1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/bootmem.h> 23 #include <linux/export.h> 24 25 #include <asm/machvec.h> 26 #include <asm/page.h> 27 #include <asm/io.h> 28 #include <asm/sal.h> 29 #include <asm/smp.h> 30 #include <asm/irq.h> 31 #include <asm/hw_irq.h> 32 33 /* 34 * Low-level SAL-based PCI configuration access functions. Note that SAL 35 * calls are already serialized (via sal_lock), so we don't need another 36 * synchronization mechanism here. 37 */ 38 39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 41 42 /* SAL 3.2 adds support for extended config space. */ 43 44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 46 47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 48 int reg, int len, u32 *value) 49 { 50 u64 addr, data = 0; 51 int mode, result; 52 53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 54 return -EINVAL; 55 56 if ((seg | reg) <= 255) { 57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 58 mode = 0; 59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 61 mode = 1; 62 } else { 63 return -EINVAL; 64 } 65 66 result = ia64_sal_pci_config_read(addr, mode, len, &data); 67 if (result != 0) 68 return -EINVAL; 69 70 *value = (u32) data; 71 return 0; 72 } 73 74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 75 int reg, int len, u32 value) 76 { 77 u64 addr; 78 int mode, result; 79 80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 81 return -EINVAL; 82 83 if ((seg | reg) <= 255) { 84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 85 mode = 0; 86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 88 mode = 1; 89 } else { 90 return -EINVAL; 91 } 92 result = ia64_sal_pci_config_write(addr, mode, len, value); 93 if (result != 0) 94 return -EINVAL; 95 return 0; 96 } 97 98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 99 int size, u32 *value) 100 { 101 return raw_pci_read(pci_domain_nr(bus), bus->number, 102 devfn, where, size, value); 103 } 104 105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 106 int size, u32 value) 107 { 108 return raw_pci_write(pci_domain_nr(bus), bus->number, 109 devfn, where, size, value); 110 } 111 112 struct pci_ops pci_root_ops = { 113 .read = pci_read, 114 .write = pci_write, 115 }; 116 117 /* Called by ACPI when it finds a new root bus. */ 118 119 static struct pci_controller * __devinit 120 alloc_pci_controller (int seg) 121 { 122 struct pci_controller *controller; 123 124 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 125 if (!controller) 126 return NULL; 127 128 controller->segment = seg; 129 controller->node = -1; 130 return controller; 131 } 132 133 struct pci_root_info { 134 struct acpi_device *bridge; 135 struct pci_controller *controller; 136 struct list_head resources; 137 char *name; 138 }; 139 140 static unsigned int 141 new_space (u64 phys_base, int sparse) 142 { 143 u64 mmio_base; 144 int i; 145 146 if (phys_base == 0) 147 return 0; /* legacy I/O port space */ 148 149 mmio_base = (u64) ioremap(phys_base, 0); 150 for (i = 0; i < num_io_spaces; i++) 151 if (io_space[i].mmio_base == mmio_base && 152 io_space[i].sparse == sparse) 153 return i; 154 155 if (num_io_spaces == MAX_IO_SPACES) { 156 printk(KERN_ERR "PCI: Too many IO port spaces " 157 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 158 return ~0; 159 } 160 161 i = num_io_spaces++; 162 io_space[i].mmio_base = mmio_base; 163 io_space[i].sparse = sparse; 164 165 return i; 166 } 167 168 static u64 __devinit 169 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) 170 { 171 struct resource *resource; 172 char *name; 173 unsigned long base, min, max, base_port; 174 unsigned int sparse = 0, space_nr, len; 175 176 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 177 if (!resource) { 178 printk(KERN_ERR "PCI: No memory for %s I/O port space\n", 179 info->name); 180 goto out; 181 } 182 183 len = strlen(info->name) + 32; 184 name = kzalloc(len, GFP_KERNEL); 185 if (!name) { 186 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", 187 info->name); 188 goto free_resource; 189 } 190 191 min = addr->minimum; 192 max = min + addr->address_length - 1; 193 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 194 sparse = 1; 195 196 space_nr = new_space(addr->translation_offset, sparse); 197 if (space_nr == ~0) 198 goto free_name; 199 200 base = __pa(io_space[space_nr].mmio_base); 201 base_port = IO_SPACE_BASE(space_nr); 202 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 203 base_port + min, base_port + max); 204 205 /* 206 * The SDM guarantees the legacy 0-64K space is sparse, but if the 207 * mapping is done by the processor (not the bridge), ACPI may not 208 * mark it as sparse. 209 */ 210 if (space_nr == 0) 211 sparse = 1; 212 213 resource->name = name; 214 resource->flags = IORESOURCE_MEM; 215 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 216 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 217 insert_resource(&iomem_resource, resource); 218 219 return base_port; 220 221 free_name: 222 kfree(name); 223 free_resource: 224 kfree(resource); 225 out: 226 return ~0; 227 } 228 229 static acpi_status __devinit resource_to_window(struct acpi_resource *resource, 230 struct acpi_resource_address64 *addr) 231 { 232 acpi_status status; 233 234 /* 235 * We're only interested in _CRS descriptors that are 236 * - address space descriptors for memory or I/O space 237 * - non-zero size 238 * - producers, i.e., the address space is routed downstream, 239 * not consumed by the bridge itself 240 */ 241 status = acpi_resource_to_address64(resource, addr); 242 if (ACPI_SUCCESS(status) && 243 (addr->resource_type == ACPI_MEMORY_RANGE || 244 addr->resource_type == ACPI_IO_RANGE) && 245 addr->address_length && 246 addr->producer_consumer == ACPI_PRODUCER) 247 return AE_OK; 248 249 return AE_ERROR; 250 } 251 252 static acpi_status __devinit 253 count_window (struct acpi_resource *resource, void *data) 254 { 255 unsigned int *windows = (unsigned int *) data; 256 struct acpi_resource_address64 addr; 257 acpi_status status; 258 259 status = resource_to_window(resource, &addr); 260 if (ACPI_SUCCESS(status)) 261 (*windows)++; 262 263 return AE_OK; 264 } 265 266 static __devinit acpi_status add_window(struct acpi_resource *res, void *data) 267 { 268 struct pci_root_info *info = data; 269 struct pci_window *window; 270 struct acpi_resource_address64 addr; 271 acpi_status status; 272 unsigned long flags, offset = 0; 273 struct resource *root; 274 275 /* Return AE_OK for non-window resources to keep scanning for more */ 276 status = resource_to_window(res, &addr); 277 if (!ACPI_SUCCESS(status)) 278 return AE_OK; 279 280 if (addr.resource_type == ACPI_MEMORY_RANGE) { 281 flags = IORESOURCE_MEM; 282 root = &iomem_resource; 283 offset = addr.translation_offset; 284 } else if (addr.resource_type == ACPI_IO_RANGE) { 285 flags = IORESOURCE_IO; 286 root = &ioport_resource; 287 offset = add_io_space(info, &addr); 288 if (offset == ~0) 289 return AE_OK; 290 } else 291 return AE_OK; 292 293 window = &info->controller->window[info->controller->windows++]; 294 window->resource.name = info->name; 295 window->resource.flags = flags; 296 window->resource.start = addr.minimum + offset; 297 window->resource.end = window->resource.start + addr.address_length - 1; 298 window->resource.child = NULL; 299 window->offset = offset; 300 301 if (insert_resource(root, &window->resource)) { 302 dev_err(&info->bridge->dev, 303 "can't allocate host bridge window %pR\n", 304 &window->resource); 305 } else { 306 if (offset) 307 dev_info(&info->bridge->dev, "host bridge window %pR " 308 "(PCI address [%#llx-%#llx])\n", 309 &window->resource, 310 window->resource.start - offset, 311 window->resource.end - offset); 312 else 313 dev_info(&info->bridge->dev, 314 "host bridge window %pR\n", 315 &window->resource); 316 } 317 318 /* HP's firmware has a hack to work around a Windows bug. 319 * Ignore these tiny memory ranges */ 320 if (!((window->resource.flags & IORESOURCE_MEM) && 321 (window->resource.end - window->resource.start < 16))) 322 pci_add_resource_offset(&info->resources, &window->resource, 323 window->offset); 324 325 return AE_OK; 326 } 327 328 struct pci_bus * __devinit 329 pci_acpi_scan_root(struct acpi_pci_root *root) 330 { 331 struct acpi_device *device = root->device; 332 int domain = root->segment; 333 int bus = root->secondary.start; 334 struct pci_controller *controller; 335 unsigned int windows = 0; 336 struct pci_root_info info; 337 struct pci_bus *pbus; 338 char *name; 339 int pxm; 340 341 controller = alloc_pci_controller(domain); 342 if (!controller) 343 goto out1; 344 345 controller->acpi_handle = device->handle; 346 347 pxm = acpi_get_pxm(controller->acpi_handle); 348 #ifdef CONFIG_NUMA 349 if (pxm >= 0) 350 controller->node = pxm_to_node(pxm); 351 #endif 352 353 INIT_LIST_HEAD(&info.resources); 354 /* insert busn resource at first */ 355 pci_add_resource(&info.resources, &root->secondary); 356 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 357 &windows); 358 if (windows) { 359 controller->window = 360 kmalloc_node(sizeof(*controller->window) * windows, 361 GFP_KERNEL, controller->node); 362 if (!controller->window) 363 goto out2; 364 365 name = kmalloc(16, GFP_KERNEL); 366 if (!name) 367 goto out3; 368 369 sprintf(name, "PCI Bus %04x:%02x", domain, bus); 370 info.bridge = device; 371 info.controller = controller; 372 info.name = name; 373 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 374 add_window, &info); 375 } 376 /* 377 * See arch/x86/pci/acpi.c. 378 * The desired pci bus might already be scanned in a quirk. We 379 * should handle the case here, but it appears that IA64 hasn't 380 * such quirk. So we just ignore the case now. 381 */ 382 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller, 383 &info.resources); 384 if (!pbus) { 385 pci_free_resource_list(&info.resources); 386 return NULL; 387 } 388 389 pci_scan_child_bus(pbus); 390 return pbus; 391 392 out3: 393 kfree(controller->window); 394 out2: 395 kfree(controller); 396 out1: 397 return NULL; 398 } 399 400 static int __devinit is_valid_resource(struct pci_dev *dev, int idx) 401 { 402 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 403 struct resource *devr = &dev->resource[idx], *busr; 404 405 if (!dev->bus) 406 return 0; 407 408 pci_bus_for_each_resource(dev->bus, busr, i) { 409 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 410 continue; 411 if ((devr->start) && (devr->start >= busr->start) && 412 (devr->end <= busr->end)) 413 return 1; 414 } 415 return 0; 416 } 417 418 static void __devinit 419 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 420 { 421 int i; 422 423 for (i = start; i < limit; i++) { 424 if (!dev->resource[i].flags) 425 continue; 426 if ((is_valid_resource(dev, i))) 427 pci_claim_resource(dev, i); 428 } 429 } 430 431 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) 432 { 433 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 434 } 435 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 436 437 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) 438 { 439 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 440 } 441 442 /* 443 * Called after each bus is probed, but before its children are examined. 444 */ 445 void __devinit 446 pcibios_fixup_bus (struct pci_bus *b) 447 { 448 struct pci_dev *dev; 449 450 if (b->self) { 451 pci_read_bridge_bases(b); 452 pcibios_fixup_bridge_resources(b->self); 453 } 454 list_for_each_entry(dev, &b->devices, bus_list) 455 pcibios_fixup_device_resources(dev); 456 platform_pci_fixup_bus(b); 457 } 458 459 void pcibios_set_master (struct pci_dev *dev) 460 { 461 /* No special bus mastering setup handling */ 462 } 463 464 void __devinit 465 pcibios_update_irq (struct pci_dev *dev, int irq) 466 { 467 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); 468 469 /* ??? FIXME -- record old value for shutdown. */ 470 } 471 472 int 473 pcibios_enable_device (struct pci_dev *dev, int mask) 474 { 475 int ret; 476 477 ret = pci_enable_resources(dev, mask); 478 if (ret < 0) 479 return ret; 480 481 if (!dev->msi_enabled) 482 return acpi_pci_irq_enable(dev); 483 return 0; 484 } 485 486 void 487 pcibios_disable_device (struct pci_dev *dev) 488 { 489 BUG_ON(atomic_read(&dev->enable_cnt)); 490 if (!dev->msi_enabled) 491 acpi_pci_irq_disable(dev); 492 } 493 494 resource_size_t 495 pcibios_align_resource (void *data, const struct resource *res, 496 resource_size_t size, resource_size_t align) 497 { 498 return res->start; 499 } 500 501 int 502 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 503 enum pci_mmap_state mmap_state, int write_combine) 504 { 505 unsigned long size = vma->vm_end - vma->vm_start; 506 pgprot_t prot; 507 508 /* 509 * I/O space cannot be accessed via normal processor loads and 510 * stores on this platform. 511 */ 512 if (mmap_state == pci_mmap_io) 513 /* 514 * XXX we could relax this for I/O spaces for which ACPI 515 * indicates that the space is 1-to-1 mapped. But at the 516 * moment, we don't support multiple PCI address spaces and 517 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 518 */ 519 return -EINVAL; 520 521 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 522 return -EINVAL; 523 524 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 525 vma->vm_page_prot); 526 527 /* 528 * If the user requested WC, the kernel uses UC or WC for this region, 529 * and the chipset supports WC, we can use WC. Otherwise, we have to 530 * use the same attribute the kernel uses. 531 */ 532 if (write_combine && 533 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 534 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 535 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 536 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 537 else 538 vma->vm_page_prot = prot; 539 540 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 541 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 542 return -EAGAIN; 543 544 return 0; 545 } 546 547 /** 548 * ia64_pci_get_legacy_mem - generic legacy mem routine 549 * @bus: bus to get legacy memory base address for 550 * 551 * Find the base of legacy memory for @bus. This is typically the first 552 * megabyte of bus address space for @bus or is simply 0 on platforms whose 553 * chipsets support legacy I/O and memory routing. Returns the base address 554 * or an error pointer if an error occurred. 555 * 556 * This is the ia64 generic version of this routine. Other platforms 557 * are free to override it with a machine vector. 558 */ 559 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 560 { 561 return (char *)__IA64_UNCACHED_OFFSET; 562 } 563 564 /** 565 * pci_mmap_legacy_page_range - map legacy memory space to userland 566 * @bus: bus whose legacy space we're mapping 567 * @vma: vma passed in by mmap 568 * 569 * Map legacy memory space for this device back to userspace using a machine 570 * vector to get the base address. 571 */ 572 int 573 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 574 enum pci_mmap_state mmap_state) 575 { 576 unsigned long size = vma->vm_end - vma->vm_start; 577 pgprot_t prot; 578 char *addr; 579 580 /* We only support mmap'ing of legacy memory space */ 581 if (mmap_state != pci_mmap_mem) 582 return -ENOSYS; 583 584 /* 585 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 586 * for more details. 587 */ 588 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 589 return -EINVAL; 590 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 591 vma->vm_page_prot); 592 593 addr = pci_get_legacy_mem(bus); 594 if (IS_ERR(addr)) 595 return PTR_ERR(addr); 596 597 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 598 vma->vm_page_prot = prot; 599 600 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 601 size, vma->vm_page_prot)) 602 return -EAGAIN; 603 604 return 0; 605 } 606 607 /** 608 * ia64_pci_legacy_read - read from legacy I/O space 609 * @bus: bus to read 610 * @port: legacy port value 611 * @val: caller allocated storage for returned value 612 * @size: number of bytes to read 613 * 614 * Simply reads @size bytes from @port and puts the result in @val. 615 * 616 * Again, this (and the write routine) are generic versions that can be 617 * overridden by the platform. This is necessary on platforms that don't 618 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 619 */ 620 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 621 { 622 int ret = size; 623 624 switch (size) { 625 case 1: 626 *val = inb(port); 627 break; 628 case 2: 629 *val = inw(port); 630 break; 631 case 4: 632 *val = inl(port); 633 break; 634 default: 635 ret = -EINVAL; 636 break; 637 } 638 639 return ret; 640 } 641 642 /** 643 * ia64_pci_legacy_write - perform a legacy I/O write 644 * @bus: bus pointer 645 * @port: port to write 646 * @val: value to write 647 * @size: number of bytes to write from @val 648 * 649 * Simply writes @size bytes of @val to @port. 650 */ 651 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 652 { 653 int ret = size; 654 655 switch (size) { 656 case 1: 657 outb(val, port); 658 break; 659 case 2: 660 outw(val, port); 661 break; 662 case 4: 663 outl(val, port); 664 break; 665 default: 666 ret = -EINVAL; 667 break; 668 } 669 670 return ret; 671 } 672 673 /** 674 * set_pci_cacheline_size - determine cacheline size for PCI devices 675 * 676 * We want to use the line-size of the outer-most cache. We assume 677 * that this line-size is the same for all CPUs. 678 * 679 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 680 */ 681 static void __init set_pci_dfl_cacheline_size(void) 682 { 683 unsigned long levels, unique_caches; 684 long status; 685 pal_cache_config_info_t cci; 686 687 status = ia64_pal_cache_summary(&levels, &unique_caches); 688 if (status != 0) { 689 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " 690 "(status=%ld)\n", __func__, status); 691 return; 692 } 693 694 status = ia64_pal_cache_config_info(levels - 1, 695 /* cache_type (data_or_unified)= */ 2, &cci); 696 if (status != 0) { 697 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " 698 "(status=%ld)\n", __func__, status); 699 return; 700 } 701 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 702 } 703 704 u64 ia64_dma_get_required_mask(struct device *dev) 705 { 706 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 707 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 708 u64 mask; 709 710 if (!high_totalram) { 711 /* convert to mask just covering totalram */ 712 low_totalram = (1 << (fls(low_totalram) - 1)); 713 low_totalram += low_totalram - 1; 714 mask = low_totalram; 715 } else { 716 high_totalram = (1 << (fls(high_totalram) - 1)); 717 high_totalram += high_totalram - 1; 718 mask = (((u64)high_totalram) << 32) + 0xffffffff; 719 } 720 return mask; 721 } 722 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 723 724 u64 dma_get_required_mask(struct device *dev) 725 { 726 return platform_dma_get_required_mask(dev); 727 } 728 EXPORT_SYMBOL_GPL(dma_get_required_mask); 729 730 static int __init pcibios_init(void) 731 { 732 set_pci_dfl_cacheline_size(); 733 return 0; 734 } 735 736 subsys_initcall(pcibios_init); 737