1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/bootmem.h> 23 24 #include <asm/machvec.h> 25 #include <asm/page.h> 26 #include <asm/system.h> 27 #include <asm/io.h> 28 #include <asm/sal.h> 29 #include <asm/smp.h> 30 #include <asm/irq.h> 31 #include <asm/hw_irq.h> 32 33 /* 34 * Low-level SAL-based PCI configuration access functions. Note that SAL 35 * calls are already serialized (via sal_lock), so we don't need another 36 * synchronization mechanism here. 37 */ 38 39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 41 42 /* SAL 3.2 adds support for extended config space. */ 43 44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 46 47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 48 int reg, int len, u32 *value) 49 { 50 u64 addr, data = 0; 51 int mode, result; 52 53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 54 return -EINVAL; 55 56 if ((seg | reg) <= 255) { 57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 58 mode = 0; 59 } else { 60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 61 mode = 1; 62 } 63 result = ia64_sal_pci_config_read(addr, mode, len, &data); 64 if (result != 0) 65 return -EINVAL; 66 67 *value = (u32) data; 68 return 0; 69 } 70 71 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 72 int reg, int len, u32 value) 73 { 74 u64 addr; 75 int mode, result; 76 77 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 78 return -EINVAL; 79 80 if ((seg | reg) <= 255) { 81 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 82 mode = 0; 83 } else { 84 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 85 mode = 1; 86 } 87 result = ia64_sal_pci_config_write(addr, mode, len, value); 88 if (result != 0) 89 return -EINVAL; 90 return 0; 91 } 92 93 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 94 int size, u32 *value) 95 { 96 return raw_pci_read(pci_domain_nr(bus), bus->number, 97 devfn, where, size, value); 98 } 99 100 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 101 int size, u32 value) 102 { 103 return raw_pci_write(pci_domain_nr(bus), bus->number, 104 devfn, where, size, value); 105 } 106 107 struct pci_ops pci_root_ops = { 108 .read = pci_read, 109 .write = pci_write, 110 }; 111 112 /* Called by ACPI when it finds a new root bus. */ 113 114 static struct pci_controller * __devinit 115 alloc_pci_controller (int seg) 116 { 117 struct pci_controller *controller; 118 119 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 120 if (!controller) 121 return NULL; 122 123 controller->segment = seg; 124 controller->node = -1; 125 return controller; 126 } 127 128 struct pci_root_info { 129 struct pci_controller *controller; 130 char *name; 131 }; 132 133 static unsigned int 134 new_space (u64 phys_base, int sparse) 135 { 136 u64 mmio_base; 137 int i; 138 139 if (phys_base == 0) 140 return 0; /* legacy I/O port space */ 141 142 mmio_base = (u64) ioremap(phys_base, 0); 143 for (i = 0; i < num_io_spaces; i++) 144 if (io_space[i].mmio_base == mmio_base && 145 io_space[i].sparse == sparse) 146 return i; 147 148 if (num_io_spaces == MAX_IO_SPACES) { 149 printk(KERN_ERR "PCI: Too many IO port spaces " 150 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 151 return ~0; 152 } 153 154 i = num_io_spaces++; 155 io_space[i].mmio_base = mmio_base; 156 io_space[i].sparse = sparse; 157 158 return i; 159 } 160 161 static u64 __devinit 162 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) 163 { 164 struct resource *resource; 165 char *name; 166 unsigned long base, min, max, base_port; 167 unsigned int sparse = 0, space_nr, len; 168 169 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 170 if (!resource) { 171 printk(KERN_ERR "PCI: No memory for %s I/O port space\n", 172 info->name); 173 goto out; 174 } 175 176 len = strlen(info->name) + 32; 177 name = kzalloc(len, GFP_KERNEL); 178 if (!name) { 179 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", 180 info->name); 181 goto free_resource; 182 } 183 184 min = addr->minimum; 185 max = min + addr->address_length - 1; 186 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 187 sparse = 1; 188 189 space_nr = new_space(addr->translation_offset, sparse); 190 if (space_nr == ~0) 191 goto free_name; 192 193 base = __pa(io_space[space_nr].mmio_base); 194 base_port = IO_SPACE_BASE(space_nr); 195 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 196 base_port + min, base_port + max); 197 198 /* 199 * The SDM guarantees the legacy 0-64K space is sparse, but if the 200 * mapping is done by the processor (not the bridge), ACPI may not 201 * mark it as sparse. 202 */ 203 if (space_nr == 0) 204 sparse = 1; 205 206 resource->name = name; 207 resource->flags = IORESOURCE_MEM; 208 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 209 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 210 insert_resource(&iomem_resource, resource); 211 212 return base_port; 213 214 free_name: 215 kfree(name); 216 free_resource: 217 kfree(resource); 218 out: 219 return ~0; 220 } 221 222 static acpi_status __devinit resource_to_window(struct acpi_resource *resource, 223 struct acpi_resource_address64 *addr) 224 { 225 acpi_status status; 226 227 /* 228 * We're only interested in _CRS descriptors that are 229 * - address space descriptors for memory or I/O space 230 * - non-zero size 231 * - producers, i.e., the address space is routed downstream, 232 * not consumed by the bridge itself 233 */ 234 status = acpi_resource_to_address64(resource, addr); 235 if (ACPI_SUCCESS(status) && 236 (addr->resource_type == ACPI_MEMORY_RANGE || 237 addr->resource_type == ACPI_IO_RANGE) && 238 addr->address_length && 239 addr->producer_consumer == ACPI_PRODUCER) 240 return AE_OK; 241 242 return AE_ERROR; 243 } 244 245 static acpi_status __devinit 246 count_window (struct acpi_resource *resource, void *data) 247 { 248 unsigned int *windows = (unsigned int *) data; 249 struct acpi_resource_address64 addr; 250 acpi_status status; 251 252 status = resource_to_window(resource, &addr); 253 if (ACPI_SUCCESS(status)) 254 (*windows)++; 255 256 return AE_OK; 257 } 258 259 static __devinit acpi_status add_window(struct acpi_resource *res, void *data) 260 { 261 struct pci_root_info *info = data; 262 struct pci_window *window; 263 struct acpi_resource_address64 addr; 264 acpi_status status; 265 unsigned long flags, offset = 0; 266 struct resource *root; 267 268 /* Return AE_OK for non-window resources to keep scanning for more */ 269 status = resource_to_window(res, &addr); 270 if (!ACPI_SUCCESS(status)) 271 return AE_OK; 272 273 if (addr.resource_type == ACPI_MEMORY_RANGE) { 274 flags = IORESOURCE_MEM; 275 root = &iomem_resource; 276 offset = addr.translation_offset; 277 } else if (addr.resource_type == ACPI_IO_RANGE) { 278 flags = IORESOURCE_IO; 279 root = &ioport_resource; 280 offset = add_io_space(info, &addr); 281 if (offset == ~0) 282 return AE_OK; 283 } else 284 return AE_OK; 285 286 window = &info->controller->window[info->controller->windows++]; 287 window->resource.name = info->name; 288 window->resource.flags = flags; 289 window->resource.start = addr.minimum + offset; 290 window->resource.end = window->resource.start + addr.address_length - 1; 291 window->resource.child = NULL; 292 window->offset = offset; 293 294 if (insert_resource(root, &window->resource)) { 295 printk(KERN_ERR "alloc 0x%llx-0x%llx from %s for %s failed\n", 296 window->resource.start, window->resource.end, 297 root->name, info->name); 298 } 299 300 return AE_OK; 301 } 302 303 static void __devinit 304 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl) 305 { 306 int i, j; 307 308 j = 0; 309 for (i = 0; i < ctrl->windows; i++) { 310 struct resource *res = &ctrl->window[i].resource; 311 /* HP's firmware has a hack to work around a Windows bug. 312 * Ignore these tiny memory ranges */ 313 if ((res->flags & IORESOURCE_MEM) && 314 (res->end - res->start < 16)) 315 continue; 316 if (j >= PCI_BUS_NUM_RESOURCES) { 317 printk("Ignoring range [%#llx-%#llx] (%lx)\n", 318 res->start, res->end, res->flags); 319 continue; 320 } 321 bus->resource[j++] = res; 322 } 323 } 324 325 struct pci_bus * __devinit 326 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus) 327 { 328 struct pci_controller *controller; 329 unsigned int windows = 0; 330 struct pci_bus *pbus; 331 char *name; 332 int pxm; 333 334 controller = alloc_pci_controller(domain); 335 if (!controller) 336 goto out1; 337 338 controller->acpi_handle = device->handle; 339 340 pxm = acpi_get_pxm(controller->acpi_handle); 341 #ifdef CONFIG_NUMA 342 if (pxm >= 0) 343 controller->node = pxm_to_node(pxm); 344 #endif 345 346 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 347 &windows); 348 if (windows) { 349 struct pci_root_info info; 350 351 controller->window = 352 kmalloc_node(sizeof(*controller->window) * windows, 353 GFP_KERNEL, controller->node); 354 if (!controller->window) 355 goto out2; 356 357 name = kmalloc(16, GFP_KERNEL); 358 if (!name) 359 goto out3; 360 361 sprintf(name, "PCI Bus %04x:%02x", domain, bus); 362 info.controller = controller; 363 info.name = name; 364 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 365 add_window, &info); 366 } 367 /* 368 * See arch/x86/pci/acpi.c. 369 * The desired pci bus might already be scanned in a quirk. We 370 * should handle the case here, but it appears that IA64 hasn't 371 * such quirk. So we just ignore the case now. 372 */ 373 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller); 374 375 return pbus; 376 377 out3: 378 kfree(controller->window); 379 out2: 380 kfree(controller); 381 out1: 382 return NULL; 383 } 384 385 void pcibios_resource_to_bus(struct pci_dev *dev, 386 struct pci_bus_region *region, struct resource *res) 387 { 388 struct pci_controller *controller = PCI_CONTROLLER(dev); 389 unsigned long offset = 0; 390 int i; 391 392 for (i = 0; i < controller->windows; i++) { 393 struct pci_window *window = &controller->window[i]; 394 if (!(window->resource.flags & res->flags)) 395 continue; 396 if (window->resource.start > res->start) 397 continue; 398 if (window->resource.end < res->end) 399 continue; 400 offset = window->offset; 401 break; 402 } 403 404 region->start = res->start - offset; 405 region->end = res->end - offset; 406 } 407 EXPORT_SYMBOL(pcibios_resource_to_bus); 408 409 void pcibios_bus_to_resource(struct pci_dev *dev, 410 struct resource *res, struct pci_bus_region *region) 411 { 412 struct pci_controller *controller = PCI_CONTROLLER(dev); 413 unsigned long offset = 0; 414 int i; 415 416 for (i = 0; i < controller->windows; i++) { 417 struct pci_window *window = &controller->window[i]; 418 if (!(window->resource.flags & res->flags)) 419 continue; 420 if (window->resource.start - window->offset > region->start) 421 continue; 422 if (window->resource.end - window->offset < region->end) 423 continue; 424 offset = window->offset; 425 break; 426 } 427 428 res->start = region->start + offset; 429 res->end = region->end + offset; 430 } 431 EXPORT_SYMBOL(pcibios_bus_to_resource); 432 433 static int __devinit is_valid_resource(struct pci_dev *dev, int idx) 434 { 435 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 436 struct resource *devr = &dev->resource[idx]; 437 438 if (!dev->bus) 439 return 0; 440 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) { 441 struct resource *busr = dev->bus->resource[i]; 442 443 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 444 continue; 445 if ((devr->start) && (devr->start >= busr->start) && 446 (devr->end <= busr->end)) 447 return 1; 448 } 449 return 0; 450 } 451 452 static void __devinit 453 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 454 { 455 struct pci_bus_region region; 456 int i; 457 458 for (i = start; i < limit; i++) { 459 if (!dev->resource[i].flags) 460 continue; 461 region.start = dev->resource[i].start; 462 region.end = dev->resource[i].end; 463 pcibios_bus_to_resource(dev, &dev->resource[i], ®ion); 464 if ((is_valid_resource(dev, i))) 465 pci_claim_resource(dev, i); 466 } 467 } 468 469 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) 470 { 471 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 472 } 473 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 474 475 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) 476 { 477 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 478 } 479 480 /* 481 * Called after each bus is probed, but before its children are examined. 482 */ 483 void __devinit 484 pcibios_fixup_bus (struct pci_bus *b) 485 { 486 struct pci_dev *dev; 487 488 if (b->self) { 489 pci_read_bridge_bases(b); 490 pcibios_fixup_bridge_resources(b->self); 491 } else { 492 pcibios_setup_root_windows(b, b->sysdata); 493 } 494 list_for_each_entry(dev, &b->devices, bus_list) 495 pcibios_fixup_device_resources(dev); 496 platform_pci_fixup_bus(b); 497 498 return; 499 } 500 501 void __devinit 502 pcibios_update_irq (struct pci_dev *dev, int irq) 503 { 504 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); 505 506 /* ??? FIXME -- record old value for shutdown. */ 507 } 508 509 int 510 pcibios_enable_device (struct pci_dev *dev, int mask) 511 { 512 int ret; 513 514 ret = pci_enable_resources(dev, mask); 515 if (ret < 0) 516 return ret; 517 518 if (!dev->msi_enabled) 519 return acpi_pci_irq_enable(dev); 520 return 0; 521 } 522 523 void 524 pcibios_disable_device (struct pci_dev *dev) 525 { 526 BUG_ON(atomic_read(&dev->enable_cnt)); 527 if (!dev->msi_enabled) 528 acpi_pci_irq_disable(dev); 529 } 530 531 void 532 pcibios_align_resource (void *data, struct resource *res, 533 resource_size_t size, resource_size_t align) 534 { 535 } 536 537 /* 538 * PCI BIOS setup, always defaults to SAL interface 539 */ 540 char * __init 541 pcibios_setup (char *str) 542 { 543 return str; 544 } 545 546 int 547 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 548 enum pci_mmap_state mmap_state, int write_combine) 549 { 550 unsigned long size = vma->vm_end - vma->vm_start; 551 pgprot_t prot; 552 553 /* 554 * I/O space cannot be accessed via normal processor loads and 555 * stores on this platform. 556 */ 557 if (mmap_state == pci_mmap_io) 558 /* 559 * XXX we could relax this for I/O spaces for which ACPI 560 * indicates that the space is 1-to-1 mapped. But at the 561 * moment, we don't support multiple PCI address spaces and 562 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 563 */ 564 return -EINVAL; 565 566 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 567 return -EINVAL; 568 569 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 570 vma->vm_page_prot); 571 572 /* 573 * If the user requested WC, the kernel uses UC or WC for this region, 574 * and the chipset supports WC, we can use WC. Otherwise, we have to 575 * use the same attribute the kernel uses. 576 */ 577 if (write_combine && 578 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 579 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 580 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 581 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 582 else 583 vma->vm_page_prot = prot; 584 585 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 586 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 587 return -EAGAIN; 588 589 return 0; 590 } 591 592 /** 593 * ia64_pci_get_legacy_mem - generic legacy mem routine 594 * @bus: bus to get legacy memory base address for 595 * 596 * Find the base of legacy memory for @bus. This is typically the first 597 * megabyte of bus address space for @bus or is simply 0 on platforms whose 598 * chipsets support legacy I/O and memory routing. Returns the base address 599 * or an error pointer if an error occurred. 600 * 601 * This is the ia64 generic version of this routine. Other platforms 602 * are free to override it with a machine vector. 603 */ 604 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 605 { 606 return (char *)__IA64_UNCACHED_OFFSET; 607 } 608 609 /** 610 * pci_mmap_legacy_page_range - map legacy memory space to userland 611 * @bus: bus whose legacy space we're mapping 612 * @vma: vma passed in by mmap 613 * 614 * Map legacy memory space for this device back to userspace using a machine 615 * vector to get the base address. 616 */ 617 int 618 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 619 enum pci_mmap_state mmap_state) 620 { 621 unsigned long size = vma->vm_end - vma->vm_start; 622 pgprot_t prot; 623 char *addr; 624 625 /* We only support mmap'ing of legacy memory space */ 626 if (mmap_state != pci_mmap_mem) 627 return -ENOSYS; 628 629 /* 630 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 631 * for more details. 632 */ 633 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 634 return -EINVAL; 635 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 636 vma->vm_page_prot); 637 638 addr = pci_get_legacy_mem(bus); 639 if (IS_ERR(addr)) 640 return PTR_ERR(addr); 641 642 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 643 vma->vm_page_prot = prot; 644 645 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 646 size, vma->vm_page_prot)) 647 return -EAGAIN; 648 649 return 0; 650 } 651 652 /** 653 * ia64_pci_legacy_read - read from legacy I/O space 654 * @bus: bus to read 655 * @port: legacy port value 656 * @val: caller allocated storage for returned value 657 * @size: number of bytes to read 658 * 659 * Simply reads @size bytes from @port and puts the result in @val. 660 * 661 * Again, this (and the write routine) are generic versions that can be 662 * overridden by the platform. This is necessary on platforms that don't 663 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 664 */ 665 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 666 { 667 int ret = size; 668 669 switch (size) { 670 case 1: 671 *val = inb(port); 672 break; 673 case 2: 674 *val = inw(port); 675 break; 676 case 4: 677 *val = inl(port); 678 break; 679 default: 680 ret = -EINVAL; 681 break; 682 } 683 684 return ret; 685 } 686 687 /** 688 * ia64_pci_legacy_write - perform a legacy I/O write 689 * @bus: bus pointer 690 * @port: port to write 691 * @val: value to write 692 * @size: number of bytes to write from @val 693 * 694 * Simply writes @size bytes of @val to @port. 695 */ 696 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 697 { 698 int ret = size; 699 700 switch (size) { 701 case 1: 702 outb(val, port); 703 break; 704 case 2: 705 outw(val, port); 706 break; 707 case 4: 708 outl(val, port); 709 break; 710 default: 711 ret = -EINVAL; 712 break; 713 } 714 715 return ret; 716 } 717 718 /* It's defined in drivers/pci/pci.c */ 719 extern u8 pci_cache_line_size; 720 721 /** 722 * set_pci_cacheline_size - determine cacheline size for PCI devices 723 * 724 * We want to use the line-size of the outer-most cache. We assume 725 * that this line-size is the same for all CPUs. 726 * 727 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 728 */ 729 static void __init set_pci_cacheline_size(void) 730 { 731 unsigned long levels, unique_caches; 732 long status; 733 pal_cache_config_info_t cci; 734 735 status = ia64_pal_cache_summary(&levels, &unique_caches); 736 if (status != 0) { 737 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " 738 "(status=%ld)\n", __func__, status); 739 return; 740 } 741 742 status = ia64_pal_cache_config_info(levels - 1, 743 /* cache_type (data_or_unified)= */ 2, &cci); 744 if (status != 0) { 745 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " 746 "(status=%ld)\n", __func__, status); 747 return; 748 } 749 pci_cache_line_size = (1 << cci.pcci_line_size) / 4; 750 } 751 752 u64 ia64_dma_get_required_mask(struct device *dev) 753 { 754 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 755 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 756 u64 mask; 757 758 if (!high_totalram) { 759 /* convert to mask just covering totalram */ 760 low_totalram = (1 << (fls(low_totalram) - 1)); 761 low_totalram += low_totalram - 1; 762 mask = low_totalram; 763 } else { 764 high_totalram = (1 << (fls(high_totalram) - 1)); 765 high_totalram += high_totalram - 1; 766 mask = (((u64)high_totalram) << 32) + 0xffffffff; 767 } 768 return mask; 769 } 770 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 771 772 u64 dma_get_required_mask(struct device *dev) 773 { 774 return platform_dma_get_required_mask(dev); 775 } 776 EXPORT_SYMBOL_GPL(dma_get_required_mask); 777 778 static int __init pcibios_init(void) 779 { 780 set_pci_cacheline_size(); 781 return 0; 782 } 783 784 subsys_initcall(pcibios_init); 785