xref: /openbmc/linux/arch/ia64/pci/pci.c (revision d7a3d85e)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33 
34 /*
35  * Low-level SAL-based PCI configuration access functions. Note that SAL
36  * calls are already serialized (via sal_lock), so we don't need another
37  * synchronization mechanism here.
38  */
39 
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
41 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 
43 /* SAL 3.2 adds support for extended config space. */
44 
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
46 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 	      int reg, int len, u32 *value)
50 {
51 	u64 addr, data = 0;
52 	int mode, result;
53 
54 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 		return -EINVAL;
56 
57 	if ((seg | reg) <= 255) {
58 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 		mode = 0;
60 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 		mode = 1;
63 	} else {
64 		return -EINVAL;
65 	}
66 
67 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 	if (result != 0)
69 		return -EINVAL;
70 
71 	*value = (u32) data;
72 	return 0;
73 }
74 
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 	       int reg, int len, u32 value)
77 {
78 	u64 addr;
79 	int mode, result;
80 
81 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 		return -EINVAL;
83 
84 	if ((seg | reg) <= 255) {
85 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 		mode = 0;
87 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 		mode = 1;
90 	} else {
91 		return -EINVAL;
92 	}
93 	result = ia64_sal_pci_config_write(addr, mode, len, value);
94 	if (result != 0)
95 		return -EINVAL;
96 	return 0;
97 }
98 
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 							int size, u32 *value)
101 {
102 	return raw_pci_read(pci_domain_nr(bus), bus->number,
103 				 devfn, where, size, value);
104 }
105 
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 							int size, u32 value)
108 {
109 	return raw_pci_write(pci_domain_nr(bus), bus->number,
110 				  devfn, where, size, value);
111 }
112 
113 struct pci_ops pci_root_ops = {
114 	.read = pci_read,
115 	.write = pci_write,
116 };
117 
118 /* Called by ACPI when it finds a new root bus.  */
119 
120 static struct pci_controller *alloc_pci_controller(int seg)
121 {
122 	struct pci_controller *controller;
123 
124 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 	if (!controller)
126 		return NULL;
127 
128 	controller->segment = seg;
129 	return controller;
130 }
131 
132 struct pci_root_info {
133 	struct acpi_device *bridge;
134 	struct pci_controller *controller;
135 	struct list_head resources;
136 	struct resource *res;
137 	resource_size_t *res_offset;
138 	unsigned int res_num;
139 	struct list_head io_resources;
140 	char *name;
141 };
142 
143 static unsigned int
144 new_space (u64 phys_base, int sparse)
145 {
146 	u64 mmio_base;
147 	int i;
148 
149 	if (phys_base == 0)
150 		return 0;	/* legacy I/O port space */
151 
152 	mmio_base = (u64) ioremap(phys_base, 0);
153 	for (i = 0; i < num_io_spaces; i++)
154 		if (io_space[i].mmio_base == mmio_base &&
155 		    io_space[i].sparse == sparse)
156 			return i;
157 
158 	if (num_io_spaces == MAX_IO_SPACES) {
159 		pr_err("PCI: Too many IO port spaces "
160 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
161 		return ~0;
162 	}
163 
164 	i = num_io_spaces++;
165 	io_space[i].mmio_base = mmio_base;
166 	io_space[i].sparse = sparse;
167 
168 	return i;
169 }
170 
171 static u64 add_io_space(struct pci_root_info *info,
172 			struct acpi_resource_address64 *addr)
173 {
174 	struct iospace_resource *iospace;
175 	struct resource *resource;
176 	char *name;
177 	unsigned long base, min, max, base_port;
178 	unsigned int sparse = 0, space_nr, len;
179 
180 	len = strlen(info->name) + 32;
181 	iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
182 	if (!iospace) {
183 		dev_err(&info->bridge->dev,
184 				"PCI: No memory for %s I/O port space\n",
185 				info->name);
186 		goto out;
187 	}
188 
189 	name = (char *)(iospace + 1);
190 
191 	min = addr->address.minimum;
192 	max = min + addr->address.address_length - 1;
193 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194 		sparse = 1;
195 
196 	space_nr = new_space(addr->address.translation_offset, sparse);
197 	if (space_nr == ~0)
198 		goto free_resource;
199 
200 	base = __pa(io_space[space_nr].mmio_base);
201 	base_port = IO_SPACE_BASE(space_nr);
202 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203 		base_port + min, base_port + max);
204 
205 	/*
206 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207 	 * mapping is done by the processor (not the bridge), ACPI may not
208 	 * mark it as sparse.
209 	 */
210 	if (space_nr == 0)
211 		sparse = 1;
212 
213 	resource = &iospace->res;
214 	resource->name  = name;
215 	resource->flags = IORESOURCE_MEM;
216 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218 	if (insert_resource(&iomem_resource, resource)) {
219 		dev_err(&info->bridge->dev,
220 				"can't allocate host bridge io space resource  %pR\n",
221 				resource);
222 		goto free_resource;
223 	}
224 
225 	list_add_tail(&iospace->list, &info->io_resources);
226 	return base_port;
227 
228 free_resource:
229 	kfree(iospace);
230 out:
231 	return ~0;
232 }
233 
234 static acpi_status resource_to_window(struct acpi_resource *resource,
235 				      struct acpi_resource_address64 *addr)
236 {
237 	acpi_status status;
238 
239 	/*
240 	 * We're only interested in _CRS descriptors that are
241 	 *	- address space descriptors for memory or I/O space
242 	 *	- non-zero size
243 	 */
244 	status = acpi_resource_to_address64(resource, addr);
245 	if (ACPI_SUCCESS(status) &&
246 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
247 	     addr->resource_type == ACPI_IO_RANGE) &&
248 	    addr->address.address_length)
249 		return AE_OK;
250 
251 	return AE_ERROR;
252 }
253 
254 static acpi_status count_window(struct acpi_resource *resource, void *data)
255 {
256 	unsigned int *windows = (unsigned int *) data;
257 	struct acpi_resource_address64 addr;
258 	acpi_status status;
259 
260 	status = resource_to_window(resource, &addr);
261 	if (ACPI_SUCCESS(status))
262 		(*windows)++;
263 
264 	return AE_OK;
265 }
266 
267 static acpi_status add_window(struct acpi_resource *res, void *data)
268 {
269 	struct pci_root_info *info = data;
270 	struct resource *resource;
271 	struct acpi_resource_address64 addr;
272 	acpi_status status;
273 	unsigned long flags, offset = 0;
274 	struct resource *root;
275 
276 	/* Return AE_OK for non-window resources to keep scanning for more */
277 	status = resource_to_window(res, &addr);
278 	if (!ACPI_SUCCESS(status))
279 		return AE_OK;
280 
281 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
282 		flags = IORESOURCE_MEM;
283 		root = &iomem_resource;
284 		offset = addr.address.translation_offset;
285 	} else if (addr.resource_type == ACPI_IO_RANGE) {
286 		flags = IORESOURCE_IO;
287 		root = &ioport_resource;
288 		offset = add_io_space(info, &addr);
289 		if (offset == ~0)
290 			return AE_OK;
291 	} else
292 		return AE_OK;
293 
294 	resource = &info->res[info->res_num];
295 	resource->name = info->name;
296 	resource->flags = flags;
297 	resource->start = addr.address.minimum + offset;
298 	resource->end = resource->start + addr.address.address_length - 1;
299 	info->res_offset[info->res_num] = offset;
300 
301 	if (insert_resource(root, resource)) {
302 		dev_err(&info->bridge->dev,
303 			"can't allocate host bridge window %pR\n",
304 			resource);
305 	} else {
306 		if (offset)
307 			dev_info(&info->bridge->dev, "host bridge window %pR "
308 				 "(PCI address [%#llx-%#llx])\n",
309 				 resource,
310 				 resource->start - offset,
311 				 resource->end - offset);
312 		else
313 			dev_info(&info->bridge->dev,
314 				 "host bridge window %pR\n", resource);
315 	}
316 	/* HP's firmware has a hack to work around a Windows bug.
317 	 * Ignore these tiny memory ranges */
318 	if (!((resource->flags & IORESOURCE_MEM) &&
319 	      (resource->end - resource->start < 16)))
320 		pci_add_resource_offset(&info->resources, resource,
321 					info->res_offset[info->res_num]);
322 
323 	info->res_num++;
324 	return AE_OK;
325 }
326 
327 static void free_pci_root_info_res(struct pci_root_info *info)
328 {
329 	struct iospace_resource *iospace, *tmp;
330 
331 	list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
332 		kfree(iospace);
333 
334 	kfree(info->name);
335 	kfree(info->res);
336 	info->res = NULL;
337 	kfree(info->res_offset);
338 	info->res_offset = NULL;
339 	info->res_num = 0;
340 	kfree(info->controller);
341 	info->controller = NULL;
342 }
343 
344 static void __release_pci_root_info(struct pci_root_info *info)
345 {
346 	int i;
347 	struct resource *res;
348 	struct iospace_resource *iospace;
349 
350 	list_for_each_entry(iospace, &info->io_resources, list)
351 		release_resource(&iospace->res);
352 
353 	for (i = 0; i < info->res_num; i++) {
354 		res = &info->res[i];
355 
356 		if (!res->parent)
357 			continue;
358 
359 		if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
360 			continue;
361 
362 		release_resource(res);
363 	}
364 
365 	free_pci_root_info_res(info);
366 	kfree(info);
367 }
368 
369 static void release_pci_root_info(struct pci_host_bridge *bridge)
370 {
371 	struct pci_root_info *info = bridge->release_data;
372 
373 	__release_pci_root_info(info);
374 }
375 
376 static int
377 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
378 		int busnum, int domain)
379 {
380 	char *name;
381 
382 	name = kmalloc(16, GFP_KERNEL);
383 	if (!name)
384 		return -ENOMEM;
385 
386 	sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
387 	info->bridge = device;
388 	info->name = name;
389 
390 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
391 			&info->res_num);
392 	if (info->res_num) {
393 		info->res =
394 			kzalloc_node(sizeof(*info->res) * info->res_num,
395 				     GFP_KERNEL, info->controller->node);
396 		if (!info->res) {
397 			kfree(name);
398 			return -ENOMEM;
399 		}
400 
401 		info->res_offset =
402 			kzalloc_node(sizeof(*info->res_offset) * info->res_num,
403 					GFP_KERNEL, info->controller->node);
404 		if (!info->res_offset) {
405 			kfree(name);
406 			kfree(info->res);
407 			info->res = NULL;
408 			return -ENOMEM;
409 		}
410 
411 		info->res_num = 0;
412 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
413 			add_window, info);
414 	} else
415 		kfree(name);
416 
417 	return 0;
418 }
419 
420 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
421 {
422 	struct acpi_device *device = root->device;
423 	int domain = root->segment;
424 	int bus = root->secondary.start;
425 	struct pci_controller *controller;
426 	struct pci_root_info *info = NULL;
427 	int busnum = root->secondary.start;
428 	struct pci_bus *pbus;
429 	int ret;
430 
431 	controller = alloc_pci_controller(domain);
432 	if (!controller)
433 		return NULL;
434 
435 	controller->companion = device;
436 	controller->node = acpi_get_node(device->handle);
437 
438 	info = kzalloc(sizeof(*info), GFP_KERNEL);
439 	if (!info) {
440 		dev_err(&device->dev,
441 				"pci_bus %04x:%02x: ignored (out of memory)\n",
442 				domain, busnum);
443 		kfree(controller);
444 		return NULL;
445 	}
446 
447 	info->controller = controller;
448 	INIT_LIST_HEAD(&info->io_resources);
449 	INIT_LIST_HEAD(&info->resources);
450 
451 	ret = probe_pci_root_info(info, device, busnum, domain);
452 	if (ret) {
453 		kfree(info->controller);
454 		kfree(info);
455 		return NULL;
456 	}
457 	/* insert busn resource at first */
458 	pci_add_resource(&info->resources, &root->secondary);
459 	/*
460 	 * See arch/x86/pci/acpi.c.
461 	 * The desired pci bus might already be scanned in a quirk. We
462 	 * should handle the case here, but it appears that IA64 hasn't
463 	 * such quirk. So we just ignore the case now.
464 	 */
465 	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
466 				   &info->resources);
467 	if (!pbus) {
468 		pci_free_resource_list(&info->resources);
469 		__release_pci_root_info(info);
470 		return NULL;
471 	}
472 
473 	pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
474 			release_pci_root_info, info);
475 	pci_scan_child_bus(pbus);
476 	return pbus;
477 }
478 
479 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
480 {
481 	struct pci_controller *controller = bridge->bus->sysdata;
482 
483 	ACPI_COMPANION_SET(&bridge->dev, controller->companion);
484 	return 0;
485 }
486 
487 void pcibios_fixup_device_resources(struct pci_dev *dev)
488 {
489 	int idx;
490 
491 	if (!dev->bus)
492 		return;
493 
494 	for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
495 		struct resource *r = &dev->resource[idx];
496 
497 		if (!r->flags || r->parent || !r->start)
498 			continue;
499 
500 		pci_claim_resource(dev, idx);
501 	}
502 }
503 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
504 
505 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
506 {
507 	int idx;
508 
509 	if (!dev->bus)
510 		return;
511 
512 	for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
513 		struct resource *r = &dev->resource[idx];
514 
515 		if (!r->flags || r->parent || !r->start)
516 			continue;
517 
518 		pci_claim_bridge_resource(dev, idx);
519 	}
520 }
521 
522 /*
523  *  Called after each bus is probed, but before its children are examined.
524  */
525 void pcibios_fixup_bus(struct pci_bus *b)
526 {
527 	struct pci_dev *dev;
528 
529 	if (b->self) {
530 		pci_read_bridge_bases(b);
531 		pcibios_fixup_bridge_resources(b->self);
532 	}
533 	list_for_each_entry(dev, &b->devices, bus_list)
534 		pcibios_fixup_device_resources(dev);
535 	platform_pci_fixup_bus(b);
536 }
537 
538 void pcibios_add_bus(struct pci_bus *bus)
539 {
540 	acpi_pci_add_bus(bus);
541 }
542 
543 void pcibios_remove_bus(struct pci_bus *bus)
544 {
545 	acpi_pci_remove_bus(bus);
546 }
547 
548 void pcibios_set_master (struct pci_dev *dev)
549 {
550 	/* No special bus mastering setup handling */
551 }
552 
553 int
554 pcibios_enable_device (struct pci_dev *dev, int mask)
555 {
556 	int ret;
557 
558 	ret = pci_enable_resources(dev, mask);
559 	if (ret < 0)
560 		return ret;
561 
562 	if (!dev->msi_enabled)
563 		return acpi_pci_irq_enable(dev);
564 	return 0;
565 }
566 
567 void
568 pcibios_disable_device (struct pci_dev *dev)
569 {
570 	BUG_ON(atomic_read(&dev->enable_cnt));
571 	if (!dev->msi_enabled)
572 		acpi_pci_irq_disable(dev);
573 }
574 
575 resource_size_t
576 pcibios_align_resource (void *data, const struct resource *res,
577 		        resource_size_t size, resource_size_t align)
578 {
579 	return res->start;
580 }
581 
582 int
583 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
584 		     enum pci_mmap_state mmap_state, int write_combine)
585 {
586 	unsigned long size = vma->vm_end - vma->vm_start;
587 	pgprot_t prot;
588 
589 	/*
590 	 * I/O space cannot be accessed via normal processor loads and
591 	 * stores on this platform.
592 	 */
593 	if (mmap_state == pci_mmap_io)
594 		/*
595 		 * XXX we could relax this for I/O spaces for which ACPI
596 		 * indicates that the space is 1-to-1 mapped.  But at the
597 		 * moment, we don't support multiple PCI address spaces and
598 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
599 		 */
600 		return -EINVAL;
601 
602 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
603 		return -EINVAL;
604 
605 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
606 				    vma->vm_page_prot);
607 
608 	/*
609 	 * If the user requested WC, the kernel uses UC or WC for this region,
610 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
611 	 * use the same attribute the kernel uses.
612 	 */
613 	if (write_combine &&
614 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
615 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
616 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
617 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
618 	else
619 		vma->vm_page_prot = prot;
620 
621 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
622 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
623 		return -EAGAIN;
624 
625 	return 0;
626 }
627 
628 /**
629  * ia64_pci_get_legacy_mem - generic legacy mem routine
630  * @bus: bus to get legacy memory base address for
631  *
632  * Find the base of legacy memory for @bus.  This is typically the first
633  * megabyte of bus address space for @bus or is simply 0 on platforms whose
634  * chipsets support legacy I/O and memory routing.  Returns the base address
635  * or an error pointer if an error occurred.
636  *
637  * This is the ia64 generic version of this routine.  Other platforms
638  * are free to override it with a machine vector.
639  */
640 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
641 {
642 	return (char *)__IA64_UNCACHED_OFFSET;
643 }
644 
645 /**
646  * pci_mmap_legacy_page_range - map legacy memory space to userland
647  * @bus: bus whose legacy space we're mapping
648  * @vma: vma passed in by mmap
649  *
650  * Map legacy memory space for this device back to userspace using a machine
651  * vector to get the base address.
652  */
653 int
654 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
655 			   enum pci_mmap_state mmap_state)
656 {
657 	unsigned long size = vma->vm_end - vma->vm_start;
658 	pgprot_t prot;
659 	char *addr;
660 
661 	/* We only support mmap'ing of legacy memory space */
662 	if (mmap_state != pci_mmap_mem)
663 		return -ENOSYS;
664 
665 	/*
666 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
667 	 * for more details.
668 	 */
669 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
670 		return -EINVAL;
671 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
672 				    vma->vm_page_prot);
673 
674 	addr = pci_get_legacy_mem(bus);
675 	if (IS_ERR(addr))
676 		return PTR_ERR(addr);
677 
678 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
679 	vma->vm_page_prot = prot;
680 
681 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
682 			    size, vma->vm_page_prot))
683 		return -EAGAIN;
684 
685 	return 0;
686 }
687 
688 /**
689  * ia64_pci_legacy_read - read from legacy I/O space
690  * @bus: bus to read
691  * @port: legacy port value
692  * @val: caller allocated storage for returned value
693  * @size: number of bytes to read
694  *
695  * Simply reads @size bytes from @port and puts the result in @val.
696  *
697  * Again, this (and the write routine) are generic versions that can be
698  * overridden by the platform.  This is necessary on platforms that don't
699  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
700  */
701 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
702 {
703 	int ret = size;
704 
705 	switch (size) {
706 	case 1:
707 		*val = inb(port);
708 		break;
709 	case 2:
710 		*val = inw(port);
711 		break;
712 	case 4:
713 		*val = inl(port);
714 		break;
715 	default:
716 		ret = -EINVAL;
717 		break;
718 	}
719 
720 	return ret;
721 }
722 
723 /**
724  * ia64_pci_legacy_write - perform a legacy I/O write
725  * @bus: bus pointer
726  * @port: port to write
727  * @val: value to write
728  * @size: number of bytes to write from @val
729  *
730  * Simply writes @size bytes of @val to @port.
731  */
732 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
733 {
734 	int ret = size;
735 
736 	switch (size) {
737 	case 1:
738 		outb(val, port);
739 		break;
740 	case 2:
741 		outw(val, port);
742 		break;
743 	case 4:
744 		outl(val, port);
745 		break;
746 	default:
747 		ret = -EINVAL;
748 		break;
749 	}
750 
751 	return ret;
752 }
753 
754 /**
755  * set_pci_cacheline_size - determine cacheline size for PCI devices
756  *
757  * We want to use the line-size of the outer-most cache.  We assume
758  * that this line-size is the same for all CPUs.
759  *
760  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
761  */
762 static void __init set_pci_dfl_cacheline_size(void)
763 {
764 	unsigned long levels, unique_caches;
765 	long status;
766 	pal_cache_config_info_t cci;
767 
768 	status = ia64_pal_cache_summary(&levels, &unique_caches);
769 	if (status != 0) {
770 		pr_err("%s: ia64_pal_cache_summary() failed "
771 			"(status=%ld)\n", __func__, status);
772 		return;
773 	}
774 
775 	status = ia64_pal_cache_config_info(levels - 1,
776 				/* cache_type (data_or_unified)= */ 2, &cci);
777 	if (status != 0) {
778 		pr_err("%s: ia64_pal_cache_config_info() failed "
779 			"(status=%ld)\n", __func__, status);
780 		return;
781 	}
782 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
783 }
784 
785 u64 ia64_dma_get_required_mask(struct device *dev)
786 {
787 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
788 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
789 	u64 mask;
790 
791 	if (!high_totalram) {
792 		/* convert to mask just covering totalram */
793 		low_totalram = (1 << (fls(low_totalram) - 1));
794 		low_totalram += low_totalram - 1;
795 		mask = low_totalram;
796 	} else {
797 		high_totalram = (1 << (fls(high_totalram) - 1));
798 		high_totalram += high_totalram - 1;
799 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
800 	}
801 	return mask;
802 }
803 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
804 
805 u64 dma_get_required_mask(struct device *dev)
806 {
807 	return platform_dma_get_required_mask(dev);
808 }
809 EXPORT_SYMBOL_GPL(dma_get_required_mask);
810 
811 static int __init pcibios_init(void)
812 {
813 	set_pci_dfl_cacheline_size();
814 	return 0;
815 }
816 
817 subsys_initcall(pcibios_init);
818