1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include <asm/machvec.h> 24 #include <asm/page.h> 25 #include <asm/system.h> 26 #include <asm/io.h> 27 #include <asm/sal.h> 28 #include <asm/smp.h> 29 #include <asm/irq.h> 30 #include <asm/hw_irq.h> 31 32 /* 33 * Low-level SAL-based PCI configuration access functions. Note that SAL 34 * calls are already serialized (via sal_lock), so we don't need another 35 * synchronization mechanism here. 36 */ 37 38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 39 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 40 41 /* SAL 3.2 adds support for extended config space. */ 42 43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 44 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 45 46 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 47 int reg, int len, u32 *value) 48 { 49 u64 addr, data = 0; 50 int mode, result; 51 52 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 53 return -EINVAL; 54 55 if ((seg | reg) <= 255) { 56 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 57 mode = 0; 58 } else { 59 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 60 mode = 1; 61 } 62 result = ia64_sal_pci_config_read(addr, mode, len, &data); 63 if (result != 0) 64 return -EINVAL; 65 66 *value = (u32) data; 67 return 0; 68 } 69 70 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 71 int reg, int len, u32 value) 72 { 73 u64 addr; 74 int mode, result; 75 76 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 77 return -EINVAL; 78 79 if ((seg | reg) <= 255) { 80 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 81 mode = 0; 82 } else { 83 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 84 mode = 1; 85 } 86 result = ia64_sal_pci_config_write(addr, mode, len, value); 87 if (result != 0) 88 return -EINVAL; 89 return 0; 90 } 91 92 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 93 int size, u32 *value) 94 { 95 return raw_pci_read(pci_domain_nr(bus), bus->number, 96 devfn, where, size, value); 97 } 98 99 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 100 int size, u32 value) 101 { 102 return raw_pci_write(pci_domain_nr(bus), bus->number, 103 devfn, where, size, value); 104 } 105 106 struct pci_ops pci_root_ops = { 107 .read = pci_read, 108 .write = pci_write, 109 }; 110 111 /* Called by ACPI when it finds a new root bus. */ 112 113 static struct pci_controller * __devinit 114 alloc_pci_controller (int seg) 115 { 116 struct pci_controller *controller; 117 118 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 119 if (!controller) 120 return NULL; 121 122 controller->segment = seg; 123 controller->node = -1; 124 return controller; 125 } 126 127 struct pci_root_info { 128 struct pci_controller *controller; 129 char *name; 130 }; 131 132 static unsigned int 133 new_space (u64 phys_base, int sparse) 134 { 135 u64 mmio_base; 136 int i; 137 138 if (phys_base == 0) 139 return 0; /* legacy I/O port space */ 140 141 mmio_base = (u64) ioremap(phys_base, 0); 142 for (i = 0; i < num_io_spaces; i++) 143 if (io_space[i].mmio_base == mmio_base && 144 io_space[i].sparse == sparse) 145 return i; 146 147 if (num_io_spaces == MAX_IO_SPACES) { 148 printk(KERN_ERR "PCI: Too many IO port spaces " 149 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 150 return ~0; 151 } 152 153 i = num_io_spaces++; 154 io_space[i].mmio_base = mmio_base; 155 io_space[i].sparse = sparse; 156 157 return i; 158 } 159 160 static u64 __devinit 161 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) 162 { 163 struct resource *resource; 164 char *name; 165 u64 base, min, max, base_port; 166 unsigned int sparse = 0, space_nr, len; 167 168 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 169 if (!resource) { 170 printk(KERN_ERR "PCI: No memory for %s I/O port space\n", 171 info->name); 172 goto out; 173 } 174 175 len = strlen(info->name) + 32; 176 name = kzalloc(len, GFP_KERNEL); 177 if (!name) { 178 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", 179 info->name); 180 goto free_resource; 181 } 182 183 min = addr->minimum; 184 max = min + addr->address_length - 1; 185 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 186 sparse = 1; 187 188 space_nr = new_space(addr->translation_offset, sparse); 189 if (space_nr == ~0) 190 goto free_name; 191 192 base = __pa(io_space[space_nr].mmio_base); 193 base_port = IO_SPACE_BASE(space_nr); 194 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 195 base_port + min, base_port + max); 196 197 /* 198 * The SDM guarantees the legacy 0-64K space is sparse, but if the 199 * mapping is done by the processor (not the bridge), ACPI may not 200 * mark it as sparse. 201 */ 202 if (space_nr == 0) 203 sparse = 1; 204 205 resource->name = name; 206 resource->flags = IORESOURCE_MEM; 207 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 208 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 209 insert_resource(&iomem_resource, resource); 210 211 return base_port; 212 213 free_name: 214 kfree(name); 215 free_resource: 216 kfree(resource); 217 out: 218 return ~0; 219 } 220 221 static acpi_status __devinit resource_to_window(struct acpi_resource *resource, 222 struct acpi_resource_address64 *addr) 223 { 224 acpi_status status; 225 226 /* 227 * We're only interested in _CRS descriptors that are 228 * - address space descriptors for memory or I/O space 229 * - non-zero size 230 * - producers, i.e., the address space is routed downstream, 231 * not consumed by the bridge itself 232 */ 233 status = acpi_resource_to_address64(resource, addr); 234 if (ACPI_SUCCESS(status) && 235 (addr->resource_type == ACPI_MEMORY_RANGE || 236 addr->resource_type == ACPI_IO_RANGE) && 237 addr->address_length && 238 addr->producer_consumer == ACPI_PRODUCER) 239 return AE_OK; 240 241 return AE_ERROR; 242 } 243 244 static acpi_status __devinit 245 count_window (struct acpi_resource *resource, void *data) 246 { 247 unsigned int *windows = (unsigned int *) data; 248 struct acpi_resource_address64 addr; 249 acpi_status status; 250 251 status = resource_to_window(resource, &addr); 252 if (ACPI_SUCCESS(status)) 253 (*windows)++; 254 255 return AE_OK; 256 } 257 258 static __devinit acpi_status add_window(struct acpi_resource *res, void *data) 259 { 260 struct pci_root_info *info = data; 261 struct pci_window *window; 262 struct acpi_resource_address64 addr; 263 acpi_status status; 264 unsigned long flags, offset = 0; 265 struct resource *root; 266 267 /* Return AE_OK for non-window resources to keep scanning for more */ 268 status = resource_to_window(res, &addr); 269 if (!ACPI_SUCCESS(status)) 270 return AE_OK; 271 272 if (addr.resource_type == ACPI_MEMORY_RANGE) { 273 flags = IORESOURCE_MEM; 274 root = &iomem_resource; 275 offset = addr.translation_offset; 276 } else if (addr.resource_type == ACPI_IO_RANGE) { 277 flags = IORESOURCE_IO; 278 root = &ioport_resource; 279 offset = add_io_space(info, &addr); 280 if (offset == ~0) 281 return AE_OK; 282 } else 283 return AE_OK; 284 285 window = &info->controller->window[info->controller->windows++]; 286 window->resource.name = info->name; 287 window->resource.flags = flags; 288 window->resource.start = addr.minimum + offset; 289 window->resource.end = window->resource.start + addr.address_length - 1; 290 window->resource.child = NULL; 291 window->offset = offset; 292 293 if (insert_resource(root, &window->resource)) { 294 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n", 295 window->resource.start, window->resource.end, 296 root->name, info->name); 297 } 298 299 return AE_OK; 300 } 301 302 static void __devinit 303 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl) 304 { 305 int i, j; 306 307 j = 0; 308 for (i = 0; i < ctrl->windows; i++) { 309 struct resource *res = &ctrl->window[i].resource; 310 /* HP's firmware has a hack to work around a Windows bug. 311 * Ignore these tiny memory ranges */ 312 if ((res->flags & IORESOURCE_MEM) && 313 (res->end - res->start < 16)) 314 continue; 315 if (j >= PCI_BUS_NUM_RESOURCES) { 316 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start, 317 res->end, res->flags); 318 continue; 319 } 320 bus->resource[j++] = res; 321 } 322 } 323 324 struct pci_bus * __devinit 325 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus) 326 { 327 struct pci_root_info info; 328 struct pci_controller *controller; 329 unsigned int windows = 0; 330 struct pci_bus *pbus; 331 char *name; 332 int pxm; 333 334 controller = alloc_pci_controller(domain); 335 if (!controller) 336 goto out1; 337 338 controller->acpi_handle = device->handle; 339 340 pxm = acpi_get_pxm(controller->acpi_handle); 341 #ifdef CONFIG_NUMA 342 if (pxm >= 0) 343 controller->node = pxm_to_node(pxm); 344 #endif 345 346 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 347 &windows); 348 if (windows) { 349 controller->window = 350 kmalloc_node(sizeof(*controller->window) * windows, 351 GFP_KERNEL, controller->node); 352 if (!controller->window) 353 goto out2; 354 } 355 356 name = kmalloc(16, GFP_KERNEL); 357 if (!name) 358 goto out3; 359 360 sprintf(name, "PCI Bus %04x:%02x", domain, bus); 361 info.controller = controller; 362 info.name = name; 363 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window, 364 &info); 365 /* 366 * See arch/x86/pci/acpi.c. 367 * The desired pci bus might already be scanned in a quirk. We 368 * should handle the case here, but it appears that IA64 hasn't 369 * such quirk. So we just ignore the case now. 370 */ 371 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller); 372 if (pbus) 373 pcibios_setup_root_windows(pbus, controller); 374 375 return pbus; 376 377 out3: 378 kfree(controller->window); 379 out2: 380 kfree(controller); 381 out1: 382 return NULL; 383 } 384 385 void pcibios_resource_to_bus(struct pci_dev *dev, 386 struct pci_bus_region *region, struct resource *res) 387 { 388 struct pci_controller *controller = PCI_CONTROLLER(dev); 389 unsigned long offset = 0; 390 int i; 391 392 for (i = 0; i < controller->windows; i++) { 393 struct pci_window *window = &controller->window[i]; 394 if (!(window->resource.flags & res->flags)) 395 continue; 396 if (window->resource.start > res->start) 397 continue; 398 if (window->resource.end < res->end) 399 continue; 400 offset = window->offset; 401 break; 402 } 403 404 region->start = res->start - offset; 405 region->end = res->end - offset; 406 } 407 EXPORT_SYMBOL(pcibios_resource_to_bus); 408 409 void pcibios_bus_to_resource(struct pci_dev *dev, 410 struct resource *res, struct pci_bus_region *region) 411 { 412 struct pci_controller *controller = PCI_CONTROLLER(dev); 413 unsigned long offset = 0; 414 int i; 415 416 for (i = 0; i < controller->windows; i++) { 417 struct pci_window *window = &controller->window[i]; 418 if (!(window->resource.flags & res->flags)) 419 continue; 420 if (window->resource.start - window->offset > region->start) 421 continue; 422 if (window->resource.end - window->offset < region->end) 423 continue; 424 offset = window->offset; 425 break; 426 } 427 428 res->start = region->start + offset; 429 res->end = region->end + offset; 430 } 431 EXPORT_SYMBOL(pcibios_bus_to_resource); 432 433 static int __devinit is_valid_resource(struct pci_dev *dev, int idx) 434 { 435 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 436 struct resource *devr = &dev->resource[idx]; 437 438 if (!dev->bus) 439 return 0; 440 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) { 441 struct resource *busr = dev->bus->resource[i]; 442 443 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 444 continue; 445 if ((devr->start) && (devr->start >= busr->start) && 446 (devr->end <= busr->end)) 447 return 1; 448 } 449 return 0; 450 } 451 452 static void __devinit 453 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 454 { 455 struct pci_bus_region region; 456 int i; 457 458 for (i = start; i < limit; i++) { 459 if (!dev->resource[i].flags) 460 continue; 461 region.start = dev->resource[i].start; 462 region.end = dev->resource[i].end; 463 pcibios_bus_to_resource(dev, &dev->resource[i], ®ion); 464 if ((is_valid_resource(dev, i))) 465 pci_claim_resource(dev, i); 466 } 467 } 468 469 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) 470 { 471 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 472 } 473 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 474 475 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) 476 { 477 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 478 } 479 480 /* 481 * Called after each bus is probed, but before its children are examined. 482 */ 483 void __devinit 484 pcibios_fixup_bus (struct pci_bus *b) 485 { 486 struct pci_dev *dev; 487 488 if (b->self) { 489 pci_read_bridge_bases(b); 490 pcibios_fixup_bridge_resources(b->self); 491 } 492 list_for_each_entry(dev, &b->devices, bus_list) 493 pcibios_fixup_device_resources(dev); 494 platform_pci_fixup_bus(b); 495 496 return; 497 } 498 499 void __devinit 500 pcibios_update_irq (struct pci_dev *dev, int irq) 501 { 502 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); 503 504 /* ??? FIXME -- record old value for shutdown. */ 505 } 506 507 int 508 pcibios_enable_device (struct pci_dev *dev, int mask) 509 { 510 int ret; 511 512 ret = pci_enable_resources(dev, mask); 513 if (ret < 0) 514 return ret; 515 516 if (!dev->msi_enabled) 517 return acpi_pci_irq_enable(dev); 518 return 0; 519 } 520 521 void 522 pcibios_disable_device (struct pci_dev *dev) 523 { 524 BUG_ON(atomic_read(&dev->enable_cnt)); 525 if (!dev->msi_enabled) 526 acpi_pci_irq_disable(dev); 527 } 528 529 void 530 pcibios_align_resource (void *data, struct resource *res, 531 resource_size_t size, resource_size_t align) 532 { 533 } 534 535 /* 536 * PCI BIOS setup, always defaults to SAL interface 537 */ 538 char * __devinit 539 pcibios_setup (char *str) 540 { 541 return str; 542 } 543 544 int 545 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 546 enum pci_mmap_state mmap_state, int write_combine) 547 { 548 unsigned long size = vma->vm_end - vma->vm_start; 549 pgprot_t prot; 550 551 /* 552 * I/O space cannot be accessed via normal processor loads and 553 * stores on this platform. 554 */ 555 if (mmap_state == pci_mmap_io) 556 /* 557 * XXX we could relax this for I/O spaces for which ACPI 558 * indicates that the space is 1-to-1 mapped. But at the 559 * moment, we don't support multiple PCI address spaces and 560 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 561 */ 562 return -EINVAL; 563 564 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 565 return -EINVAL; 566 567 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 568 vma->vm_page_prot); 569 570 /* 571 * If the user requested WC, the kernel uses UC or WC for this region, 572 * and the chipset supports WC, we can use WC. Otherwise, we have to 573 * use the same attribute the kernel uses. 574 */ 575 if (write_combine && 576 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 577 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 578 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 579 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 580 else 581 vma->vm_page_prot = prot; 582 583 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 584 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 585 return -EAGAIN; 586 587 return 0; 588 } 589 590 /** 591 * ia64_pci_get_legacy_mem - generic legacy mem routine 592 * @bus: bus to get legacy memory base address for 593 * 594 * Find the base of legacy memory for @bus. This is typically the first 595 * megabyte of bus address space for @bus or is simply 0 on platforms whose 596 * chipsets support legacy I/O and memory routing. Returns the base address 597 * or an error pointer if an error occurred. 598 * 599 * This is the ia64 generic version of this routine. Other platforms 600 * are free to override it with a machine vector. 601 */ 602 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 603 { 604 return (char *)__IA64_UNCACHED_OFFSET; 605 } 606 607 /** 608 * pci_mmap_legacy_page_range - map legacy memory space to userland 609 * @bus: bus whose legacy space we're mapping 610 * @vma: vma passed in by mmap 611 * 612 * Map legacy memory space for this device back to userspace using a machine 613 * vector to get the base address. 614 */ 615 int 616 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma) 617 { 618 unsigned long size = vma->vm_end - vma->vm_start; 619 pgprot_t prot; 620 char *addr; 621 622 /* 623 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 624 * for more details. 625 */ 626 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 627 return -EINVAL; 628 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 629 vma->vm_page_prot); 630 631 addr = pci_get_legacy_mem(bus); 632 if (IS_ERR(addr)) 633 return PTR_ERR(addr); 634 635 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 636 vma->vm_page_prot = prot; 637 638 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 639 size, vma->vm_page_prot)) 640 return -EAGAIN; 641 642 return 0; 643 } 644 645 /** 646 * ia64_pci_legacy_read - read from legacy I/O space 647 * @bus: bus to read 648 * @port: legacy port value 649 * @val: caller allocated storage for returned value 650 * @size: number of bytes to read 651 * 652 * Simply reads @size bytes from @port and puts the result in @val. 653 * 654 * Again, this (and the write routine) are generic versions that can be 655 * overridden by the platform. This is necessary on platforms that don't 656 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 657 */ 658 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 659 { 660 int ret = size; 661 662 switch (size) { 663 case 1: 664 *val = inb(port); 665 break; 666 case 2: 667 *val = inw(port); 668 break; 669 case 4: 670 *val = inl(port); 671 break; 672 default: 673 ret = -EINVAL; 674 break; 675 } 676 677 return ret; 678 } 679 680 /** 681 * ia64_pci_legacy_write - perform a legacy I/O write 682 * @bus: bus pointer 683 * @port: port to write 684 * @val: value to write 685 * @size: number of bytes to write from @val 686 * 687 * Simply writes @size bytes of @val to @port. 688 */ 689 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 690 { 691 int ret = size; 692 693 switch (size) { 694 case 1: 695 outb(val, port); 696 break; 697 case 2: 698 outw(val, port); 699 break; 700 case 4: 701 outl(val, port); 702 break; 703 default: 704 ret = -EINVAL; 705 break; 706 } 707 708 return ret; 709 } 710 711 /* It's defined in drivers/pci/pci.c */ 712 extern u8 pci_cache_line_size; 713 714 /** 715 * set_pci_cacheline_size - determine cacheline size for PCI devices 716 * 717 * We want to use the line-size of the outer-most cache. We assume 718 * that this line-size is the same for all CPUs. 719 * 720 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 721 */ 722 static void __init set_pci_cacheline_size(void) 723 { 724 u64 levels, unique_caches; 725 s64 status; 726 pal_cache_config_info_t cci; 727 728 status = ia64_pal_cache_summary(&levels, &unique_caches); 729 if (status != 0) { 730 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " 731 "(status=%ld)\n", __func__, status); 732 return; 733 } 734 735 status = ia64_pal_cache_config_info(levels - 1, 736 /* cache_type (data_or_unified)= */ 2, &cci); 737 if (status != 0) { 738 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " 739 "(status=%ld)\n", __func__, status); 740 return; 741 } 742 pci_cache_line_size = (1 << cci.pcci_line_size) / 4; 743 } 744 745 static int __init pcibios_init(void) 746 { 747 set_pci_cacheline_size(); 748 return 0; 749 } 750 751 subsys_initcall(pcibios_init); 752