci_ops pci_root_ops = {
114 	.read = pci_read,
115 	.write = pci_write,
116 };
117 
118 /* Called by ACPI when it finds a new root bus.  */
119 
120 static struct pci_controller *alloc_pci_controller(int seg)
121 {
122 	struct pci_controller *controller;
123 
124 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 	if (!controller)
126 		return NULL;
127 
128 	controller->segment = seg;
129 	controller->node = -1;
130 	return controller;
131 }
132 
133 struct pci_root_info {
134 	struct acpi_device *bridge;
135 	struct pci_controller *controller;
136 	struct list_head resources;
137 	char *name;
138 };
139 
140 static unsigned int
141 new_space (u64 phys_base, int sparse)
142 {
143 	u64 mmio_base;
144 	int i;
145 
146 	if (phys_base == 0)
147 		return 0;	/* legacy I/O port space */
148 
149 	mmio_base = (u64) ioremap(phys_base, 0);
150 	for (i = 0; i < num_io_spaces; i++)
151 		if (io_space[i].mmio_base == mmio_base &&
152 		    io_space[i].sparse == sparse)
153 			return i;
154 
155 	if (num_io_spaces == MAX_IO_SPACES) {
156 		printk(KERN_ERR "PCI: Too many IO port spaces "
157 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
158 		return ~0;
159 	}
160 
161 	i = num_io_spaces++;
162 	io_space[i].mmio_base = mmio_base;
163 	io_space[i].sparse = sparse;
164 
165 	return i;
166 }
167 
168 static u64 add_io_space(struct pci_root_info *info,
169 			struct acpi_resource_address64 *addr)
170 {
171 	struct resource *resource;
172 	char *name;
173 	unsigned long base, min, max, base_port;
174 	unsigned int sparse = 0, space_nr, len;
175 
176 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
177 	if (!resource) {
178 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
179 			info->name);
180 		goto out;
181 	}
182 
183 	len = strlen(info->name) + 32;
184 	name = kzalloc(len, GFP_KERNEL);
185 	if (!name) {
186 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
187 			info->name);
188 		goto free_resource;
189 	}
190 
191 	min = addr->minimum;
192 	max = min + addr->address_length - 1;
193 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194 		sparse = 1;
195 
196 	space_nr = new_space(addr->translation_offset, sparse);
197 	if (space_nr == ~0)
198 		goto free_name;
199 
200 	base = __pa(io_space[space_nr].mmio_base);
201 	base_port = IO_SPACE_BASE(space_nr);
202 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203 		base_port + min, base_port + max);
204 
205 	/*
206 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207 	 * mapping is done by the processor (not the bridge), ACPI may not
208 	 * mark it as sparse.
209 	 */
210 	if (space_nr == 0)
211 		sparse = 1;
212 
213 	resource->name  = name;
214 	resource->flags = IORESOURCE_MEM;
215 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
216 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
217 	insert_resource(&iomem_resource, resource);
218 
219 	return base_port;
220 
221 free_name:
222 	kfree(name);
223 free_resource:
224 	kfree(resource);
225 out:
226 	return ~0;
227 }
228 
229 static acpi_status resource_to_window(struct acpi_resource *resource,
230 				      struct acpi_resource_address64 *addr)
231 {
232 	acpi_status status;
233 
234 	/*
235 	 * We're only interested in _CRS descriptors that are
236 	 *	- address space descriptors for memory or I/O space
237 	 *	- non-zero size
238 	 *	- producers, i.e., the address space is routed downstream,
239 	 *	  not consumed by the bridge itself
240 	 */
241 	status = acpi_resource_to_address64(resource, addr);
242 	if (ACPI_SUCCESS(status) &&
243 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
244 	     addr->resource_type == ACPI_IO_RANGE) &&
245 	    addr->address_length &&
246 	    addr->producer_consumer == ACPI_PRODUCER)
247 		return AE_OK;
248 
249 	return AE_ERROR;
250 }
251 
252 static acpi_status count_window(struct acpi_resource *resource, void *data)
253 {
254 	unsigned int *windows = (unsigned int *) data;
255 	struct acpi_resource_address64 addr;
256 	acpi_status status;
257 
258 	status = resource_to_window(resource, &addr);
259 	if (ACPI_SUCCESS(status))
260 		(*windows)++;
261 
262 	return AE_OK;
263 }
264 
265 static acpi_status add_window(struct acpi_resource *res, void *data)
266 {
267 	struct pci_root_info *info = data;
268 	struct pci_window *window;
269 	struct acpi_resource_address64 addr;
270 	acpi_status status;
271 	unsigned long flags, offset = 0;
272 	struct resource *root;
273 
274 	/* Return AE_OK for non-window resources to keep scanning for more */
275 	status = resource_to_window(res, &addr);
276 	if (!ACPI_SUCCESS(status))
277 		return AE_OK;
278 
279 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
280 		flags = IORESOURCE_MEM;
281 		root = &iomem_resource;
282 		offset = addr.translation_offset;
283 	} else if (addr.resource_type == ACPI_IO_RANGE) {
284 		flags = IORESOURCE_IO;
285 		root = &ioport_resource;
286 		offset = add_io_space(info, &addr);
287 		if (offset == ~0)
288 			return AE_OK;
289 	} else
290 		return AE_OK;
291 
292 	window = &info->controller->window[info->controller->windows++];
293 	window->resource.name = info->name;
294 	window->resource.flags = flags;
295 	window->resource.start = addr.minimum + offset;
296 	window->resource.end = window->resource.start + addr.address_length - 1;
297 	window->offset = offset;
298 
299 	if (insert_resource(root, &window->resource)) {
300 		dev_err(&info->bridge->dev,
301 			"can't allocate host bridge window %pR\n",
302 			&window->resource);
303 	} else {
304 		if (offset)
305 			dev_info(&info->bridge->dev, "host bridge window %pR "
306 				 "(PCI address [%#llx-%#llx])\n",
307 				 &window->resource,
308 				 window->resource.start - offset,
309 				 window->resource.end - offset);
310 		else
311 			dev_info(&info->bridge->dev,
312 				 "host bridge window %pR\n",
313 				 &window->resource);
314 	}
315 
316 	/* HP's firmware has a hack to work around a Windows bug.
317 	 * Ignore these tiny memory ranges */
318 	if (!((window->resource.flags & IORESOURCE_MEM) &&
319 	      (window->resource.end - window->resource.start < 16)))
320 		pci_add_resource_offset(&info->resources, &window->resource,
321 					window->offset);
322 
323 	return AE_OK;
324 }
325 
326 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
327 {
328 	struct acpi_device *device = root->device;
329 	int domain = root->segment;
330 	int bus = root->secondary.start;
331 	struct pci_controller *controller;
332 	unsigned int windows = 0;
333 	struct pci_root_info info;
334 	struct pci_bus *pbus;
335 	char *name;
336 	int pxm;
337 
338 	controller = alloc_pci_controller(domain);
339 	if (!controller)
340 		goto out1;
341 
342 	controller->acpi_handle = device->handle;
343 
344 	pxm = acpi_get_pxm(controller->acpi_handle);
345 #ifdef CONFIG_NUMA
346 	if (pxm >= 0)
347 		controller->node = pxm_to_node(pxm);
348 #endif
349 
350 	INIT_LIST_HEAD(&info.resources);
351 	/* insert busn resource at first */
352 	pci_add_resource(&info.resources, &root->secondary);
353 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
354 			&windows);
355 	if (windows) {
356 		controller->window =
357 			kzalloc_node(sizeof(*controller->window) * windows,
358 				     GFP_KERNEL, controller->node);
359 		if (!controller->window)
360 			goto out2;
361 
362 		name = kmalloc(16, GFP_KERNEL);
363 		if (!name)
364 			goto out3;
365 
366 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
367 		info.bridge = device;
368 		info.controller = controller;
369 		info.name = name;
370 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
371 			add_window, &info);
372 	}
373 	/*
374 	 * See arch/x86/pci/acpi.c.
375 	 * The desired pci bus might already be scanned in a quirk. We
376 	 * should handle the case here, but it appears that IA64 hasn't
377 	 * such quirk. So we just ignore the case now.
378 	 */
379 	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
380 				   &info.resources);
381 	if (!pbus) {
382 		pci_free_resource_list(&info.resources);
383 		return NULL;
384 	}
385 
386 	pci_scan_child_bus(pbus);
387 	return pbus;
388 
389 out3:
390 	kfree(controller->window);
391 out2:
392 	kfree(controller);
393 out1:
394 	return NULL;
395 }
396 
397 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
398 {
399 	struct pci_controller *controller = bridge->bus->sysdata;
400 
401 	ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
402 	return 0;
403 }
404 
405 static int is_valid_resource(struct pci_dev *dev, int idx)
406 {
407 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
408 	struct resource *devr = &dev->resource[idx], *busr;
409 
410 	if (!dev->bus)
411 		return 0;
412 
413 	pci_bus_for_each_resource(dev->bus, busr, i) {
414 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
415 			continue;
416 		if ((devr->start) && (devr->start >= busr->start) &&
417 				(devr->end <= busr->end))
418 			return 1;
419 	}
420 	return 0;
421 }
422 
423 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
424 {
425 	int i;
426 
427 	for (i = start; i < limit; i++) {
428 		if (!dev->resource[i].flags)
429 			continue;
430 		if ((is_valid_resource(dev, i)))
431 			pci_claim_resource(dev, i);
432 	}
433 }
434 
435 void pcibios_fixup_device_resources(struct pci_dev *dev)
436 {
437 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
438 }
439 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
440 
441 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
442 {
443 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
444 }
445 
446 /*
447  *  Called after each bus is probed, but before its children are examined.
448  */
449 void pcibios_fixup_bus(struct pci_bus *b)
450 {
451 	struct pci_dev *dev;
452 
453 	if (b->self) {
454 		pci_read_bridge_bases(b);
455 		pcibios_fixup_bridge_resources(b->self);
456 	}
457 	list_for_each_entry(dev, &b->devices, bus_list)
458 		pcibios_fixup_device_resources(dev);
459 	platform_pci_fixup_bus(b);
460 }
461 
462 void pcibios_add_bus(struct pci_bus *bus)
463 {
464 	acpi_pci_add_bus(bus);
465 }
466 
467 void pcibios_remove_bus(struct pci_bus *bus)
468 {
469 	acpi_pci_remove_bus(bus);
470 }
471 
472 void pcibios_set_master (struct pci_dev *dev)
473 {
474 	/* No special bus mastering setup handling */
475 }
476 
477 int
478 pcibios_enable_device (struct pci_dev *dev, int mask)
479 {
480 	int ret;
481 
482 	ret = pci_enable_resources(dev, mask);
483 	if (ret < 0)
484 		return ret;
485 
486 	if (!dev->msi_enabled)
487 		return acpi_pci_irq_enable(dev);
488 	return 0;
489 }
490 
491 void
492 pcibios_disable_device (struct pci_dev *dev)
493 {
494 	BUG_ON(atomic_read(&dev->enable_cnt));
495 	if (!dev->msi_enabled)
496 		acpi_pci_irq_disable(dev);
497 }
498 
499 resource_size_t
500 pcibios_align_resource (void *data, const struct resource *res,
501 		        resource_size_t size, resource_size_t align)
502 {
503 	return res->start;
504 }
505 
506 int
507 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
508 		     enum pci_mmap_state mmap_state, int write_combine)
509 {
510 	unsigned long size = vma->vm_end - vma->vm_start;
511 	pgprot_t prot;
512 
513 	/*
514 	 * I/O space cannot be accessed via normal processor loads and
515 	 * stores on this platform.
516 	 */
517 	if (mmap_state == pci_mmap_io)
518 		/*
519 		 * XXX we could relax this for I/O spaces for which ACPI
520 		 * indicates that the space is 1-to-1 mapped.  But at the
521 		 * moment, we don't support multiple PCI address spaces and
522 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
523 		 */
524 		return -EINVAL;
525 
526 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
527 		return -EINVAL;
528 
529 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
530 				    vma->vm_page_prot);
531 
532 	/*
533 	 * If the user requested WC, the kernel uses UC or WC for this region,
534 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
535 	 * use the same attribute the kernel uses.
536 	 */
537 	if (write_combine &&
538 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
539 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
540 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
541 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
542 	else
543 		vma->vm_page_prot = prot;
544 
545 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
546 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
547 		return -EAGAIN;
548 
549 	return 0;
550 }
551 
552 /**
553  * ia64_pci_get_legacy_mem - generic legacy mem routine
554  * @bus: bus to get legacy memory base address for
555  *
556  * Find the base of legacy memory for @bus.  This is typically the first
557  * megabyte of bus address space for @bus or is simply 0 on platforms whose
558  * chipsets support legacy I/O and memory routing.  Returns the base address
559  * or an error pointer if an error occurred.
560  *
561  * This is the ia64 generic version of this routine.  Other platforms
562  * are free to override it with a machine vector.
563  */
564 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
565 {
566 	return (char *)__IA64_UNCACHED_OFFSET;
567 }
568 
569 /**
570  * pci_mmap_legacy_page_range - map legacy memory space to userland
571  * @bus: bus whose legacy space we're mapping
572  * @vma: vma passed in by mmap
573  *
574  * Map legacy memory space for this device back to userspace using a machine
575  * vector to get the base address.
576  */
577 int
578 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
579 			   enum pci_mmap_state mmap_state)
580 {
581 	unsigned long size = vma->vm_end - vma->vm_start;
582 	pgprot_t prot;
583 	char *addr;
584 
585 	/* We only support mmap'ing of legacy memory space */
586 	if (mmap_state != pci_mmap_mem)
587 		return -ENOSYS;
588 
589 	/*
590 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
591 	 * for more details.
592 	 */
593 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
594 		return -EINVAL;
595 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
596 				    vma->vm_page_prot);
597 
598 	addr = pci_get_legacy_mem(bus);
599 	if (IS_ERR(addr))
600 		return PTR_ERR(addr);
601 
602 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
603 	vma->vm_page_prot = prot;
604 
605 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
606 			    size, vma->vm_page_prot))
607 		return -EAGAIN;
608 
609 	return 0;
610 }
611 
612 /**
613  * ia64_pci_legacy_read - read from legacy I/O space
614  * @bus: bus to read
615  * @port: legacy port value
616  * @val: caller allocated storage for returned value
617  * @size: number of bytes to read
618  *
619  * Simply reads @size bytes from @port and puts the result in @val.
620  *
621  * Again, this (and the write routine) are generic versions that can be
622  * overridden by the platform.  This is necessary on platforms that don't
623  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
624  */
625 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
626 {
627 	int ret = size;
628 
629 	switch (size) {
630 	case 1:
631 		*val = inb(port);
632 		break;
633 	case 2:
634 		*val = inw(port);
635 		break;
636 	case 4:
637 		*val = inl(port);
638 		break;
639 	default:
640 		ret = -EINVAL;
641 		break;
642 	}
643 
644 	return ret;
645 }
646 
647 /**
648  * ia64_pci_legacy_write - perform a legacy I/O write
649  * @bus: bus pointer
650  * @port: port to write
651  * @val: value to write
652  * @size: number of bytes to write from @val
653  *
654  * Simply writes @size bytes of @val to @port.
655  */
656 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
657 {
658 	int ret = size;
659 
660 	switch (size) {
661 	case 1:
662 		outb(val, port);
663 		break;
664 	case 2:
665 		outw(val, port);
666 		break;
667 	case 4:
668 		outl(val, port);
669 		break;
670 	default:
671 		ret = -EINVAL;
672 		break;
673 	}
674 
675 	return ret;
676 }
677 
678 /**
679  * set_pci_cacheline_size - determine cacheline size for PCI devices
680  *
681  * We want to use the line-size of the outer-most cache.  We assume
682  * that this line-size is the same for all CPUs.
683  *
684  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
685  */
686 static void __init set_pci_dfl_cacheline_size(void)
687 {
688 	unsigned long levels, unique_caches;
689 	long status;
690 	pal_cache_config_info_t cci;
691 
692 	status = ia64_pal_cache_summary(&levels, &unique_caches);
693 	if (status != 0) {
694 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
695 			"(status=%ld)\n", __func__, status);
696 		return;
697 	}
698 
699 	status = ia64_pal_cache_config_info(levels - 1,
700 				/* cache_type (data_or_unified)= */ 2, &cci);
701 	if (status != 0) {
702 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
703 			"(status=%ld)\n", __func__, status);
704 		return;
705 	}
706 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
707 }
708 
709 u64 ia64_dma_get_required_mask(struct device *dev)
710 {
711 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
712 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
713 	u64 mask;
714 
715 	if (!high_totalram) {
716 		/* convert to mask just covering totalram */
717 		low_totalram = (1 << (fls(low_totalram) - 1));
718 		low_totalram += low_totalram - 1;
719 		mask = low_totalram;
720 	} else {
721 		high_totalram = (1 << (fls(high_totalram) - 1));
722 		high_totalram += high_totalram - 1;
723 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
724 	}
725 	return mask;
726 }
727 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
728 
729 u64 dma_get_required_mask(struct device *dev)
730 {
731 	return platform_dma_get_required_mask(dev);
732 }
733 EXPORT_SYMBOL_GPL(dma_get_required_mask);
734 
735 static int __init pcibios_init(void)
736 {
737 	set_pci_dfl_cacheline_size();
738 	return 0;
739 }
740 
741 subsys_initcall(pcibios_init);
742