xref: /openbmc/linux/arch/ia64/pci/pci.c (revision d0b73b48)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32 
33 /*
34  * Low-level SAL-based PCI configuration access functions. Note that SAL
35  * calls are already serialized (via sal_lock), so we don't need another
36  * synchronization mechanism here.
37  */
38 
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
40 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 
42 /* SAL 3.2 adds support for extended config space. */
43 
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
45 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 	      int reg, int len, u32 *value)
49 {
50 	u64 addr, data = 0;
51 	int mode, result;
52 
53 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 		return -EINVAL;
55 
56 	if ((seg | reg) <= 255) {
57 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 		mode = 0;
59 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 		mode = 1;
62 	} else {
63 		return -EINVAL;
64 	}
65 
66 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 	if (result != 0)
68 		return -EINVAL;
69 
70 	*value = (u32) data;
71 	return 0;
72 }
73 
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 	       int reg, int len, u32 value)
76 {
77 	u64 addr;
78 	int mode, result;
79 
80 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 		return -EINVAL;
82 
83 	if ((seg | reg) <= 255) {
84 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 		mode = 0;
86 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 		mode = 1;
89 	} else {
90 		return -EINVAL;
91 	}
92 	result = ia64_sal_pci_config_write(addr, mode, len, value);
93 	if (result != 0)
94 		return -EINVAL;
95 	return 0;
96 }
97 
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 							int size, u32 *value)
100 {
101 	return raw_pci_read(pci_domain_nr(bus), bus->number,
102 				 devfn, where, size, value);
103 }
104 
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 							int size, u32 value)
107 {
108 	return raw_pci_write(pci_domain_nr(bus), bus->number,
109 				  devfn, where, size, value);
110 }
111 
112 struct pci_ops pci_root_ops = {
113 	.read = pci_read,
114 	.write = pci_write,
115 };
116 
117 /* Called by ACPI when it finds a new root bus.  */
118 
119 static struct pci_controller *alloc_pci_controller(int seg)
120 {
121 	struct pci_controller *controller;
122 
123 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
124 	if (!controller)
125 		return NULL;
126 
127 	controller->segment = seg;
128 	controller->node = -1;
129 	return controller;
130 }
131 
132 struct pci_root_info {
133 	struct acpi_device *bridge;
134 	struct pci_controller *controller;
135 	struct list_head resources;
136 	char *name;
137 };
138 
139 static unsigned int
140 new_space (u64 phys_base, int sparse)
141 {
142 	u64 mmio_base;
143 	int i;
144 
145 	if (phys_base == 0)
146 		return 0;	/* legacy I/O port space */
147 
148 	mmio_base = (u64) ioremap(phys_base, 0);
149 	for (i = 0; i < num_io_spaces; i++)
150 		if (io_space[i].mmio_base == mmio_base &&
151 		    io_space[i].sparse == sparse)
152 			return i;
153 
154 	if (num_io_spaces == MAX_IO_SPACES) {
155 		printk(KERN_ERR "PCI: Too many IO port spaces "
156 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
157 		return ~0;
158 	}
159 
160 	i = num_io_spaces++;
161 	io_space[i].mmio_base = mmio_base;
162 	io_space[i].sparse = sparse;
163 
164 	return i;
165 }
166 
167 static u64 add_io_space(struct pci_root_info *info,
168 			struct acpi_resource_address64 *addr)
169 {
170 	struct resource *resource;
171 	char *name;
172 	unsigned long base, min, max, base_port;
173 	unsigned int sparse = 0, space_nr, len;
174 
175 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
176 	if (!resource) {
177 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
178 			info->name);
179 		goto out;
180 	}
181 
182 	len = strlen(info->name) + 32;
183 	name = kzalloc(len, GFP_KERNEL);
184 	if (!name) {
185 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
186 			info->name);
187 		goto free_resource;
188 	}
189 
190 	min = addr->minimum;
191 	max = min + addr->address_length - 1;
192 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
193 		sparse = 1;
194 
195 	space_nr = new_space(addr->translation_offset, sparse);
196 	if (space_nr == ~0)
197 		goto free_name;
198 
199 	base = __pa(io_space[space_nr].mmio_base);
200 	base_port = IO_SPACE_BASE(space_nr);
201 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
202 		base_port + min, base_port + max);
203 
204 	/*
205 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
206 	 * mapping is done by the processor (not the bridge), ACPI may not
207 	 * mark it as sparse.
208 	 */
209 	if (space_nr == 0)
210 		sparse = 1;
211 
212 	resource->name  = name;
213 	resource->flags = IORESOURCE_MEM;
214 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
215 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
216 	insert_resource(&iomem_resource, resource);
217 
218 	return base_port;
219 
220 free_name:
221 	kfree(name);
222 free_resource:
223 	kfree(resource);
224 out:
225 	return ~0;
226 }
227 
228 static acpi_status resource_to_window(struct acpi_resource *resource,
229 				      struct acpi_resource_address64 *addr)
230 {
231 	acpi_status status;
232 
233 	/*
234 	 * We're only interested in _CRS descriptors that are
235 	 *	- address space descriptors for memory or I/O space
236 	 *	- non-zero size
237 	 *	- producers, i.e., the address space is routed downstream,
238 	 *	  not consumed by the bridge itself
239 	 */
240 	status = acpi_resource_to_address64(resource, addr);
241 	if (ACPI_SUCCESS(status) &&
242 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
243 	     addr->resource_type == ACPI_IO_RANGE) &&
244 	    addr->address_length &&
245 	    addr->producer_consumer == ACPI_PRODUCER)
246 		return AE_OK;
247 
248 	return AE_ERROR;
249 }
250 
251 static acpi_status count_window(struct acpi_resource *resource, void *data)
252 {
253 	unsigned int *windows = (unsigned int *) data;
254 	struct acpi_resource_address64 addr;
255 	acpi_status status;
256 
257 	status = resource_to_window(resource, &addr);
258 	if (ACPI_SUCCESS(status))
259 		(*windows)++;
260 
261 	return AE_OK;
262 }
263 
264 static acpi_status add_window(struct acpi_resource *res, void *data)
265 {
266 	struct pci_root_info *info = data;
267 	struct pci_window *window;
268 	struct acpi_resource_address64 addr;
269 	acpi_status status;
270 	unsigned long flags, offset = 0;
271 	struct resource *root;
272 
273 	/* Return AE_OK for non-window resources to keep scanning for more */
274 	status = resource_to_window(res, &addr);
275 	if (!ACPI_SUCCESS(status))
276 		return AE_OK;
277 
278 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
279 		flags = IORESOURCE_MEM;
280 		root = &iomem_resource;
281 		offset = addr.translation_offset;
282 	} else if (addr.resource_type == ACPI_IO_RANGE) {
283 		flags = IORESOURCE_IO;
284 		root = &ioport_resource;
285 		offset = add_io_space(info, &addr);
286 		if (offset == ~0)
287 			return AE_OK;
288 	} else
289 		return AE_OK;
290 
291 	window = &info->controller->window[info->controller->windows++];
292 	window->resource.name = info->name;
293 	window->resource.flags = flags;
294 	window->resource.start = addr.minimum + offset;
295 	window->resource.end = window->resource.start + addr.address_length - 1;
296 	window->offset = offset;
297 
298 	if (insert_resource(root, &window->resource)) {
299 		dev_err(&info->bridge->dev,
300 			"can't allocate host bridge window %pR\n",
301 			&window->resource);
302 	} else {
303 		if (offset)
304 			dev_info(&info->bridge->dev, "host bridge window %pR "
305 				 "(PCI address [%#llx-%#llx])\n",
306 				 &window->resource,
307 				 window->resource.start - offset,
308 				 window->resource.end - offset);
309 		else
310 			dev_info(&info->bridge->dev,
311 				 "host bridge window %pR\n",
312 				 &window->resource);
313 	}
314 
315 	/* HP's firmware has a hack to work around a Windows bug.
316 	 * Ignore these tiny memory ranges */
317 	if (!((window->resource.flags & IORESOURCE_MEM) &&
318 	      (window->resource.end - window->resource.start < 16)))
319 		pci_add_resource_offset(&info->resources, &window->resource,
320 					window->offset);
321 
322 	return AE_OK;
323 }
324 
325 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
326 {
327 	struct acpi_device *device = root->device;
328 	int domain = root->segment;
329 	int bus = root->secondary.start;
330 	struct pci_controller *controller;
331 	unsigned int windows = 0;
332 	struct pci_root_info info;
333 	struct pci_bus *pbus;
334 	char *name;
335 	int pxm;
336 
337 	controller = alloc_pci_controller(domain);
338 	if (!controller)
339 		goto out1;
340 
341 	controller->acpi_handle = device->handle;
342 
343 	pxm = acpi_get_pxm(controller->acpi_handle);
344 #ifdef CONFIG_NUMA
345 	if (pxm >= 0)
346 		controller->node = pxm_to_node(pxm);
347 #endif
348 
349 	INIT_LIST_HEAD(&info.resources);
350 	/* insert busn resource at first */
351 	pci_add_resource(&info.resources, &root->secondary);
352 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
353 			&windows);
354 	if (windows) {
355 		controller->window =
356 			kzalloc_node(sizeof(*controller->window) * windows,
357 				     GFP_KERNEL, controller->node);
358 		if (!controller->window)
359 			goto out2;
360 
361 		name = kmalloc(16, GFP_KERNEL);
362 		if (!name)
363 			goto out3;
364 
365 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
366 		info.bridge = device;
367 		info.controller = controller;
368 		info.name = name;
369 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
370 			add_window, &info);
371 	}
372 	/*
373 	 * See arch/x86/pci/acpi.c.
374 	 * The desired pci bus might already be scanned in a quirk. We
375 	 * should handle the case here, but it appears that IA64 hasn't
376 	 * such quirk. So we just ignore the case now.
377 	 */
378 	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
379 				   &info.resources);
380 	if (!pbus) {
381 		pci_free_resource_list(&info.resources);
382 		return NULL;
383 	}
384 
385 	pci_scan_child_bus(pbus);
386 	return pbus;
387 
388 out3:
389 	kfree(controller->window);
390 out2:
391 	kfree(controller);
392 out1:
393 	return NULL;
394 }
395 
396 static int is_valid_resource(struct pci_dev *dev, int idx)
397 {
398 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
399 	struct resource *devr = &dev->resource[idx], *busr;
400 
401 	if (!dev->bus)
402 		return 0;
403 
404 	pci_bus_for_each_resource(dev->bus, busr, i) {
405 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
406 			continue;
407 		if ((devr->start) && (devr->start >= busr->start) &&
408 				(devr->end <= busr->end))
409 			return 1;
410 	}
411 	return 0;
412 }
413 
414 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
415 {
416 	int i;
417 
418 	for (i = start; i < limit; i++) {
419 		if (!dev->resource[i].flags)
420 			continue;
421 		if ((is_valid_resource(dev, i)))
422 			pci_claim_resource(dev, i);
423 	}
424 }
425 
426 void pcibios_fixup_device_resources(struct pci_dev *dev)
427 {
428 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
429 }
430 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
431 
432 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
433 {
434 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
435 }
436 
437 /*
438  *  Called after each bus is probed, but before its children are examined.
439  */
440 void pcibios_fixup_bus(struct pci_bus *b)
441 {
442 	struct pci_dev *dev;
443 
444 	if (b->self) {
445 		pci_read_bridge_bases(b);
446 		pcibios_fixup_bridge_resources(b->self);
447 	}
448 	list_for_each_entry(dev, &b->devices, bus_list)
449 		pcibios_fixup_device_resources(dev);
450 	platform_pci_fixup_bus(b);
451 }
452 
453 void pcibios_set_master (struct pci_dev *dev)
454 {
455 	/* No special bus mastering setup handling */
456 }
457 
458 int
459 pcibios_enable_device (struct pci_dev *dev, int mask)
460 {
461 	int ret;
462 
463 	ret = pci_enable_resources(dev, mask);
464 	if (ret < 0)
465 		return ret;
466 
467 	if (!dev->msi_enabled)
468 		return acpi_pci_irq_enable(dev);
469 	return 0;
470 }
471 
472 void
473 pcibios_disable_device (struct pci_dev *dev)
474 {
475 	BUG_ON(atomic_read(&dev->enable_cnt));
476 	if (!dev->msi_enabled)
477 		acpi_pci_irq_disable(dev);
478 }
479 
480 resource_size_t
481 pcibios_align_resource (void *data, const struct resource *res,
482 		        resource_size_t size, resource_size_t align)
483 {
484 	return res->start;
485 }
486 
487 int
488 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
489 		     enum pci_mmap_state mmap_state, int write_combine)
490 {
491 	unsigned long size = vma->vm_end - vma->vm_start;
492 	pgprot_t prot;
493 
494 	/*
495 	 * I/O space cannot be accessed via normal processor loads and
496 	 * stores on this platform.
497 	 */
498 	if (mmap_state == pci_mmap_io)
499 		/*
500 		 * XXX we could relax this for I/O spaces for which ACPI
501 		 * indicates that the space is 1-to-1 mapped.  But at the
502 		 * moment, we don't support multiple PCI address spaces and
503 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
504 		 */
505 		return -EINVAL;
506 
507 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
508 		return -EINVAL;
509 
510 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
511 				    vma->vm_page_prot);
512 
513 	/*
514 	 * If the user requested WC, the kernel uses UC or WC for this region,
515 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
516 	 * use the same attribute the kernel uses.
517 	 */
518 	if (write_combine &&
519 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
520 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
521 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
522 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
523 	else
524 		vma->vm_page_prot = prot;
525 
526 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
527 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
528 		return -EAGAIN;
529 
530 	return 0;
531 }
532 
533 /**
534  * ia64_pci_get_legacy_mem - generic legacy mem routine
535  * @bus: bus to get legacy memory base address for
536  *
537  * Find the base of legacy memory for @bus.  This is typically the first
538  * megabyte of bus address space for @bus or is simply 0 on platforms whose
539  * chipsets support legacy I/O and memory routing.  Returns the base address
540  * or an error pointer if an error occurred.
541  *
542  * This is the ia64 generic version of this routine.  Other platforms
543  * are free to override it with a machine vector.
544  */
545 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
546 {
547 	return (char *)__IA64_UNCACHED_OFFSET;
548 }
549 
550 /**
551  * pci_mmap_legacy_page_range - map legacy memory space to userland
552  * @bus: bus whose legacy space we're mapping
553  * @vma: vma passed in by mmap
554  *
555  * Map legacy memory space for this device back to userspace using a machine
556  * vector to get the base address.
557  */
558 int
559 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
560 			   enum pci_mmap_state mmap_state)
561 {
562 	unsigned long size = vma->vm_end - vma->vm_start;
563 	pgprot_t prot;
564 	char *addr;
565 
566 	/* We only support mmap'ing of legacy memory space */
567 	if (mmap_state != pci_mmap_mem)
568 		return -ENOSYS;
569 
570 	/*
571 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
572 	 * for more details.
573 	 */
574 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
575 		return -EINVAL;
576 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
577 				    vma->vm_page_prot);
578 
579 	addr = pci_get_legacy_mem(bus);
580 	if (IS_ERR(addr))
581 		return PTR_ERR(addr);
582 
583 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
584 	vma->vm_page_prot = prot;
585 
586 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
587 			    size, vma->vm_page_prot))
588 		return -EAGAIN;
589 
590 	return 0;
591 }
592 
593 /**
594  * ia64_pci_legacy_read - read from legacy I/O space
595  * @bus: bus to read
596  * @port: legacy port value
597  * @val: caller allocated storage for returned value
598  * @size: number of bytes to read
599  *
600  * Simply reads @size bytes from @port and puts the result in @val.
601  *
602  * Again, this (and the write routine) are generic versions that can be
603  * overridden by the platform.  This is necessary on platforms that don't
604  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
605  */
606 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
607 {
608 	int ret = size;
609 
610 	switch (size) {
611 	case 1:
612 		*val = inb(port);
613 		break;
614 	case 2:
615 		*val = inw(port);
616 		break;
617 	case 4:
618 		*val = inl(port);
619 		break;
620 	default:
621 		ret = -EINVAL;
622 		break;
623 	}
624 
625 	return ret;
626 }
627 
628 /**
629  * ia64_pci_legacy_write - perform a legacy I/O write
630  * @bus: bus pointer
631  * @port: port to write
632  * @val: value to write
633  * @size: number of bytes to write from @val
634  *
635  * Simply writes @size bytes of @val to @port.
636  */
637 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
638 {
639 	int ret = size;
640 
641 	switch (size) {
642 	case 1:
643 		outb(val, port);
644 		break;
645 	case 2:
646 		outw(val, port);
647 		break;
648 	case 4:
649 		outl(val, port);
650 		break;
651 	default:
652 		ret = -EINVAL;
653 		break;
654 	}
655 
656 	return ret;
657 }
658 
659 /**
660  * set_pci_cacheline_size - determine cacheline size for PCI devices
661  *
662  * We want to use the line-size of the outer-most cache.  We assume
663  * that this line-size is the same for all CPUs.
664  *
665  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
666  */
667 static void __init set_pci_dfl_cacheline_size(void)
668 {
669 	unsigned long levels, unique_caches;
670 	long status;
671 	pal_cache_config_info_t cci;
672 
673 	status = ia64_pal_cache_summary(&levels, &unique_caches);
674 	if (status != 0) {
675 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
676 			"(status=%ld)\n", __func__, status);
677 		return;
678 	}
679 
680 	status = ia64_pal_cache_config_info(levels - 1,
681 				/* cache_type (data_or_unified)= */ 2, &cci);
682 	if (status != 0) {
683 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
684 			"(status=%ld)\n", __func__, status);
685 		return;
686 	}
687 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
688 }
689 
690 u64 ia64_dma_get_required_mask(struct device *dev)
691 {
692 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
693 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
694 	u64 mask;
695 
696 	if (!high_totalram) {
697 		/* convert to mask just covering totalram */
698 		low_totalram = (1 << (fls(low_totalram) - 1));
699 		low_totalram += low_totalram - 1;
700 		mask = low_totalram;
701 	} else {
702 		high_totalram = (1 << (fls(high_totalram) - 1));
703 		high_totalram += high_totalram - 1;
704 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
705 	}
706 	return mask;
707 }
708 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
709 
710 u64 dma_get_required_mask(struct device *dev)
711 {
712 	return platform_dma_get_required_mask(dev);
713 }
714 EXPORT_SYMBOL_GPL(dma_get_required_mask);
715 
716 static int __init pcibios_init(void)
717 {
718 	set_pci_dfl_cacheline_size();
719 	return 0;
720 }
721 
722 subsys_initcall(pcibios_init);
723