1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/bootmem.h> 23 #include <linux/export.h> 24 25 #include <asm/machvec.h> 26 #include <asm/page.h> 27 #include <asm/io.h> 28 #include <asm/sal.h> 29 #include <asm/smp.h> 30 #include <asm/irq.h> 31 #include <asm/hw_irq.h> 32 33 /* 34 * Low-level SAL-based PCI configuration access functions. Note that SAL 35 * calls are already serialized (via sal_lock), so we don't need another 36 * synchronization mechanism here. 37 */ 38 39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 41 42 /* SAL 3.2 adds support for extended config space. */ 43 44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 46 47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 48 int reg, int len, u32 *value) 49 { 50 u64 addr, data = 0; 51 int mode, result; 52 53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 54 return -EINVAL; 55 56 if ((seg | reg) <= 255) { 57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 58 mode = 0; 59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 61 mode = 1; 62 } else { 63 return -EINVAL; 64 } 65 66 result = ia64_sal_pci_config_read(addr, mode, len, &data); 67 if (result != 0) 68 return -EINVAL; 69 70 *value = (u32) data; 71 return 0; 72 } 73 74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 75 int reg, int len, u32 value) 76 { 77 u64 addr; 78 int mode, result; 79 80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 81 return -EINVAL; 82 83 if ((seg | reg) <= 255) { 84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 85 mode = 0; 86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 88 mode = 1; 89 } else { 90 return -EINVAL; 91 } 92 result = ia64_sal_pci_config_write(addr, mode, len, value); 93 if (result != 0) 94 return -EINVAL; 95 return 0; 96 } 97 98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 99 int size, u32 *value) 100 { 101 return raw_pci_read(pci_domain_nr(bus), bus->number, 102 devfn, where, size, value); 103 } 104 105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 106 int size, u32 value) 107 { 108 return raw_pci_write(pci_domain_nr(bus), bus->number, 109 devfn, where, size, value); 110 } 111 112 struct pci_ops pci_root_ops = { 113 .read = pci_read, 114 .write = pci_write, 115 }; 116 117 /* Called by ACPI when it finds a new root bus. */ 118 119 static struct pci_controller *alloc_pci_controller(int seg) 120 { 121 struct pci_controller *controller; 122 123 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 124 if (!controller) 125 return NULL; 126 127 controller->segment = seg; 128 controller->node = -1; 129 return controller; 130 } 131 132 struct pci_root_info { 133 struct acpi_device *bridge; 134 struct pci_controller *controller; 135 struct list_head resources; 136 char *name; 137 }; 138 139 static unsigned int 140 new_space (u64 phys_base, int sparse) 141 { 142 u64 mmio_base; 143 int i; 144 145 if (phys_base == 0) 146 return 0; /* legacy I/O port space */ 147 148 mmio_base = (u64) ioremap(phys_base, 0); 149 for (i = 0; i < num_io_spaces; i++) 150 if (io_space[i].mmio_base == mmio_base && 151 io_space[i].sparse == sparse) 152 return i; 153 154 if (num_io_spaces == MAX_IO_SPACES) { 155 printk(KERN_ERR "PCI: Too many IO port spaces " 156 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 157 return ~0; 158 } 159 160 i = num_io_spaces++; 161 io_space[i].mmio_base = mmio_base; 162 io_space[i].sparse = sparse; 163 164 return i; 165 } 166 167 static u64 add_io_space(struct pci_root_info *info, 168 struct acpi_resource_address64 *addr) 169 { 170 struct resource *resource; 171 char *name; 172 unsigned long base, min, max, base_port; 173 unsigned int sparse = 0, space_nr, len; 174 175 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 176 if (!resource) { 177 printk(KERN_ERR "PCI: No memory for %s I/O port space\n", 178 info->name); 179 goto out; 180 } 181 182 len = strlen(info->name) + 32; 183 name = kzalloc(len, GFP_KERNEL); 184 if (!name) { 185 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", 186 info->name); 187 goto free_resource; 188 } 189 190 min = addr->minimum; 191 max = min + addr->address_length - 1; 192 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 193 sparse = 1; 194 195 space_nr = new_space(addr->translation_offset, sparse); 196 if (space_nr == ~0) 197 goto free_name; 198 199 base = __pa(io_space[space_nr].mmio_base); 200 base_port = IO_SPACE_BASE(space_nr); 201 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 202 base_port + min, base_port + max); 203 204 /* 205 * The SDM guarantees the legacy 0-64K space is sparse, but if the 206 * mapping is done by the processor (not the bridge), ACPI may not 207 * mark it as sparse. 208 */ 209 if (space_nr == 0) 210 sparse = 1; 211 212 resource->name = name; 213 resource->flags = IORESOURCE_MEM; 214 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 215 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 216 insert_resource(&iomem_resource, resource); 217 218 return base_port; 219 220 free_name: 221 kfree(name); 222 free_resource: 223 kfree(resource); 224 out: 225 return ~0; 226 } 227 228 static acpi_status resource_to_window(struct acpi_resource *resource, 229 struct acpi_resource_address64 *addr) 230 { 231 acpi_status status; 232 233 /* 234 * We're only interested in _CRS descriptors that are 235 * - address space descriptors for memory or I/O space 236 * - non-zero size 237 * - producers, i.e., the address space is routed downstream, 238 * not consumed by the bridge itself 239 */ 240 status = acpi_resource_to_address64(resource, addr); 241 if (ACPI_SUCCESS(status) && 242 (addr->resource_type == ACPI_MEMORY_RANGE || 243 addr->resource_type == ACPI_IO_RANGE) && 244 addr->address_length && 245 addr->producer_consumer == ACPI_PRODUCER) 246 return AE_OK; 247 248 return AE_ERROR; 249 } 250 251 static acpi_status count_window(struct acpi_resource *resource, void *data) 252 { 253 unsigned int *windows = (unsigned int *) data; 254 struct acpi_resource_address64 addr; 255 acpi_status status; 256 257 status = resource_to_window(resource, &addr); 258 if (ACPI_SUCCESS(status)) 259 (*windows)++; 260 261 return AE_OK; 262 } 263 264 static acpi_status add_window(struct acpi_resource *res, void *data) 265 { 266 struct pci_root_info *info = data; 267 struct pci_window *window; 268 struct acpi_resource_address64 addr; 269 acpi_status status; 270 unsigned long flags, offset = 0; 271 struct resource *root; 272 273 /* Return AE_OK for non-window resources to keep scanning for more */ 274 status = resource_to_window(res, &addr); 275 if (!ACPI_SUCCESS(status)) 276 return AE_OK; 277 278 if (addr.resource_type == ACPI_MEMORY_RANGE) { 279 flags = IORESOURCE_MEM; 280 root = &iomem_resource; 281 offset = addr.translation_offset; 282 } else if (addr.resource_type == ACPI_IO_RANGE) { 283 flags = IORESOURCE_IO; 284 root = &ioport_resource; 285 offset = add_io_space(info, &addr); 286 if (offset == ~0) 287 return AE_OK; 288 } else 289 return AE_OK; 290 291 window = &info->controller->window[info->controller->windows++]; 292 window->resource.name = info->name; 293 window->resource.flags = flags; 294 window->resource.start = addr.minimum + offset; 295 window->resource.end = window->resource.start + addr.address_length - 1; 296 window->offset = offset; 297 298 if (insert_resource(root, &window->resource)) { 299 dev_err(&info->bridge->dev, 300 "can't allocate host bridge window %pR\n", 301 &window->resource); 302 } else { 303 if (offset) 304 dev_info(&info->bridge->dev, "host bridge window %pR " 305 "(PCI address [%#llx-%#llx])\n", 306 &window->resource, 307 window->resource.start - offset, 308 window->resource.end - offset); 309 else 310 dev_info(&info->bridge->dev, 311 "host bridge window %pR\n", 312 &window->resource); 313 } 314 315 /* HP's firmware has a hack to work around a Windows bug. 316 * Ignore these tiny memory ranges */ 317 if (!((window->resource.flags & IORESOURCE_MEM) && 318 (window->resource.end - window->resource.start < 16))) 319 pci_add_resource_offset(&info->resources, &window->resource, 320 window->offset); 321 322 return AE_OK; 323 } 324 325 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root) 326 { 327 struct acpi_device *device = root->device; 328 int domain = root->segment; 329 int bus = root->secondary.start; 330 struct pci_controller *controller; 331 unsigned int windows = 0; 332 struct pci_root_info info; 333 struct pci_bus *pbus; 334 char *name; 335 int pxm; 336 337 controller = alloc_pci_controller(domain); 338 if (!controller) 339 goto out1; 340 341 controller->acpi_handle = device->handle; 342 343 pxm = acpi_get_pxm(controller->acpi_handle); 344 #ifdef CONFIG_NUMA 345 if (pxm >= 0) 346 controller->node = pxm_to_node(pxm); 347 #endif 348 349 INIT_LIST_HEAD(&info.resources); 350 /* insert busn resource at first */ 351 pci_add_resource(&info.resources, &root->secondary); 352 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 353 &windows); 354 if (windows) { 355 controller->window = 356 kzalloc_node(sizeof(*controller->window) * windows, 357 GFP_KERNEL, controller->node); 358 if (!controller->window) 359 goto out2; 360 361 name = kmalloc(16, GFP_KERNEL); 362 if (!name) 363 goto out3; 364 365 sprintf(name, "PCI Bus %04x:%02x", domain, bus); 366 info.bridge = device; 367 info.controller = controller; 368 info.name = name; 369 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 370 add_window, &info); 371 } 372 /* 373 * See arch/x86/pci/acpi.c. 374 * The desired pci bus might already be scanned in a quirk. We 375 * should handle the case here, but it appears that IA64 hasn't 376 * such quirk. So we just ignore the case now. 377 */ 378 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller, 379 &info.resources); 380 if (!pbus) { 381 pci_free_resource_list(&info.resources); 382 return NULL; 383 } 384 385 pci_scan_child_bus(pbus); 386 return pbus; 387 388 out3: 389 kfree(controller->window); 390 out2: 391 kfree(controller); 392 out1: 393 return NULL; 394 } 395 396 static int is_valid_resource(struct pci_dev *dev, int idx) 397 { 398 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 399 struct resource *devr = &dev->resource[idx], *busr; 400 401 if (!dev->bus) 402 return 0; 403 404 pci_bus_for_each_resource(dev->bus, busr, i) { 405 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 406 continue; 407 if ((devr->start) && (devr->start >= busr->start) && 408 (devr->end <= busr->end)) 409 return 1; 410 } 411 return 0; 412 } 413 414 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 415 { 416 int i; 417 418 for (i = start; i < limit; i++) { 419 if (!dev->resource[i].flags) 420 continue; 421 if ((is_valid_resource(dev, i))) 422 pci_claim_resource(dev, i); 423 } 424 } 425 426 void pcibios_fixup_device_resources(struct pci_dev *dev) 427 { 428 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 429 } 430 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 431 432 static void pcibios_fixup_bridge_resources(struct pci_dev *dev) 433 { 434 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 435 } 436 437 /* 438 * Called after each bus is probed, but before its children are examined. 439 */ 440 void pcibios_fixup_bus(struct pci_bus *b) 441 { 442 struct pci_dev *dev; 443 444 if (b->self) { 445 pci_read_bridge_bases(b); 446 pcibios_fixup_bridge_resources(b->self); 447 } 448 list_for_each_entry(dev, &b->devices, bus_list) 449 pcibios_fixup_device_resources(dev); 450 platform_pci_fixup_bus(b); 451 } 452 453 void pcibios_set_master (struct pci_dev *dev) 454 { 455 /* No special bus mastering setup handling */ 456 } 457 458 int 459 pcibios_enable_device (struct pci_dev *dev, int mask) 460 { 461 int ret; 462 463 ret = pci_enable_resources(dev, mask); 464 if (ret < 0) 465 return ret; 466 467 if (!dev->msi_enabled) 468 return acpi_pci_irq_enable(dev); 469 return 0; 470 } 471 472 void 473 pcibios_disable_device (struct pci_dev *dev) 474 { 475 BUG_ON(atomic_read(&dev->enable_cnt)); 476 if (!dev->msi_enabled) 477 acpi_pci_irq_disable(dev); 478 } 479 480 resource_size_t 481 pcibios_align_resource (void *data, const struct resource *res, 482 resource_size_t size, resource_size_t align) 483 { 484 return res->start; 485 } 486 487 int 488 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 489 enum pci_mmap_state mmap_state, int write_combine) 490 { 491 unsigned long size = vma->vm_end - vma->vm_start; 492 pgprot_t prot; 493 494 /* 495 * I/O space cannot be accessed via normal processor loads and 496 * stores on this platform. 497 */ 498 if (mmap_state == pci_mmap_io) 499 /* 500 * XXX we could relax this for I/O spaces for which ACPI 501 * indicates that the space is 1-to-1 mapped. But at the 502 * moment, we don't support multiple PCI address spaces and 503 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 504 */ 505 return -EINVAL; 506 507 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 508 return -EINVAL; 509 510 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 511 vma->vm_page_prot); 512 513 /* 514 * If the user requested WC, the kernel uses UC or WC for this region, 515 * and the chipset supports WC, we can use WC. Otherwise, we have to 516 * use the same attribute the kernel uses. 517 */ 518 if (write_combine && 519 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 520 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 521 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 522 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 523 else 524 vma->vm_page_prot = prot; 525 526 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 527 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 528 return -EAGAIN; 529 530 return 0; 531 } 532 533 /** 534 * ia64_pci_get_legacy_mem - generic legacy mem routine 535 * @bus: bus to get legacy memory base address for 536 * 537 * Find the base of legacy memory for @bus. This is typically the first 538 * megabyte of bus address space for @bus or is simply 0 on platforms whose 539 * chipsets support legacy I/O and memory routing. Returns the base address 540 * or an error pointer if an error occurred. 541 * 542 * This is the ia64 generic version of this routine. Other platforms 543 * are free to override it with a machine vector. 544 */ 545 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 546 { 547 return (char *)__IA64_UNCACHED_OFFSET; 548 } 549 550 /** 551 * pci_mmap_legacy_page_range - map legacy memory space to userland 552 * @bus: bus whose legacy space we're mapping 553 * @vma: vma passed in by mmap 554 * 555 * Map legacy memory space for this device back to userspace using a machine 556 * vector to get the base address. 557 */ 558 int 559 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 560 enum pci_mmap_state mmap_state) 561 { 562 unsigned long size = vma->vm_end - vma->vm_start; 563 pgprot_t prot; 564 char *addr; 565 566 /* We only support mmap'ing of legacy memory space */ 567 if (mmap_state != pci_mmap_mem) 568 return -ENOSYS; 569 570 /* 571 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 572 * for more details. 573 */ 574 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 575 return -EINVAL; 576 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 577 vma->vm_page_prot); 578 579 addr = pci_get_legacy_mem(bus); 580 if (IS_ERR(addr)) 581 return PTR_ERR(addr); 582 583 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 584 vma->vm_page_prot = prot; 585 586 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 587 size, vma->vm_page_prot)) 588 return -EAGAIN; 589 590 return 0; 591 } 592 593 /** 594 * ia64_pci_legacy_read - read from legacy I/O space 595 * @bus: bus to read 596 * @port: legacy port value 597 * @val: caller allocated storage for returned value 598 * @size: number of bytes to read 599 * 600 * Simply reads @size bytes from @port and puts the result in @val. 601 * 602 * Again, this (and the write routine) are generic versions that can be 603 * overridden by the platform. This is necessary on platforms that don't 604 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 605 */ 606 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 607 { 608 int ret = size; 609 610 switch (size) { 611 case 1: 612 *val = inb(port); 613 break; 614 case 2: 615 *val = inw(port); 616 break; 617 case 4: 618 *val = inl(port); 619 break; 620 default: 621 ret = -EINVAL; 622 break; 623 } 624 625 return ret; 626 } 627 628 /** 629 * ia64_pci_legacy_write - perform a legacy I/O write 630 * @bus: bus pointer 631 * @port: port to write 632 * @val: value to write 633 * @size: number of bytes to write from @val 634 * 635 * Simply writes @size bytes of @val to @port. 636 */ 637 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 638 { 639 int ret = size; 640 641 switch (size) { 642 case 1: 643 outb(val, port); 644 break; 645 case 2: 646 outw(val, port); 647 break; 648 case 4: 649 outl(val, port); 650 break; 651 default: 652 ret = -EINVAL; 653 break; 654 } 655 656 return ret; 657 } 658 659 /** 660 * set_pci_cacheline_size - determine cacheline size for PCI devices 661 * 662 * We want to use the line-size of the outer-most cache. We assume 663 * that this line-size is the same for all CPUs. 664 * 665 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 666 */ 667 static void __init set_pci_dfl_cacheline_size(void) 668 { 669 unsigned long levels, unique_caches; 670 long status; 671 pal_cache_config_info_t cci; 672 673 status = ia64_pal_cache_summary(&levels, &unique_caches); 674 if (status != 0) { 675 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " 676 "(status=%ld)\n", __func__, status); 677 return; 678 } 679 680 status = ia64_pal_cache_config_info(levels - 1, 681 /* cache_type (data_or_unified)= */ 2, &cci); 682 if (status != 0) { 683 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " 684 "(status=%ld)\n", __func__, status); 685 return; 686 } 687 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 688 } 689 690 u64 ia64_dma_get_required_mask(struct device *dev) 691 { 692 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 693 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 694 u64 mask; 695 696 if (!high_totalram) { 697 /* convert to mask just covering totalram */ 698 low_totalram = (1 << (fls(low_totalram) - 1)); 699 low_totalram += low_totalram - 1; 700 mask = low_totalram; 701 } else { 702 high_totalram = (1 << (fls(high_totalram) - 1)); 703 high_totalram += high_totalram - 1; 704 mask = (((u64)high_totalram) << 32) + 0xffffffff; 705 } 706 return mask; 707 } 708 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 709 710 u64 dma_get_required_mask(struct device *dev) 711 { 712 return platform_dma_get_required_mask(dev); 713 } 714 EXPORT_SYMBOL_GPL(dma_get_required_mask); 715 716 static int __init pcibios_init(void) 717 { 718 set_pci_dfl_cacheline_size(); 719 return 0; 720 } 721 722 subsys_initcall(pcibios_init); 723