1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/bootmem.h> 23 24 #include <asm/machvec.h> 25 #include <asm/page.h> 26 #include <asm/system.h> 27 #include <asm/io.h> 28 #include <asm/sal.h> 29 #include <asm/smp.h> 30 #include <asm/irq.h> 31 #include <asm/hw_irq.h> 32 33 /* 34 * Low-level SAL-based PCI configuration access functions. Note that SAL 35 * calls are already serialized (via sal_lock), so we don't need another 36 * synchronization mechanism here. 37 */ 38 39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 41 42 /* SAL 3.2 adds support for extended config space. */ 43 44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 46 47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 48 int reg, int len, u32 *value) 49 { 50 u64 addr, data = 0; 51 int mode, result; 52 53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 54 return -EINVAL; 55 56 if ((seg | reg) <= 255) { 57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 58 mode = 0; 59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 61 mode = 1; 62 } else { 63 return -EINVAL; 64 } 65 66 result = ia64_sal_pci_config_read(addr, mode, len, &data); 67 if (result != 0) 68 return -EINVAL; 69 70 *value = (u32) data; 71 return 0; 72 } 73 74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 75 int reg, int len, u32 value) 76 { 77 u64 addr; 78 int mode, result; 79 80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 81 return -EINVAL; 82 83 if ((seg | reg) <= 255) { 84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 85 mode = 0; 86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 88 mode = 1; 89 } else { 90 return -EINVAL; 91 } 92 result = ia64_sal_pci_config_write(addr, mode, len, value); 93 if (result != 0) 94 return -EINVAL; 95 return 0; 96 } 97 98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 99 int size, u32 *value) 100 { 101 return raw_pci_read(pci_domain_nr(bus), bus->number, 102 devfn, where, size, value); 103 } 104 105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 106 int size, u32 value) 107 { 108 return raw_pci_write(pci_domain_nr(bus), bus->number, 109 devfn, where, size, value); 110 } 111 112 struct pci_ops pci_root_ops = { 113 .read = pci_read, 114 .write = pci_write, 115 }; 116 117 /* Called by ACPI when it finds a new root bus. */ 118 119 static struct pci_controller * __devinit 120 alloc_pci_controller (int seg) 121 { 122 struct pci_controller *controller; 123 124 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 125 if (!controller) 126 return NULL; 127 128 controller->segment = seg; 129 controller->node = -1; 130 return controller; 131 } 132 133 struct pci_root_info { 134 struct acpi_device *bridge; 135 struct pci_controller *controller; 136 char *name; 137 }; 138 139 static unsigned int 140 new_space (u64 phys_base, int sparse) 141 { 142 u64 mmio_base; 143 int i; 144 145 if (phys_base == 0) 146 return 0; /* legacy I/O port space */ 147 148 mmio_base = (u64) ioremap(phys_base, 0); 149 for (i = 0; i < num_io_spaces; i++) 150 if (io_space[i].mmio_base == mmio_base && 151 io_space[i].sparse == sparse) 152 return i; 153 154 if (num_io_spaces == MAX_IO_SPACES) { 155 printk(KERN_ERR "PCI: Too many IO port spaces " 156 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 157 return ~0; 158 } 159 160 i = num_io_spaces++; 161 io_space[i].mmio_base = mmio_base; 162 io_space[i].sparse = sparse; 163 164 return i; 165 } 166 167 static u64 __devinit 168 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) 169 { 170 struct resource *resource; 171 char *name; 172 unsigned long base, min, max, base_port; 173 unsigned int sparse = 0, space_nr, len; 174 175 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 176 if (!resource) { 177 printk(KERN_ERR "PCI: No memory for %s I/O port space\n", 178 info->name); 179 goto out; 180 } 181 182 len = strlen(info->name) + 32; 183 name = kzalloc(len, GFP_KERNEL); 184 if (!name) { 185 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", 186 info->name); 187 goto free_resource; 188 } 189 190 min = addr->minimum; 191 max = min + addr->address_length - 1; 192 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 193 sparse = 1; 194 195 space_nr = new_space(addr->translation_offset, sparse); 196 if (space_nr == ~0) 197 goto free_name; 198 199 base = __pa(io_space[space_nr].mmio_base); 200 base_port = IO_SPACE_BASE(space_nr); 201 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 202 base_port + min, base_port + max); 203 204 /* 205 * The SDM guarantees the legacy 0-64K space is sparse, but if the 206 * mapping is done by the processor (not the bridge), ACPI may not 207 * mark it as sparse. 208 */ 209 if (space_nr == 0) 210 sparse = 1; 211 212 resource->name = name; 213 resource->flags = IORESOURCE_MEM; 214 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 215 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 216 insert_resource(&iomem_resource, resource); 217 218 return base_port; 219 220 free_name: 221 kfree(name); 222 free_resource: 223 kfree(resource); 224 out: 225 return ~0; 226 } 227 228 static acpi_status __devinit resource_to_window(struct acpi_resource *resource, 229 struct acpi_resource_address64 *addr) 230 { 231 acpi_status status; 232 233 /* 234 * We're only interested in _CRS descriptors that are 235 * - address space descriptors for memory or I/O space 236 * - non-zero size 237 * - producers, i.e., the address space is routed downstream, 238 * not consumed by the bridge itself 239 */ 240 status = acpi_resource_to_address64(resource, addr); 241 if (ACPI_SUCCESS(status) && 242 (addr->resource_type == ACPI_MEMORY_RANGE || 243 addr->resource_type == ACPI_IO_RANGE) && 244 addr->address_length && 245 addr->producer_consumer == ACPI_PRODUCER) 246 return AE_OK; 247 248 return AE_ERROR; 249 } 250 251 static acpi_status __devinit 252 count_window (struct acpi_resource *resource, void *data) 253 { 254 unsigned int *windows = (unsigned int *) data; 255 struct acpi_resource_address64 addr; 256 acpi_status status; 257 258 status = resource_to_window(resource, &addr); 259 if (ACPI_SUCCESS(status)) 260 (*windows)++; 261 262 return AE_OK; 263 } 264 265 static __devinit acpi_status add_window(struct acpi_resource *res, void *data) 266 { 267 struct pci_root_info *info = data; 268 struct pci_window *window; 269 struct acpi_resource_address64 addr; 270 acpi_status status; 271 unsigned long flags, offset = 0; 272 struct resource *root; 273 274 /* Return AE_OK for non-window resources to keep scanning for more */ 275 status = resource_to_window(res, &addr); 276 if (!ACPI_SUCCESS(status)) 277 return AE_OK; 278 279 if (addr.resource_type == ACPI_MEMORY_RANGE) { 280 flags = IORESOURCE_MEM; 281 root = &iomem_resource; 282 offset = addr.translation_offset; 283 } else if (addr.resource_type == ACPI_IO_RANGE) { 284 flags = IORESOURCE_IO; 285 root = &ioport_resource; 286 offset = add_io_space(info, &addr); 287 if (offset == ~0) 288 return AE_OK; 289 } else 290 return AE_OK; 291 292 window = &info->controller->window[info->controller->windows++]; 293 window->resource.name = info->name; 294 window->resource.flags = flags; 295 window->resource.start = addr.minimum + offset; 296 window->resource.end = window->resource.start + addr.address_length - 1; 297 window->resource.child = NULL; 298 window->offset = offset; 299 300 if (insert_resource(root, &window->resource)) { 301 dev_err(&info->bridge->dev, 302 "can't allocate host bridge window %pR\n", 303 &window->resource); 304 } else { 305 if (offset) 306 dev_info(&info->bridge->dev, "host bridge window %pR " 307 "(PCI address [%#llx-%#llx])\n", 308 &window->resource, 309 window->resource.start - offset, 310 window->resource.end - offset); 311 else 312 dev_info(&info->bridge->dev, 313 "host bridge window %pR\n", 314 &window->resource); 315 } 316 317 return AE_OK; 318 } 319 320 static void __devinit 321 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl) 322 { 323 int i; 324 325 pci_bus_remove_resources(bus); 326 for (i = 0; i < ctrl->windows; i++) { 327 struct resource *res = &ctrl->window[i].resource; 328 /* HP's firmware has a hack to work around a Windows bug. 329 * Ignore these tiny memory ranges */ 330 if ((res->flags & IORESOURCE_MEM) && 331 (res->end - res->start < 16)) 332 continue; 333 pci_bus_add_resource(bus, res, 0); 334 } 335 } 336 337 struct pci_bus * __devinit 338 pci_acpi_scan_root(struct acpi_pci_root *root) 339 { 340 struct acpi_device *device = root->device; 341 int domain = root->segment; 342 int bus = root->secondary.start; 343 struct pci_controller *controller; 344 unsigned int windows = 0; 345 struct pci_bus *pbus; 346 char *name; 347 int pxm; 348 349 controller = alloc_pci_controller(domain); 350 if (!controller) 351 goto out1; 352 353 controller->acpi_handle = device->handle; 354 355 pxm = acpi_get_pxm(controller->acpi_handle); 356 #ifdef CONFIG_NUMA 357 if (pxm >= 0) 358 controller->node = pxm_to_node(pxm); 359 #endif 360 361 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 362 &windows); 363 if (windows) { 364 struct pci_root_info info; 365 366 controller->window = 367 kmalloc_node(sizeof(*controller->window) * windows, 368 GFP_KERNEL, controller->node); 369 if (!controller->window) 370 goto out2; 371 372 name = kmalloc(16, GFP_KERNEL); 373 if (!name) 374 goto out3; 375 376 sprintf(name, "PCI Bus %04x:%02x", domain, bus); 377 info.bridge = device; 378 info.controller = controller; 379 info.name = name; 380 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 381 add_window, &info); 382 } 383 /* 384 * See arch/x86/pci/acpi.c. 385 * The desired pci bus might already be scanned in a quirk. We 386 * should handle the case here, but it appears that IA64 hasn't 387 * such quirk. So we just ignore the case now. 388 */ 389 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller); 390 391 return pbus; 392 393 out3: 394 kfree(controller->window); 395 out2: 396 kfree(controller); 397 out1: 398 return NULL; 399 } 400 401 void pcibios_resource_to_bus(struct pci_dev *dev, 402 struct pci_bus_region *region, struct resource *res) 403 { 404 struct pci_controller *controller = PCI_CONTROLLER(dev); 405 unsigned long offset = 0; 406 int i; 407 408 for (i = 0; i < controller->windows; i++) { 409 struct pci_window *window = &controller->window[i]; 410 if (!(window->resource.flags & res->flags)) 411 continue; 412 if (window->resource.start > res->start) 413 continue; 414 if (window->resource.end < res->end) 415 continue; 416 offset = window->offset; 417 break; 418 } 419 420 region->start = res->start - offset; 421 region->end = res->end - offset; 422 } 423 EXPORT_SYMBOL(pcibios_resource_to_bus); 424 425 void pcibios_bus_to_resource(struct pci_dev *dev, 426 struct resource *res, struct pci_bus_region *region) 427 { 428 struct pci_controller *controller = PCI_CONTROLLER(dev); 429 unsigned long offset = 0; 430 int i; 431 432 for (i = 0; i < controller->windows; i++) { 433 struct pci_window *window = &controller->window[i]; 434 if (!(window->resource.flags & res->flags)) 435 continue; 436 if (window->resource.start - window->offset > region->start) 437 continue; 438 if (window->resource.end - window->offset < region->end) 439 continue; 440 offset = window->offset; 441 break; 442 } 443 444 res->start = region->start + offset; 445 res->end = region->end + offset; 446 } 447 EXPORT_SYMBOL(pcibios_bus_to_resource); 448 449 static int __devinit is_valid_resource(struct pci_dev *dev, int idx) 450 { 451 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 452 struct resource *devr = &dev->resource[idx], *busr; 453 454 if (!dev->bus) 455 return 0; 456 457 pci_bus_for_each_resource(dev->bus, busr, i) { 458 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 459 continue; 460 if ((devr->start) && (devr->start >= busr->start) && 461 (devr->end <= busr->end)) 462 return 1; 463 } 464 return 0; 465 } 466 467 static void __devinit 468 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 469 { 470 struct pci_bus_region region; 471 int i; 472 473 for (i = start; i < limit; i++) { 474 if (!dev->resource[i].flags) 475 continue; 476 region.start = dev->resource[i].start; 477 region.end = dev->resource[i].end; 478 pcibios_bus_to_resource(dev, &dev->resource[i], ®ion); 479 if ((is_valid_resource(dev, i))) 480 pci_claim_resource(dev, i); 481 } 482 } 483 484 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) 485 { 486 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 487 } 488 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 489 490 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) 491 { 492 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 493 } 494 495 /* 496 * Called after each bus is probed, but before its children are examined. 497 */ 498 void __devinit 499 pcibios_fixup_bus (struct pci_bus *b) 500 { 501 struct pci_dev *dev; 502 503 if (b->self) { 504 pci_read_bridge_bases(b); 505 pcibios_fixup_bridge_resources(b->self); 506 } else { 507 pcibios_setup_root_windows(b, b->sysdata); 508 } 509 list_for_each_entry(dev, &b->devices, bus_list) 510 pcibios_fixup_device_resources(dev); 511 platform_pci_fixup_bus(b); 512 513 return; 514 } 515 516 void __devinit 517 pcibios_update_irq (struct pci_dev *dev, int irq) 518 { 519 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); 520 521 /* ??? FIXME -- record old value for shutdown. */ 522 } 523 524 int 525 pcibios_enable_device (struct pci_dev *dev, int mask) 526 { 527 int ret; 528 529 ret = pci_enable_resources(dev, mask); 530 if (ret < 0) 531 return ret; 532 533 if (!dev->msi_enabled) 534 return acpi_pci_irq_enable(dev); 535 return 0; 536 } 537 538 void 539 pcibios_disable_device (struct pci_dev *dev) 540 { 541 BUG_ON(atomic_read(&dev->enable_cnt)); 542 if (!dev->msi_enabled) 543 acpi_pci_irq_disable(dev); 544 } 545 546 resource_size_t 547 pcibios_align_resource (void *data, const struct resource *res, 548 resource_size_t size, resource_size_t align) 549 { 550 return res->start; 551 } 552 553 /* 554 * PCI BIOS setup, always defaults to SAL interface 555 */ 556 char * __init 557 pcibios_setup (char *str) 558 { 559 return str; 560 } 561 562 int 563 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 564 enum pci_mmap_state mmap_state, int write_combine) 565 { 566 unsigned long size = vma->vm_end - vma->vm_start; 567 pgprot_t prot; 568 569 /* 570 * I/O space cannot be accessed via normal processor loads and 571 * stores on this platform. 572 */ 573 if (mmap_state == pci_mmap_io) 574 /* 575 * XXX we could relax this for I/O spaces for which ACPI 576 * indicates that the space is 1-to-1 mapped. But at the 577 * moment, we don't support multiple PCI address spaces and 578 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 579 */ 580 return -EINVAL; 581 582 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 583 return -EINVAL; 584 585 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 586 vma->vm_page_prot); 587 588 /* 589 * If the user requested WC, the kernel uses UC or WC for this region, 590 * and the chipset supports WC, we can use WC. Otherwise, we have to 591 * use the same attribute the kernel uses. 592 */ 593 if (write_combine && 594 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 595 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 596 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 597 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 598 else 599 vma->vm_page_prot = prot; 600 601 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 602 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 603 return -EAGAIN; 604 605 return 0; 606 } 607 608 /** 609 * ia64_pci_get_legacy_mem - generic legacy mem routine 610 * @bus: bus to get legacy memory base address for 611 * 612 * Find the base of legacy memory for @bus. This is typically the first 613 * megabyte of bus address space for @bus or is simply 0 on platforms whose 614 * chipsets support legacy I/O and memory routing. Returns the base address 615 * or an error pointer if an error occurred. 616 * 617 * This is the ia64 generic version of this routine. Other platforms 618 * are free to override it with a machine vector. 619 */ 620 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 621 { 622 return (char *)__IA64_UNCACHED_OFFSET; 623 } 624 625 /** 626 * pci_mmap_legacy_page_range - map legacy memory space to userland 627 * @bus: bus whose legacy space we're mapping 628 * @vma: vma passed in by mmap 629 * 630 * Map legacy memory space for this device back to userspace using a machine 631 * vector to get the base address. 632 */ 633 int 634 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 635 enum pci_mmap_state mmap_state) 636 { 637 unsigned long size = vma->vm_end - vma->vm_start; 638 pgprot_t prot; 639 char *addr; 640 641 /* We only support mmap'ing of legacy memory space */ 642 if (mmap_state != pci_mmap_mem) 643 return -ENOSYS; 644 645 /* 646 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 647 * for more details. 648 */ 649 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 650 return -EINVAL; 651 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 652 vma->vm_page_prot); 653 654 addr = pci_get_legacy_mem(bus); 655 if (IS_ERR(addr)) 656 return PTR_ERR(addr); 657 658 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 659 vma->vm_page_prot = prot; 660 661 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 662 size, vma->vm_page_prot)) 663 return -EAGAIN; 664 665 return 0; 666 } 667 668 /** 669 * ia64_pci_legacy_read - read from legacy I/O space 670 * @bus: bus to read 671 * @port: legacy port value 672 * @val: caller allocated storage for returned value 673 * @size: number of bytes to read 674 * 675 * Simply reads @size bytes from @port and puts the result in @val. 676 * 677 * Again, this (and the write routine) are generic versions that can be 678 * overridden by the platform. This is necessary on platforms that don't 679 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 680 */ 681 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 682 { 683 int ret = size; 684 685 switch (size) { 686 case 1: 687 *val = inb(port); 688 break; 689 case 2: 690 *val = inw(port); 691 break; 692 case 4: 693 *val = inl(port); 694 break; 695 default: 696 ret = -EINVAL; 697 break; 698 } 699 700 return ret; 701 } 702 703 /** 704 * ia64_pci_legacy_write - perform a legacy I/O write 705 * @bus: bus pointer 706 * @port: port to write 707 * @val: value to write 708 * @size: number of bytes to write from @val 709 * 710 * Simply writes @size bytes of @val to @port. 711 */ 712 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 713 { 714 int ret = size; 715 716 switch (size) { 717 case 1: 718 outb(val, port); 719 break; 720 case 2: 721 outw(val, port); 722 break; 723 case 4: 724 outl(val, port); 725 break; 726 default: 727 ret = -EINVAL; 728 break; 729 } 730 731 return ret; 732 } 733 734 /** 735 * set_pci_cacheline_size - determine cacheline size for PCI devices 736 * 737 * We want to use the line-size of the outer-most cache. We assume 738 * that this line-size is the same for all CPUs. 739 * 740 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 741 */ 742 static void __init set_pci_dfl_cacheline_size(void) 743 { 744 unsigned long levels, unique_caches; 745 long status; 746 pal_cache_config_info_t cci; 747 748 status = ia64_pal_cache_summary(&levels, &unique_caches); 749 if (status != 0) { 750 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " 751 "(status=%ld)\n", __func__, status); 752 return; 753 } 754 755 status = ia64_pal_cache_config_info(levels - 1, 756 /* cache_type (data_or_unified)= */ 2, &cci); 757 if (status != 0) { 758 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " 759 "(status=%ld)\n", __func__, status); 760 return; 761 } 762 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 763 } 764 765 u64 ia64_dma_get_required_mask(struct device *dev) 766 { 767 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 768 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 769 u64 mask; 770 771 if (!high_totalram) { 772 /* convert to mask just covering totalram */ 773 low_totalram = (1 << (fls(low_totalram) - 1)); 774 low_totalram += low_totalram - 1; 775 mask = low_totalram; 776 } else { 777 high_totalram = (1 << (fls(high_totalram) - 1)); 778 high_totalram += high_totalram - 1; 779 mask = (((u64)high_totalram) << 32) + 0xffffffff; 780 } 781 return mask; 782 } 783 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 784 785 u64 dma_get_required_mask(struct device *dev) 786 { 787 return platform_dma_get_required_mask(dev); 788 } 789 EXPORT_SYMBOL_GPL(dma_get_required_mask); 790 791 static int __init pcibios_init(void) 792 { 793 set_pci_dfl_cacheline_size(); 794 return 0; 795 } 796 797 subsys_initcall(pcibios_init); 798