xref: /openbmc/linux/arch/ia64/pci/pci.c (revision 95e9fd10)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32 
33 /*
34  * Low-level SAL-based PCI configuration access functions. Note that SAL
35  * calls are already serialized (via sal_lock), so we don't need another
36  * synchronization mechanism here.
37  */
38 
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
40 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 
42 /* SAL 3.2 adds support for extended config space. */
43 
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
45 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 	      int reg, int len, u32 *value)
49 {
50 	u64 addr, data = 0;
51 	int mode, result;
52 
53 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 		return -EINVAL;
55 
56 	if ((seg | reg) <= 255) {
57 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 		mode = 0;
59 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 		mode = 1;
62 	} else {
63 		return -EINVAL;
64 	}
65 
66 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 	if (result != 0)
68 		return -EINVAL;
69 
70 	*value = (u32) data;
71 	return 0;
72 }
73 
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 	       int reg, int len, u32 value)
76 {
77 	u64 addr;
78 	int mode, result;
79 
80 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 		return -EINVAL;
82 
83 	if ((seg | reg) <= 255) {
84 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 		mode = 0;
86 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 		mode = 1;
89 	} else {
90 		return -EINVAL;
91 	}
92 	result = ia64_sal_pci_config_write(addr, mode, len, value);
93 	if (result != 0)
94 		return -EINVAL;
95 	return 0;
96 }
97 
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 							int size, u32 *value)
100 {
101 	return raw_pci_read(pci_domain_nr(bus), bus->number,
102 				 devfn, where, size, value);
103 }
104 
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 							int size, u32 value)
107 {
108 	return raw_pci_write(pci_domain_nr(bus), bus->number,
109 				  devfn, where, size, value);
110 }
111 
112 struct pci_ops pci_root_ops = {
113 	.read = pci_read,
114 	.write = pci_write,
115 };
116 
117 /* Called by ACPI when it finds a new root bus.  */
118 
119 static struct pci_controller * __devinit
120 alloc_pci_controller (int seg)
121 {
122 	struct pci_controller *controller;
123 
124 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 	if (!controller)
126 		return NULL;
127 
128 	controller->segment = seg;
129 	controller->node = -1;
130 	return controller;
131 }
132 
133 struct pci_root_info {
134 	struct acpi_device *bridge;
135 	struct pci_controller *controller;
136 	struct list_head resources;
137 	char *name;
138 };
139 
140 static unsigned int
141 new_space (u64 phys_base, int sparse)
142 {
143 	u64 mmio_base;
144 	int i;
145 
146 	if (phys_base == 0)
147 		return 0;	/* legacy I/O port space */
148 
149 	mmio_base = (u64) ioremap(phys_base, 0);
150 	for (i = 0; i < num_io_spaces; i++)
151 		if (io_space[i].mmio_base == mmio_base &&
152 		    io_space[i].sparse == sparse)
153 			return i;
154 
155 	if (num_io_spaces == MAX_IO_SPACES) {
156 		printk(KERN_ERR "PCI: Too many IO port spaces "
157 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
158 		return ~0;
159 	}
160 
161 	i = num_io_spaces++;
162 	io_space[i].mmio_base = mmio_base;
163 	io_space[i].sparse = sparse;
164 
165 	return i;
166 }
167 
168 static u64 __devinit
169 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
170 {
171 	struct resource *resource;
172 	char *name;
173 	unsigned long base, min, max, base_port;
174 	unsigned int sparse = 0, space_nr, len;
175 
176 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
177 	if (!resource) {
178 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
179 			info->name);
180 		goto out;
181 	}
182 
183 	len = strlen(info->name) + 32;
184 	name = kzalloc(len, GFP_KERNEL);
185 	if (!name) {
186 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
187 			info->name);
188 		goto free_resource;
189 	}
190 
191 	min = addr->minimum;
192 	max = min + addr->address_length - 1;
193 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194 		sparse = 1;
195 
196 	space_nr = new_space(addr->translation_offset, sparse);
197 	if (space_nr == ~0)
198 		goto free_name;
199 
200 	base = __pa(io_space[space_nr].mmio_base);
201 	base_port = IO_SPACE_BASE(space_nr);
202 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203 		base_port + min, base_port + max);
204 
205 	/*
206 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207 	 * mapping is done by the processor (not the bridge), ACPI may not
208 	 * mark it as sparse.
209 	 */
210 	if (space_nr == 0)
211 		sparse = 1;
212 
213 	resource->name  = name;
214 	resource->flags = IORESOURCE_MEM;
215 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
216 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
217 	insert_resource(&iomem_resource, resource);
218 
219 	return base_port;
220 
221 free_name:
222 	kfree(name);
223 free_resource:
224 	kfree(resource);
225 out:
226 	return ~0;
227 }
228 
229 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
230 	struct acpi_resource_address64 *addr)
231 {
232 	acpi_status status;
233 
234 	/*
235 	 * We're only interested in _CRS descriptors that are
236 	 *	- address space descriptors for memory or I/O space
237 	 *	- non-zero size
238 	 *	- producers, i.e., the address space is routed downstream,
239 	 *	  not consumed by the bridge itself
240 	 */
241 	status = acpi_resource_to_address64(resource, addr);
242 	if (ACPI_SUCCESS(status) &&
243 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
244 	     addr->resource_type == ACPI_IO_RANGE) &&
245 	    addr->address_length &&
246 	    addr->producer_consumer == ACPI_PRODUCER)
247 		return AE_OK;
248 
249 	return AE_ERROR;
250 }
251 
252 static acpi_status __devinit
253 count_window (struct acpi_resource *resource, void *data)
254 {
255 	unsigned int *windows = (unsigned int *) data;
256 	struct acpi_resource_address64 addr;
257 	acpi_status status;
258 
259 	status = resource_to_window(resource, &addr);
260 	if (ACPI_SUCCESS(status))
261 		(*windows)++;
262 
263 	return AE_OK;
264 }
265 
266 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
267 {
268 	struct pci_root_info *info = data;
269 	struct pci_window *window;
270 	struct acpi_resource_address64 addr;
271 	acpi_status status;
272 	unsigned long flags, offset = 0;
273 	struct resource *root;
274 
275 	/* Return AE_OK for non-window resources to keep scanning for more */
276 	status = resource_to_window(res, &addr);
277 	if (!ACPI_SUCCESS(status))
278 		return AE_OK;
279 
280 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
281 		flags = IORESOURCE_MEM;
282 		root = &iomem_resource;
283 		offset = addr.translation_offset;
284 	} else if (addr.resource_type == ACPI_IO_RANGE) {
285 		flags = IORESOURCE_IO;
286 		root = &ioport_resource;
287 		offset = add_io_space(info, &addr);
288 		if (offset == ~0)
289 			return AE_OK;
290 	} else
291 		return AE_OK;
292 
293 	window = &info->controller->window[info->controller->windows++];
294 	window->resource.name = info->name;
295 	window->resource.flags = flags;
296 	window->resource.start = addr.minimum + offset;
297 	window->resource.end = window->resource.start + addr.address_length - 1;
298 	window->resource.child = NULL;
299 	window->offset = offset;
300 
301 	if (insert_resource(root, &window->resource)) {
302 		dev_err(&info->bridge->dev,
303 			"can't allocate host bridge window %pR\n",
304 			&window->resource);
305 	} else {
306 		if (offset)
307 			dev_info(&info->bridge->dev, "host bridge window %pR "
308 				 "(PCI address [%#llx-%#llx])\n",
309 				 &window->resource,
310 				 window->resource.start - offset,
311 				 window->resource.end - offset);
312 		else
313 			dev_info(&info->bridge->dev,
314 				 "host bridge window %pR\n",
315 				 &window->resource);
316 	}
317 
318 	/* HP's firmware has a hack to work around a Windows bug.
319 	 * Ignore these tiny memory ranges */
320 	if (!((window->resource.flags & IORESOURCE_MEM) &&
321 	      (window->resource.end - window->resource.start < 16)))
322 		pci_add_resource_offset(&info->resources, &window->resource,
323 					window->offset);
324 
325 	return AE_OK;
326 }
327 
328 struct pci_bus * __devinit
329 pci_acpi_scan_root(struct acpi_pci_root *root)
330 {
331 	struct acpi_device *device = root->device;
332 	int domain = root->segment;
333 	int bus = root->secondary.start;
334 	struct pci_controller *controller;
335 	unsigned int windows = 0;
336 	struct pci_root_info info;
337 	struct pci_bus *pbus;
338 	char *name;
339 	int pxm;
340 
341 	controller = alloc_pci_controller(domain);
342 	if (!controller)
343 		goto out1;
344 
345 	controller->acpi_handle = device->handle;
346 
347 	pxm = acpi_get_pxm(controller->acpi_handle);
348 #ifdef CONFIG_NUMA
349 	if (pxm >= 0)
350 		controller->node = pxm_to_node(pxm);
351 #endif
352 
353 	INIT_LIST_HEAD(&info.resources);
354 	/* insert busn resource at first */
355 	pci_add_resource(&info.resources, &root->secondary);
356 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
357 			&windows);
358 	if (windows) {
359 		controller->window =
360 			kmalloc_node(sizeof(*controller->window) * windows,
361 				     GFP_KERNEL, controller->node);
362 		if (!controller->window)
363 			goto out2;
364 
365 		name = kmalloc(16, GFP_KERNEL);
366 		if (!name)
367 			goto out3;
368 
369 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
370 		info.bridge = device;
371 		info.controller = controller;
372 		info.name = name;
373 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
374 			add_window, &info);
375 	}
376 	/*
377 	 * See arch/x86/pci/acpi.c.
378 	 * The desired pci bus might already be scanned in a quirk. We
379 	 * should handle the case here, but it appears that IA64 hasn't
380 	 * such quirk. So we just ignore the case now.
381 	 */
382 	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
383 				   &info.resources);
384 	if (!pbus) {
385 		pci_free_resource_list(&info.resources);
386 		return NULL;
387 	}
388 
389 	pci_scan_child_bus(pbus);
390 	return pbus;
391 
392 out3:
393 	kfree(controller->window);
394 out2:
395 	kfree(controller);
396 out1:
397 	return NULL;
398 }
399 
400 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
401 {
402 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
403 	struct resource *devr = &dev->resource[idx], *busr;
404 
405 	if (!dev->bus)
406 		return 0;
407 
408 	pci_bus_for_each_resource(dev->bus, busr, i) {
409 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
410 			continue;
411 		if ((devr->start) && (devr->start >= busr->start) &&
412 				(devr->end <= busr->end))
413 			return 1;
414 	}
415 	return 0;
416 }
417 
418 static void __devinit
419 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
420 {
421 	int i;
422 
423 	for (i = start; i < limit; i++) {
424 		if (!dev->resource[i].flags)
425 			continue;
426 		if ((is_valid_resource(dev, i)))
427 			pci_claim_resource(dev, i);
428 	}
429 }
430 
431 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
432 {
433 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
434 }
435 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
436 
437 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
438 {
439 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
440 }
441 
442 /*
443  *  Called after each bus is probed, but before its children are examined.
444  */
445 void __devinit
446 pcibios_fixup_bus (struct pci_bus *b)
447 {
448 	struct pci_dev *dev;
449 
450 	if (b->self) {
451 		pci_read_bridge_bases(b);
452 		pcibios_fixup_bridge_resources(b->self);
453 	}
454 	list_for_each_entry(dev, &b->devices, bus_list)
455 		pcibios_fixup_device_resources(dev);
456 	platform_pci_fixup_bus(b);
457 }
458 
459 void pcibios_set_master (struct pci_dev *dev)
460 {
461 	/* No special bus mastering setup handling */
462 }
463 
464 void __devinit
465 pcibios_update_irq (struct pci_dev *dev, int irq)
466 {
467 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
468 
469 	/* ??? FIXME -- record old value for shutdown.  */
470 }
471 
472 int
473 pcibios_enable_device (struct pci_dev *dev, int mask)
474 {
475 	int ret;
476 
477 	ret = pci_enable_resources(dev, mask);
478 	if (ret < 0)
479 		return ret;
480 
481 	if (!dev->msi_enabled)
482 		return acpi_pci_irq_enable(dev);
483 	return 0;
484 }
485 
486 void
487 pcibios_disable_device (struct pci_dev *dev)
488 {
489 	BUG_ON(atomic_read(&dev->enable_cnt));
490 	if (!dev->msi_enabled)
491 		acpi_pci_irq_disable(dev);
492 }
493 
494 resource_size_t
495 pcibios_align_resource (void *data, const struct resource *res,
496 		        resource_size_t size, resource_size_t align)
497 {
498 	return res->start;
499 }
500 
501 int
502 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
503 		     enum pci_mmap_state mmap_state, int write_combine)
504 {
505 	unsigned long size = vma->vm_end - vma->vm_start;
506 	pgprot_t prot;
507 
508 	/*
509 	 * I/O space cannot be accessed via normal processor loads and
510 	 * stores on this platform.
511 	 */
512 	if (mmap_state == pci_mmap_io)
513 		/*
514 		 * XXX we could relax this for I/O spaces for which ACPI
515 		 * indicates that the space is 1-to-1 mapped.  But at the
516 		 * moment, we don't support multiple PCI address spaces and
517 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
518 		 */
519 		return -EINVAL;
520 
521 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
522 		return -EINVAL;
523 
524 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
525 				    vma->vm_page_prot);
526 
527 	/*
528 	 * If the user requested WC, the kernel uses UC or WC for this region,
529 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
530 	 * use the same attribute the kernel uses.
531 	 */
532 	if (write_combine &&
533 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
534 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
535 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
536 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
537 	else
538 		vma->vm_page_prot = prot;
539 
540 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
541 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
542 		return -EAGAIN;
543 
544 	return 0;
545 }
546 
547 /**
548  * ia64_pci_get_legacy_mem - generic legacy mem routine
549  * @bus: bus to get legacy memory base address for
550  *
551  * Find the base of legacy memory for @bus.  This is typically the first
552  * megabyte of bus address space for @bus or is simply 0 on platforms whose
553  * chipsets support legacy I/O and memory routing.  Returns the base address
554  * or an error pointer if an error occurred.
555  *
556  * This is the ia64 generic version of this routine.  Other platforms
557  * are free to override it with a machine vector.
558  */
559 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
560 {
561 	return (char *)__IA64_UNCACHED_OFFSET;
562 }
563 
564 /**
565  * pci_mmap_legacy_page_range - map legacy memory space to userland
566  * @bus: bus whose legacy space we're mapping
567  * @vma: vma passed in by mmap
568  *
569  * Map legacy memory space for this device back to userspace using a machine
570  * vector to get the base address.
571  */
572 int
573 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
574 			   enum pci_mmap_state mmap_state)
575 {
576 	unsigned long size = vma->vm_end - vma->vm_start;
577 	pgprot_t prot;
578 	char *addr;
579 
580 	/* We only support mmap'ing of legacy memory space */
581 	if (mmap_state != pci_mmap_mem)
582 		return -ENOSYS;
583 
584 	/*
585 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
586 	 * for more details.
587 	 */
588 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
589 		return -EINVAL;
590 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
591 				    vma->vm_page_prot);
592 
593 	addr = pci_get_legacy_mem(bus);
594 	if (IS_ERR(addr))
595 		return PTR_ERR(addr);
596 
597 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
598 	vma->vm_page_prot = prot;
599 
600 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
601 			    size, vma->vm_page_prot))
602 		return -EAGAIN;
603 
604 	return 0;
605 }
606 
607 /**
608  * ia64_pci_legacy_read - read from legacy I/O space
609  * @bus: bus to read
610  * @port: legacy port value
611  * @val: caller allocated storage for returned value
612  * @size: number of bytes to read
613  *
614  * Simply reads @size bytes from @port and puts the result in @val.
615  *
616  * Again, this (and the write routine) are generic versions that can be
617  * overridden by the platform.  This is necessary on platforms that don't
618  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
619  */
620 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
621 {
622 	int ret = size;
623 
624 	switch (size) {
625 	case 1:
626 		*val = inb(port);
627 		break;
628 	case 2:
629 		*val = inw(port);
630 		break;
631 	case 4:
632 		*val = inl(port);
633 		break;
634 	default:
635 		ret = -EINVAL;
636 		break;
637 	}
638 
639 	return ret;
640 }
641 
642 /**
643  * ia64_pci_legacy_write - perform a legacy I/O write
644  * @bus: bus pointer
645  * @port: port to write
646  * @val: value to write
647  * @size: number of bytes to write from @val
648  *
649  * Simply writes @size bytes of @val to @port.
650  */
651 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
652 {
653 	int ret = size;
654 
655 	switch (size) {
656 	case 1:
657 		outb(val, port);
658 		break;
659 	case 2:
660 		outw(val, port);
661 		break;
662 	case 4:
663 		outl(val, port);
664 		break;
665 	default:
666 		ret = -EINVAL;
667 		break;
668 	}
669 
670 	return ret;
671 }
672 
673 /**
674  * set_pci_cacheline_size - determine cacheline size for PCI devices
675  *
676  * We want to use the line-size of the outer-most cache.  We assume
677  * that this line-size is the same for all CPUs.
678  *
679  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
680  */
681 static void __init set_pci_dfl_cacheline_size(void)
682 {
683 	unsigned long levels, unique_caches;
684 	long status;
685 	pal_cache_config_info_t cci;
686 
687 	status = ia64_pal_cache_summary(&levels, &unique_caches);
688 	if (status != 0) {
689 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
690 			"(status=%ld)\n", __func__, status);
691 		return;
692 	}
693 
694 	status = ia64_pal_cache_config_info(levels - 1,
695 				/* cache_type (data_or_unified)= */ 2, &cci);
696 	if (status != 0) {
697 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
698 			"(status=%ld)\n", __func__, status);
699 		return;
700 	}
701 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
702 }
703 
704 u64 ia64_dma_get_required_mask(struct device *dev)
705 {
706 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
707 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
708 	u64 mask;
709 
710 	if (!high_totalram) {
711 		/* convert to mask just covering totalram */
712 		low_totalram = (1 << (fls(low_totalram) - 1));
713 		low_totalram += low_totalram - 1;
714 		mask = low_totalram;
715 	} else {
716 		high_totalram = (1 << (fls(high_totalram) - 1));
717 		high_totalram += high_totalram - 1;
718 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
719 	}
720 	return mask;
721 }
722 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
723 
724 u64 dma_get_required_mask(struct device *dev)
725 {
726 	return platform_dma_get_required_mask(dev);
727 }
728 EXPORT_SYMBOL_GPL(dma_get_required_mask);
729 
730 static int __init pcibios_init(void)
731 {
732 	set_pci_dfl_cacheline_size();
733 	return 0;
734 }
735 
736 subsys_initcall(pcibios_init);
737