xref: /openbmc/linux/arch/ia64/pci/pci.c (revision 95188aaf)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32 
33 /*
34  * Low-level SAL-based PCI configuration access functions. Note that SAL
35  * calls are already serialized (via sal_lock), so we don't need another
36  * synchronization mechanism here.
37  */
38 
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
40 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 
42 /* SAL 3.2 adds support for extended config space. */
43 
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
45 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 	      int reg, int len, u32 *value)
49 {
50 	u64 addr, data = 0;
51 	int mode, result;
52 
53 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 		return -EINVAL;
55 
56 	if ((seg | reg) <= 255) {
57 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 		mode = 0;
59 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 		mode = 1;
62 	} else {
63 		return -EINVAL;
64 	}
65 
66 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 	if (result != 0)
68 		return -EINVAL;
69 
70 	*value = (u32) data;
71 	return 0;
72 }
73 
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 	       int reg, int len, u32 value)
76 {
77 	u64 addr;
78 	int mode, result;
79 
80 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 		return -EINVAL;
82 
83 	if ((seg | reg) <= 255) {
84 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 		mode = 0;
86 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 		mode = 1;
89 	} else {
90 		return -EINVAL;
91 	}
92 	result = ia64_sal_pci_config_write(addr, mode, len, value);
93 	if (result != 0)
94 		return -EINVAL;
95 	return 0;
96 }
97 
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 							int size, u32 *value)
100 {
101 	return raw_pci_read(pci_domain_nr(bus), bus->number,
102 				 devfn, where, size, value);
103 }
104 
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 							int size, u32 value)
107 {
108 	return raw_pci_write(pci_domain_nr(bus), bus->number,
109 				  devfn, where, size, value);
110 }
111 
112 struct pci_ops pci_root_ops = {
113 	.read = pci_read,
114 	.write = pci_write,
115 };
116 
117 /* Called by ACPI when it finds a new root bus.  */
118 
119 static struct pci_controller *alloc_pci_controller(int seg)
120 {
121 	struct pci_controller *controller;
122 
123 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
124 	if (!controller)
125 		return NULL;
126 
127 	controller->segment = seg;
128 	controller->node = -1;
129 	return controller;
130 }
131 
132 struct pci_root_info {
133 	struct acpi_device *bridge;
134 	struct pci_controller *controller;
135 	struct list_head resources;
136 	char *name;
137 };
138 
139 static unsigned int
140 new_space (u64 phys_base, int sparse)
141 {
142 	u64 mmio_base;
143 	int i;
144 
145 	if (phys_base == 0)
146 		return 0;	/* legacy I/O port space */
147 
148 	mmio_base = (u64) ioremap(phys_base, 0);
149 	for (i = 0; i < num_io_spaces; i++)
150 		if (io_space[i].mmio_base == mmio_base &&
151 		    io_space[i].sparse == sparse)
152 			return i;
153 
154 	if (num_io_spaces == MAX_IO_SPACES) {
155 		printk(KERN_ERR "PCI: Too many IO port spaces "
156 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
157 		return ~0;
158 	}
159 
160 	i = num_io_spaces++;
161 	io_space[i].mmio_base = mmio_base;
162 	io_space[i].sparse = sparse;
163 
164 	return i;
165 }
166 
167 static u64 add_io_space(struct pci_root_info *info,
168 			struct acpi_resource_address64 *addr)
169 {
170 	struct resource *resource;
171 	char *name;
172 	unsigned long base, min, max, base_port;
173 	unsigned int sparse = 0, space_nr, len;
174 
175 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
176 	if (!resource) {
177 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
178 			info->name);
179 		goto out;
180 	}
181 
182 	len = strlen(info->name) + 32;
183 	name = kzalloc(len, GFP_KERNEL);
184 	if (!name) {
185 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
186 			info->name);
187 		goto free_resource;
188 	}
189 
190 	min = addr->minimum;
191 	max = min + addr->address_length - 1;
192 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
193 		sparse = 1;
194 
195 	space_nr = new_space(addr->translation_offset, sparse);
196 	if (space_nr == ~0)
197 		goto free_name;
198 
199 	base = __pa(io_space[space_nr].mmio_base);
200 	base_port = IO_SPACE_BASE(space_nr);
201 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
202 		base_port + min, base_port + max);
203 
204 	/*
205 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
206 	 * mapping is done by the processor (not the bridge), ACPI may not
207 	 * mark it as sparse.
208 	 */
209 	if (space_nr == 0)
210 		sparse = 1;
211 
212 	resource->name  = name;
213 	resource->flags = IORESOURCE_MEM;
214 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
215 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
216 	insert_resource(&iomem_resource, resource);
217 
218 	return base_port;
219 
220 free_name:
221 	kfree(name);
222 free_resource:
223 	kfree(resource);
224 out:
225 	return ~0;
226 }
227 
228 static acpi_status resource_to_window(struct acpi_resource *resource,
229 				      struct acpi_resource_address64 *addr)
230 {
231 	acpi_status status;
232 
233 	/*
234 	 * We're only interested in _CRS descriptors that are
235 	 *	- address space descriptors for memory or I/O space
236 	 *	- non-zero size
237 	 *	- producers, i.e., the address space is routed downstream,
238 	 *	  not consumed by the bridge itself
239 	 */
240 	status = acpi_resource_to_address64(resource, addr);
241 	if (ACPI_SUCCESS(status) &&
242 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
243 	     addr->resource_type == ACPI_IO_RANGE) &&
244 	    addr->address_length &&
245 	    addr->producer_consumer == ACPI_PRODUCER)
246 		return AE_OK;
247 
248 	return AE_ERROR;
249 }
250 
251 static acpi_status count_window(struct acpi_resource *resource, void *data)
252 {
253 	unsigned int *windows = (unsigned int *) data;
254 	struct acpi_resource_address64 addr;
255 	acpi_status status;
256 
257 	status = resource_to_window(resource, &addr);
258 	if (ACPI_SUCCESS(status))
259 		(*windows)++;
260 
261 	return AE_OK;
262 }
263 
264 static acpi_status add_window(struct acpi_resource *res, void *data)
265 {
266 	struct pci_root_info *info = data;
267 	struct pci_window *window;
268 	struct acpi_resource_address64 addr;
269 	acpi_status status;
270 	unsigned long flags, offset = 0;
271 	struct resource *root;
272 
273 	/* Return AE_OK for non-window resources to keep scanning for more */
274 	status = resource_to_window(res, &addr);
275 	if (!ACPI_SUCCESS(status))
276 		return AE_OK;
277 
278 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
279 		flags = IORESOURCE_MEM;
280 		root = &iomem_resource;
281 		offset = addr.translation_offset;
282 	} else if (addr.resource_type == ACPI_IO_RANGE) {
283 		flags = IORESOURCE_IO;
284 		root = &ioport_resource;
285 		offset = add_io_space(info, &addr);
286 		if (offset == ~0)
287 			return AE_OK;
288 	} else
289 		return AE_OK;
290 
291 	window = &info->controller->window[info->controller->windows++];
292 	window->resource.name = info->name;
293 	window->resource.flags = flags;
294 	window->resource.start = addr.minimum + offset;
295 	window->resource.end = window->resource.start + addr.address_length - 1;
296 	window->offset = offset;
297 
298 	if (insert_resource(root, &window->resource)) {
299 		dev_err(&info->bridge->dev,
300 			"can't allocate host bridge window %pR\n",
301 			&window->resource);
302 	} else {
303 		if (offset)
304 			dev_info(&info->bridge->dev, "host bridge window %pR "
305 				 "(PCI address [%#llx-%#llx])\n",
306 				 &window->resource,
307 				 window->resource.start - offset,
308 				 window->resource.end - offset);
309 		else
310 			dev_info(&info->bridge->dev,
311 				 "host bridge window %pR\n",
312 				 &window->resource);
313 	}
314 
315 	/* HP's firmware has a hack to work around a Windows bug.
316 	 * Ignore these tiny memory ranges */
317 	if (!((window->resource.flags & IORESOURCE_MEM) &&
318 	      (window->resource.end - window->resource.start < 16)))
319 		pci_add_resource_offset(&info->resources, &window->resource,
320 					window->offset);
321 
322 	return AE_OK;
323 }
324 
325 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
326 {
327 	struct acpi_device *device = root->device;
328 	int domain = root->segment;
329 	int bus = root->secondary.start;
330 	struct pci_controller *controller;
331 	unsigned int windows = 0;
332 	struct pci_root_info info;
333 	struct pci_bus *pbus;
334 	char *name;
335 	int pxm;
336 
337 	controller = alloc_pci_controller(domain);
338 	if (!controller)
339 		goto out1;
340 
341 	controller->acpi_handle = device->handle;
342 
343 	pxm = acpi_get_pxm(controller->acpi_handle);
344 #ifdef CONFIG_NUMA
345 	if (pxm >= 0)
346 		controller->node = pxm_to_node(pxm);
347 #endif
348 
349 	INIT_LIST_HEAD(&info.resources);
350 	/* insert busn resource at first */
351 	pci_add_resource(&info.resources, &root->secondary);
352 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
353 			&windows);
354 	if (windows) {
355 		controller->window =
356 			kzalloc_node(sizeof(*controller->window) * windows,
357 				     GFP_KERNEL, controller->node);
358 		if (!controller->window)
359 			goto out2;
360 
361 		name = kmalloc(16, GFP_KERNEL);
362 		if (!name)
363 			goto out3;
364 
365 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
366 		info.bridge = device;
367 		info.controller = controller;
368 		info.name = name;
369 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
370 			add_window, &info);
371 	}
372 	/*
373 	 * See arch/x86/pci/acpi.c.
374 	 * The desired pci bus might already be scanned in a quirk. We
375 	 * should handle the case here, but it appears that IA64 hasn't
376 	 * such quirk. So we just ignore the case now.
377 	 */
378 	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
379 				   &info.resources);
380 	if (!pbus) {
381 		pci_free_resource_list(&info.resources);
382 		return NULL;
383 	}
384 
385 	pci_scan_child_bus(pbus);
386 	return pbus;
387 
388 out3:
389 	kfree(controller->window);
390 out2:
391 	kfree(controller);
392 out1:
393 	return NULL;
394 }
395 
396 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
397 {
398 	struct pci_controller *controller = bridge->bus->sysdata;
399 
400 	ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
401 	return 0;
402 }
403 
404 static int is_valid_resource(struct pci_dev *dev, int idx)
405 {
406 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
407 	struct resource *devr = &dev->resource[idx], *busr;
408 
409 	if (!dev->bus)
410 		return 0;
411 
412 	pci_bus_for_each_resource(dev->bus, busr, i) {
413 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
414 			continue;
415 		if ((devr->start) && (devr->start >= busr->start) &&
416 				(devr->end <= busr->end))
417 			return 1;
418 	}
419 	return 0;
420 }
421 
422 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
423 {
424 	int i;
425 
426 	for (i = start; i < limit; i++) {
427 		if (!dev->resource[i].flags)
428 			continue;
429 		if ((is_valid_resource(dev, i)))
430 			pci_claim_resource(dev, i);
431 	}
432 }
433 
434 void pcibios_fixup_device_resources(struct pci_dev *dev)
435 {
436 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
437 }
438 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
439 
440 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
441 {
442 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
443 }
444 
445 /*
446  *  Called after each bus is probed, but before its children are examined.
447  */
448 void pcibios_fixup_bus(struct pci_bus *b)
449 {
450 	struct pci_dev *dev;
451 
452 	if (b->self) {
453 		pci_read_bridge_bases(b);
454 		pcibios_fixup_bridge_resources(b->self);
455 	}
456 	list_for_each_entry(dev, &b->devices, bus_list)
457 		pcibios_fixup_device_resources(dev);
458 	platform_pci_fixup_bus(b);
459 }
460 
461 void pcibios_set_master (struct pci_dev *dev)
462 {
463 	/* No special bus mastering setup handling */
464 }
465 
466 int
467 pcibios_enable_device (struct pci_dev *dev, int mask)
468 {
469 	int ret;
470 
471 	ret = pci_enable_resources(dev, mask);
472 	if (ret < 0)
473 		return ret;
474 
475 	if (!dev->msi_enabled)
476 		return acpi_pci_irq_enable(dev);
477 	return 0;
478 }
479 
480 void
481 pcibios_disable_device (struct pci_dev *dev)
482 {
483 	BUG_ON(atomic_read(&dev->enable_cnt));
484 	if (!dev->msi_enabled)
485 		acpi_pci_irq_disable(dev);
486 }
487 
488 resource_size_t
489 pcibios_align_resource (void *data, const struct resource *res,
490 		        resource_size_t size, resource_size_t align)
491 {
492 	return res->start;
493 }
494 
495 int
496 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
497 		     enum pci_mmap_state mmap_state, int write_combine)
498 {
499 	unsigned long size = vma->vm_end - vma->vm_start;
500 	pgprot_t prot;
501 
502 	/*
503 	 * I/O space cannot be accessed via normal processor loads and
504 	 * stores on this platform.
505 	 */
506 	if (mmap_state == pci_mmap_io)
507 		/*
508 		 * XXX we could relax this for I/O spaces for which ACPI
509 		 * indicates that the space is 1-to-1 mapped.  But at the
510 		 * moment, we don't support multiple PCI address spaces and
511 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
512 		 */
513 		return -EINVAL;
514 
515 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
516 		return -EINVAL;
517 
518 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
519 				    vma->vm_page_prot);
520 
521 	/*
522 	 * If the user requested WC, the kernel uses UC or WC for this region,
523 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
524 	 * use the same attribute the kernel uses.
525 	 */
526 	if (write_combine &&
527 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
528 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
529 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
530 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
531 	else
532 		vma->vm_page_prot = prot;
533 
534 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
535 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
536 		return -EAGAIN;
537 
538 	return 0;
539 }
540 
541 /**
542  * ia64_pci_get_legacy_mem - generic legacy mem routine
543  * @bus: bus to get legacy memory base address for
544  *
545  * Find the base of legacy memory for @bus.  This is typically the first
546  * megabyte of bus address space for @bus or is simply 0 on platforms whose
547  * chipsets support legacy I/O and memory routing.  Returns the base address
548  * or an error pointer if an error occurred.
549  *
550  * This is the ia64 generic version of this routine.  Other platforms
551  * are free to override it with a machine vector.
552  */
553 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
554 {
555 	return (char *)__IA64_UNCACHED_OFFSET;
556 }
557 
558 /**
559  * pci_mmap_legacy_page_range - map legacy memory space to userland
560  * @bus: bus whose legacy space we're mapping
561  * @vma: vma passed in by mmap
562  *
563  * Map legacy memory space for this device back to userspace using a machine
564  * vector to get the base address.
565  */
566 int
567 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
568 			   enum pci_mmap_state mmap_state)
569 {
570 	unsigned long size = vma->vm_end - vma->vm_start;
571 	pgprot_t prot;
572 	char *addr;
573 
574 	/* We only support mmap'ing of legacy memory space */
575 	if (mmap_state != pci_mmap_mem)
576 		return -ENOSYS;
577 
578 	/*
579 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
580 	 * for more details.
581 	 */
582 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
583 		return -EINVAL;
584 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
585 				    vma->vm_page_prot);
586 
587 	addr = pci_get_legacy_mem(bus);
588 	if (IS_ERR(addr))
589 		return PTR_ERR(addr);
590 
591 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
592 	vma->vm_page_prot = prot;
593 
594 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
595 			    size, vma->vm_page_prot))
596 		return -EAGAIN;
597 
598 	return 0;
599 }
600 
601 /**
602  * ia64_pci_legacy_read - read from legacy I/O space
603  * @bus: bus to read
604  * @port: legacy port value
605  * @val: caller allocated storage for returned value
606  * @size: number of bytes to read
607  *
608  * Simply reads @size bytes from @port and puts the result in @val.
609  *
610  * Again, this (and the write routine) are generic versions that can be
611  * overridden by the platform.  This is necessary on platforms that don't
612  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
613  */
614 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
615 {
616 	int ret = size;
617 
618 	switch (size) {
619 	case 1:
620 		*val = inb(port);
621 		break;
622 	case 2:
623 		*val = inw(port);
624 		break;
625 	case 4:
626 		*val = inl(port);
627 		break;
628 	default:
629 		ret = -EINVAL;
630 		break;
631 	}
632 
633 	return ret;
634 }
635 
636 /**
637  * ia64_pci_legacy_write - perform a legacy I/O write
638  * @bus: bus pointer
639  * @port: port to write
640  * @val: value to write
641  * @size: number of bytes to write from @val
642  *
643  * Simply writes @size bytes of @val to @port.
644  */
645 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
646 {
647 	int ret = size;
648 
649 	switch (size) {
650 	case 1:
651 		outb(val, port);
652 		break;
653 	case 2:
654 		outw(val, port);
655 		break;
656 	case 4:
657 		outl(val, port);
658 		break;
659 	default:
660 		ret = -EINVAL;
661 		break;
662 	}
663 
664 	return ret;
665 }
666 
667 /**
668  * set_pci_cacheline_size - determine cacheline size for PCI devices
669  *
670  * We want to use the line-size of the outer-most cache.  We assume
671  * that this line-size is the same for all CPUs.
672  *
673  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
674  */
675 static void __init set_pci_dfl_cacheline_size(void)
676 {
677 	unsigned long levels, unique_caches;
678 	long status;
679 	pal_cache_config_info_t cci;
680 
681 	status = ia64_pal_cache_summary(&levels, &unique_caches);
682 	if (status != 0) {
683 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
684 			"(status=%ld)\n", __func__, status);
685 		return;
686 	}
687 
688 	status = ia64_pal_cache_config_info(levels - 1,
689 				/* cache_type (data_or_unified)= */ 2, &cci);
690 	if (status != 0) {
691 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
692 			"(status=%ld)\n", __func__, status);
693 		return;
694 	}
695 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
696 }
697 
698 u64 ia64_dma_get_required_mask(struct device *dev)
699 {
700 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
701 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
702 	u64 mask;
703 
704 	if (!high_totalram) {
705 		/* convert to mask just covering totalram */
706 		low_totalram = (1 << (fls(low_totalram) - 1));
707 		low_totalram += low_totalram - 1;
708 		mask = low_totalram;
709 	} else {
710 		high_totalram = (1 << (fls(high_totalram) - 1));
711 		high_totalram += high_totalram - 1;
712 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
713 	}
714 	return mask;
715 }
716 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
717 
718 u64 dma_get_required_mask(struct device *dev)
719 {
720 	return platform_dma_get_required_mask(dev);
721 }
722 EXPORT_SYMBOL_GPL(dma_get_required_mask);
723 
724 static int __init pcibios_init(void)
725 {
726 	set_pci_dfl_cacheline_size();
727 	return 0;
728 }
729 
730 subsys_initcall(pcibios_init);
731