1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/pci-acpi.h> 19 #include <linux/init.h> 20 #include <linux/ioport.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/bootmem.h> 24 #include <linux/export.h> 25 26 #include <asm/machvec.h> 27 #include <asm/page.h> 28 #include <asm/io.h> 29 #include <asm/sal.h> 30 #include <asm/smp.h> 31 #include <asm/irq.h> 32 #include <asm/hw_irq.h> 33 34 /* 35 * Low-level SAL-based PCI configuration access functions. Note that SAL 36 * calls are already serialized (via sal_lock), so we don't need another 37 * synchronization mechanism here. 38 */ 39 40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 42 43 /* SAL 3.2 adds support for extended config space. */ 44 45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 47 48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 49 int reg, int len, u32 *value) 50 { 51 u64 addr, data = 0; 52 int mode, result; 53 54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 55 return -EINVAL; 56 57 if ((seg | reg) <= 255) { 58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 59 mode = 0; 60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 62 mode = 1; 63 } else { 64 return -EINVAL; 65 } 66 67 result = ia64_sal_pci_config_read(addr, mode, len, &data); 68 if (result != 0) 69 return -EINVAL; 70 71 *value = (u32) data; 72 return 0; 73 } 74 75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 76 int reg, int len, u32 value) 77 { 78 u64 addr; 79 int mode, result; 80 81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 82 return -EINVAL; 83 84 if ((seg | reg) <= 255) { 85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 86 mode = 0; 87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 89 mode = 1; 90 } else { 91 return -EINVAL; 92 } 93 result = ia64_sal_pci_config_write(addr, mode, len, value); 94 if (result != 0) 95 return -EINVAL; 96 return 0; 97 } 98 99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 100 int size, u32 *value) 101 { 102 return raw_pci_read(pci_domain_nr(bus), bus->number, 103 devfn, where, size, value); 104 } 105 106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 107 int size, u32 value) 108 { 109 return raw_pci_write(pci_domain_nr(bus), bus->number, 110 devfn, where, size, value); 111 } 112 113 struct pci_ops pci_root_ops = { 114 .read = pci_read, 115 .write = pci_write, 116 }; 117 118 /* Called by ACPI when it finds a new root bus. */ 119 120 static struct pci_controller *alloc_pci_controller(int seg) 121 { 122 struct pci_controller *controller; 123 124 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 125 if (!controller) 126 return NULL; 127 128 controller->segment = seg; 129 controller->node = -1; 130 return controller; 131 } 132 133 struct pci_root_info { 134 struct acpi_device *bridge; 135 struct pci_controller *controller; 136 struct list_head resources; 137 struct resource *res; 138 resource_size_t *res_offset; 139 unsigned int res_num; 140 struct list_head io_resources; 141 char *name; 142 }; 143 144 static unsigned int 145 new_space (u64 phys_base, int sparse) 146 { 147 u64 mmio_base; 148 int i; 149 150 if (phys_base == 0) 151 return 0; /* legacy I/O port space */ 152 153 mmio_base = (u64) ioremap(phys_base, 0); 154 for (i = 0; i < num_io_spaces; i++) 155 if (io_space[i].mmio_base == mmio_base && 156 io_space[i].sparse == sparse) 157 return i; 158 159 if (num_io_spaces == MAX_IO_SPACES) { 160 pr_err("PCI: Too many IO port spaces " 161 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 162 return ~0; 163 } 164 165 i = num_io_spaces++; 166 io_space[i].mmio_base = mmio_base; 167 io_space[i].sparse = sparse; 168 169 return i; 170 } 171 172 static u64 add_io_space(struct pci_root_info *info, 173 struct acpi_resource_address64 *addr) 174 { 175 struct iospace_resource *iospace; 176 struct resource *resource; 177 char *name; 178 unsigned long base, min, max, base_port; 179 unsigned int sparse = 0, space_nr, len; 180 181 len = strlen(info->name) + 32; 182 iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL); 183 if (!iospace) { 184 dev_err(&info->bridge->dev, 185 "PCI: No memory for %s I/O port space\n", 186 info->name); 187 goto out; 188 } 189 190 name = (char *)(iospace + 1); 191 192 min = addr->minimum; 193 max = min + addr->address_length - 1; 194 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 195 sparse = 1; 196 197 space_nr = new_space(addr->translation_offset, sparse); 198 if (space_nr == ~0) 199 goto free_resource; 200 201 base = __pa(io_space[space_nr].mmio_base); 202 base_port = IO_SPACE_BASE(space_nr); 203 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 204 base_port + min, base_port + max); 205 206 /* 207 * The SDM guarantees the legacy 0-64K space is sparse, but if the 208 * mapping is done by the processor (not the bridge), ACPI may not 209 * mark it as sparse. 210 */ 211 if (space_nr == 0) 212 sparse = 1; 213 214 resource = &iospace->res; 215 resource->name = name; 216 resource->flags = IORESOURCE_MEM; 217 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 218 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 219 if (insert_resource(&iomem_resource, resource)) { 220 dev_err(&info->bridge->dev, 221 "can't allocate host bridge io space resource %pR\n", 222 resource); 223 goto free_resource; 224 } 225 226 list_add_tail(&iospace->list, &info->io_resources); 227 return base_port; 228 229 free_resource: 230 kfree(iospace); 231 out: 232 return ~0; 233 } 234 235 static acpi_status resource_to_window(struct acpi_resource *resource, 236 struct acpi_resource_address64 *addr) 237 { 238 acpi_status status; 239 240 /* 241 * We're only interested in _CRS descriptors that are 242 * - address space descriptors for memory or I/O space 243 * - non-zero size 244 * - producers, i.e., the address space is routed downstream, 245 * not consumed by the bridge itself 246 */ 247 status = acpi_resource_to_address64(resource, addr); 248 if (ACPI_SUCCESS(status) && 249 (addr->resource_type == ACPI_MEMORY_RANGE || 250 addr->resource_type == ACPI_IO_RANGE) && 251 addr->address_length && 252 addr->producer_consumer == ACPI_PRODUCER) 253 return AE_OK; 254 255 return AE_ERROR; 256 } 257 258 static acpi_status count_window(struct acpi_resource *resource, void *data) 259 { 260 unsigned int *windows = (unsigned int *) data; 261 struct acpi_resource_address64 addr; 262 acpi_status status; 263 264 status = resource_to_window(resource, &addr); 265 if (ACPI_SUCCESS(status)) 266 (*windows)++; 267 268 return AE_OK; 269 } 270 271 static acpi_status add_window(struct acpi_resource *res, void *data) 272 { 273 struct pci_root_info *info = data; 274 struct resource *resource; 275 struct acpi_resource_address64 addr; 276 acpi_status status; 277 unsigned long flags, offset = 0; 278 struct resource *root; 279 280 /* Return AE_OK for non-window resources to keep scanning for more */ 281 status = resource_to_window(res, &addr); 282 if (!ACPI_SUCCESS(status)) 283 return AE_OK; 284 285 if (addr.resource_type == ACPI_MEMORY_RANGE) { 286 flags = IORESOURCE_MEM; 287 root = &iomem_resource; 288 offset = addr.translation_offset; 289 } else if (addr.resource_type == ACPI_IO_RANGE) { 290 flags = IORESOURCE_IO; 291 root = &ioport_resource; 292 offset = add_io_space(info, &addr); 293 if (offset == ~0) 294 return AE_OK; 295 } else 296 return AE_OK; 297 298 resource = &info->res[info->res_num]; 299 resource->name = info->name; 300 resource->flags = flags; 301 resource->start = addr.minimum + offset; 302 resource->end = resource->start + addr.address_length - 1; 303 info->res_offset[info->res_num] = offset; 304 305 if (insert_resource(root, resource)) { 306 dev_err(&info->bridge->dev, 307 "can't allocate host bridge window %pR\n", 308 resource); 309 } else { 310 if (offset) 311 dev_info(&info->bridge->dev, "host bridge window %pR " 312 "(PCI address [%#llx-%#llx])\n", 313 resource, 314 resource->start - offset, 315 resource->end - offset); 316 else 317 dev_info(&info->bridge->dev, 318 "host bridge window %pR\n", resource); 319 } 320 /* HP's firmware has a hack to work around a Windows bug. 321 * Ignore these tiny memory ranges */ 322 if (!((resource->flags & IORESOURCE_MEM) && 323 (resource->end - resource->start < 16))) 324 pci_add_resource_offset(&info->resources, resource, 325 info->res_offset[info->res_num]); 326 327 info->res_num++; 328 return AE_OK; 329 } 330 331 static void free_pci_root_info_res(struct pci_root_info *info) 332 { 333 struct iospace_resource *iospace, *tmp; 334 335 list_for_each_entry_safe(iospace, tmp, &info->io_resources, list) 336 kfree(iospace); 337 338 kfree(info->name); 339 kfree(info->res); 340 info->res = NULL; 341 kfree(info->res_offset); 342 info->res_offset = NULL; 343 info->res_num = 0; 344 kfree(info->controller); 345 info->controller = NULL; 346 } 347 348 static void __release_pci_root_info(struct pci_root_info *info) 349 { 350 int i; 351 struct resource *res; 352 struct iospace_resource *iospace; 353 354 list_for_each_entry(iospace, &info->io_resources, list) 355 release_resource(&iospace->res); 356 357 for (i = 0; i < info->res_num; i++) { 358 res = &info->res[i]; 359 360 if (!res->parent) 361 continue; 362 363 if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO))) 364 continue; 365 366 release_resource(res); 367 } 368 369 free_pci_root_info_res(info); 370 kfree(info); 371 } 372 373 static void release_pci_root_info(struct pci_host_bridge *bridge) 374 { 375 struct pci_root_info *info = bridge->release_data; 376 377 __release_pci_root_info(info); 378 } 379 380 static int 381 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device, 382 int busnum, int domain) 383 { 384 char *name; 385 386 name = kmalloc(16, GFP_KERNEL); 387 if (!name) 388 return -ENOMEM; 389 390 sprintf(name, "PCI Bus %04x:%02x", domain, busnum); 391 info->bridge = device; 392 info->name = name; 393 394 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 395 &info->res_num); 396 if (info->res_num) { 397 info->res = 398 kzalloc_node(sizeof(*info->res) * info->res_num, 399 GFP_KERNEL, info->controller->node); 400 if (!info->res) { 401 kfree(name); 402 return -ENOMEM; 403 } 404 405 info->res_offset = 406 kzalloc_node(sizeof(*info->res_offset) * info->res_num, 407 GFP_KERNEL, info->controller->node); 408 if (!info->res_offset) { 409 kfree(name); 410 kfree(info->res); 411 info->res = NULL; 412 return -ENOMEM; 413 } 414 415 info->res_num = 0; 416 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 417 add_window, info); 418 } else 419 kfree(name); 420 421 return 0; 422 } 423 424 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root) 425 { 426 struct acpi_device *device = root->device; 427 int domain = root->segment; 428 int bus = root->secondary.start; 429 struct pci_controller *controller; 430 struct pci_root_info *info = NULL; 431 int busnum = root->secondary.start; 432 struct pci_bus *pbus; 433 int pxm, ret; 434 435 controller = alloc_pci_controller(domain); 436 if (!controller) 437 return NULL; 438 439 controller->companion = device; 440 441 pxm = acpi_get_pxm(device->handle); 442 #ifdef CONFIG_NUMA 443 if (pxm >= 0) 444 controller->node = pxm_to_node(pxm); 445 #endif 446 447 info = kzalloc(sizeof(*info), GFP_KERNEL); 448 if (!info) { 449 dev_err(&device->dev, 450 "pci_bus %04x:%02x: ignored (out of memory)\n", 451 domain, busnum); 452 kfree(controller); 453 return NULL; 454 } 455 456 info->controller = controller; 457 INIT_LIST_HEAD(&info->io_resources); 458 INIT_LIST_HEAD(&info->resources); 459 460 ret = probe_pci_root_info(info, device, busnum, domain); 461 if (ret) { 462 kfree(info->controller); 463 kfree(info); 464 return NULL; 465 } 466 /* insert busn resource at first */ 467 pci_add_resource(&info->resources, &root->secondary); 468 /* 469 * See arch/x86/pci/acpi.c. 470 * The desired pci bus might already be scanned in a quirk. We 471 * should handle the case here, but it appears that IA64 hasn't 472 * such quirk. So we just ignore the case now. 473 */ 474 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller, 475 &info->resources); 476 if (!pbus) { 477 pci_free_resource_list(&info->resources); 478 __release_pci_root_info(info); 479 return NULL; 480 } 481 482 pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge), 483 release_pci_root_info, info); 484 pci_scan_child_bus(pbus); 485 return pbus; 486 } 487 488 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 489 { 490 struct pci_controller *controller = bridge->bus->sysdata; 491 492 ACPI_COMPANION_SET(&bridge->dev, controller->companion); 493 return 0; 494 } 495 496 static int is_valid_resource(struct pci_dev *dev, int idx) 497 { 498 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 499 struct resource *devr = &dev->resource[idx], *busr; 500 501 if (!dev->bus) 502 return 0; 503 504 pci_bus_for_each_resource(dev->bus, busr, i) { 505 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 506 continue; 507 if ((devr->start) && (devr->start >= busr->start) && 508 (devr->end <= busr->end)) 509 return 1; 510 } 511 return 0; 512 } 513 514 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 515 { 516 int i; 517 518 for (i = start; i < limit; i++) { 519 if (!dev->resource[i].flags) 520 continue; 521 if ((is_valid_resource(dev, i))) 522 pci_claim_resource(dev, i); 523 } 524 } 525 526 void pcibios_fixup_device_resources(struct pci_dev *dev) 527 { 528 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 529 } 530 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 531 532 static void pcibios_fixup_bridge_resources(struct pci_dev *dev) 533 { 534 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 535 } 536 537 /* 538 * Called after each bus is probed, but before its children are examined. 539 */ 540 void pcibios_fixup_bus(struct pci_bus *b) 541 { 542 struct pci_dev *dev; 543 544 if (b->self) { 545 pci_read_bridge_bases(b); 546 pcibios_fixup_bridge_resources(b->self); 547 } 548 list_for_each_entry(dev, &b->devices, bus_list) 549 pcibios_fixup_device_resources(dev); 550 platform_pci_fixup_bus(b); 551 } 552 553 void pcibios_add_bus(struct pci_bus *bus) 554 { 555 acpi_pci_add_bus(bus); 556 } 557 558 void pcibios_remove_bus(struct pci_bus *bus) 559 { 560 acpi_pci_remove_bus(bus); 561 } 562 563 void pcibios_set_master (struct pci_dev *dev) 564 { 565 /* No special bus mastering setup handling */ 566 } 567 568 int 569 pcibios_enable_device (struct pci_dev *dev, int mask) 570 { 571 int ret; 572 573 ret = pci_enable_resources(dev, mask); 574 if (ret < 0) 575 return ret; 576 577 if (!dev->msi_enabled) 578 return acpi_pci_irq_enable(dev); 579 return 0; 580 } 581 582 void 583 pcibios_disable_device (struct pci_dev *dev) 584 { 585 BUG_ON(atomic_read(&dev->enable_cnt)); 586 if (!dev->msi_enabled) 587 acpi_pci_irq_disable(dev); 588 } 589 590 resource_size_t 591 pcibios_align_resource (void *data, const struct resource *res, 592 resource_size_t size, resource_size_t align) 593 { 594 return res->start; 595 } 596 597 int 598 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 599 enum pci_mmap_state mmap_state, int write_combine) 600 { 601 unsigned long size = vma->vm_end - vma->vm_start; 602 pgprot_t prot; 603 604 /* 605 * I/O space cannot be accessed via normal processor loads and 606 * stores on this platform. 607 */ 608 if (mmap_state == pci_mmap_io) 609 /* 610 * XXX we could relax this for I/O spaces for which ACPI 611 * indicates that the space is 1-to-1 mapped. But at the 612 * moment, we don't support multiple PCI address spaces and 613 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 614 */ 615 return -EINVAL; 616 617 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 618 return -EINVAL; 619 620 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 621 vma->vm_page_prot); 622 623 /* 624 * If the user requested WC, the kernel uses UC or WC for this region, 625 * and the chipset supports WC, we can use WC. Otherwise, we have to 626 * use the same attribute the kernel uses. 627 */ 628 if (write_combine && 629 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 630 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 631 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 632 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 633 else 634 vma->vm_page_prot = prot; 635 636 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 637 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 638 return -EAGAIN; 639 640 return 0; 641 } 642 643 /** 644 * ia64_pci_get_legacy_mem - generic legacy mem routine 645 * @bus: bus to get legacy memory base address for 646 * 647 * Find the base of legacy memory for @bus. This is typically the first 648 * megabyte of bus address space for @bus or is simply 0 on platforms whose 649 * chipsets support legacy I/O and memory routing. Returns the base address 650 * or an error pointer if an error occurred. 651 * 652 * This is the ia64 generic version of this routine. Other platforms 653 * are free to override it with a machine vector. 654 */ 655 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 656 { 657 return (char *)__IA64_UNCACHED_OFFSET; 658 } 659 660 /** 661 * pci_mmap_legacy_page_range - map legacy memory space to userland 662 * @bus: bus whose legacy space we're mapping 663 * @vma: vma passed in by mmap 664 * 665 * Map legacy memory space for this device back to userspace using a machine 666 * vector to get the base address. 667 */ 668 int 669 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 670 enum pci_mmap_state mmap_state) 671 { 672 unsigned long size = vma->vm_end - vma->vm_start; 673 pgprot_t prot; 674 char *addr; 675 676 /* We only support mmap'ing of legacy memory space */ 677 if (mmap_state != pci_mmap_mem) 678 return -ENOSYS; 679 680 /* 681 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 682 * for more details. 683 */ 684 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 685 return -EINVAL; 686 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 687 vma->vm_page_prot); 688 689 addr = pci_get_legacy_mem(bus); 690 if (IS_ERR(addr)) 691 return PTR_ERR(addr); 692 693 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 694 vma->vm_page_prot = prot; 695 696 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 697 size, vma->vm_page_prot)) 698 return -EAGAIN; 699 700 return 0; 701 } 702 703 /** 704 * ia64_pci_legacy_read - read from legacy I/O space 705 * @bus: bus to read 706 * @port: legacy port value 707 * @val: caller allocated storage for returned value 708 * @size: number of bytes to read 709 * 710 * Simply reads @size bytes from @port and puts the result in @val. 711 * 712 * Again, this (and the write routine) are generic versions that can be 713 * overridden by the platform. This is necessary on platforms that don't 714 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 715 */ 716 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 717 { 718 int ret = size; 719 720 switch (size) { 721 case 1: 722 *val = inb(port); 723 break; 724 case 2: 725 *val = inw(port); 726 break; 727 case 4: 728 *val = inl(port); 729 break; 730 default: 731 ret = -EINVAL; 732 break; 733 } 734 735 return ret; 736 } 737 738 /** 739 * ia64_pci_legacy_write - perform a legacy I/O write 740 * @bus: bus pointer 741 * @port: port to write 742 * @val: value to write 743 * @size: number of bytes to write from @val 744 * 745 * Simply writes @size bytes of @val to @port. 746 */ 747 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 748 { 749 int ret = size; 750 751 switch (size) { 752 case 1: 753 outb(val, port); 754 break; 755 case 2: 756 outw(val, port); 757 break; 758 case 4: 759 outl(val, port); 760 break; 761 default: 762 ret = -EINVAL; 763 break; 764 } 765 766 return ret; 767 } 768 769 /** 770 * set_pci_cacheline_size - determine cacheline size for PCI devices 771 * 772 * We want to use the line-size of the outer-most cache. We assume 773 * that this line-size is the same for all CPUs. 774 * 775 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 776 */ 777 static void __init set_pci_dfl_cacheline_size(void) 778 { 779 unsigned long levels, unique_caches; 780 long status; 781 pal_cache_config_info_t cci; 782 783 status = ia64_pal_cache_summary(&levels, &unique_caches); 784 if (status != 0) { 785 pr_err("%s: ia64_pal_cache_summary() failed " 786 "(status=%ld)\n", __func__, status); 787 return; 788 } 789 790 status = ia64_pal_cache_config_info(levels - 1, 791 /* cache_type (data_or_unified)= */ 2, &cci); 792 if (status != 0) { 793 pr_err("%s: ia64_pal_cache_config_info() failed " 794 "(status=%ld)\n", __func__, status); 795 return; 796 } 797 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 798 } 799 800 u64 ia64_dma_get_required_mask(struct device *dev) 801 { 802 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 803 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 804 u64 mask; 805 806 if (!high_totalram) { 807 /* convert to mask just covering totalram */ 808 low_totalram = (1 << (fls(low_totalram) - 1)); 809 low_totalram += low_totalram - 1; 810 mask = low_totalram; 811 } else { 812 high_totalram = (1 << (fls(high_totalram) - 1)); 813 high_totalram += high_totalram - 1; 814 mask = (((u64)high_totalram) << 32) + 0xffffffff; 815 } 816 return mask; 817 } 818 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 819 820 u64 dma_get_required_mask(struct device *dev) 821 { 822 return platform_dma_get_required_mask(dev); 823 } 824 EXPORT_SYMBOL_GPL(dma_get_required_mask); 825 826 static int __init pcibios_init(void) 827 { 828 set_pci_dfl_cacheline_size(); 829 return 0; 830 } 831 832 subsys_initcall(pcibios_init); 833