1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/pci-acpi.h> 19 #include <linux/init.h> 20 #include <linux/ioport.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/bootmem.h> 24 #include <linux/export.h> 25 26 #include <asm/machvec.h> 27 #include <asm/page.h> 28 #include <asm/io.h> 29 #include <asm/sal.h> 30 #include <asm/smp.h> 31 #include <asm/irq.h> 32 #include <asm/hw_irq.h> 33 34 /* 35 * Low-level SAL-based PCI configuration access functions. Note that SAL 36 * calls are already serialized (via sal_lock), so we don't need another 37 * synchronization mechanism here. 38 */ 39 40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 42 43 /* SAL 3.2 adds support for extended config space. */ 44 45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 47 48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 49 int reg, int len, u32 *value) 50 { 51 u64 addr, data = 0; 52 int mode, result; 53 54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 55 return -EINVAL; 56 57 if ((seg | reg) <= 255) { 58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 59 mode = 0; 60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 62 mode = 1; 63 } else { 64 return -EINVAL; 65 } 66 67 result = ia64_sal_pci_config_read(addr, mode, len, &data); 68 if (result != 0) 69 return -EINVAL; 70 71 *value = (u32) data; 72 return 0; 73 } 74 75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 76 int reg, int len, u32 value) 77 { 78 u64 addr; 79 int mode, result; 80 81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 82 return -EINVAL; 83 84 if ((seg | reg) <= 255) { 85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 86 mode = 0; 87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 89 mode = 1; 90 } else { 91 return -EINVAL; 92 } 93 result = ia64_sal_pci_config_write(addr, mode, len, value); 94 if (result != 0) 95 return -EINVAL; 96 return 0; 97 } 98 99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 100 int size, u32 *value) 101 { 102 return raw_pci_read(pci_domain_nr(bus), bus->number, 103 devfn, where, size, value); 104 } 105 106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 107 int size, u32 value) 108 { 109 return raw_pci_write(pci_domain_nr(bus), bus->number, 110 devfn, where, size, value); 111 } 112 113 struct pci_ops pci_root_ops = { 114 .read = pci_read, 115 .write = pci_write, 116 }; 117 118 /* Called by ACPI when it finds a new root bus. */ 119 120 static struct pci_controller *alloc_pci_controller(int seg) 121 { 122 struct pci_controller *controller; 123 124 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 125 if (!controller) 126 return NULL; 127 128 controller->segment = seg; 129 return controller; 130 } 131 132 struct pci_root_info { 133 struct acpi_device *bridge; 134 struct pci_controller *controller; 135 struct list_head resources; 136 struct resource *res; 137 resource_size_t *res_offset; 138 unsigned int res_num; 139 struct list_head io_resources; 140 char *name; 141 }; 142 143 static unsigned int 144 new_space (u64 phys_base, int sparse) 145 { 146 u64 mmio_base; 147 int i; 148 149 if (phys_base == 0) 150 return 0; /* legacy I/O port space */ 151 152 mmio_base = (u64) ioremap(phys_base, 0); 153 for (i = 0; i < num_io_spaces; i++) 154 if (io_space[i].mmio_base == mmio_base && 155 io_space[i].sparse == sparse) 156 return i; 157 158 if (num_io_spaces == MAX_IO_SPACES) { 159 pr_err("PCI: Too many IO port spaces " 160 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 161 return ~0; 162 } 163 164 i = num_io_spaces++; 165 io_space[i].mmio_base = mmio_base; 166 io_space[i].sparse = sparse; 167 168 return i; 169 } 170 171 static u64 add_io_space(struct pci_root_info *info, 172 struct acpi_resource_address64 *addr) 173 { 174 struct iospace_resource *iospace; 175 struct resource *resource; 176 char *name; 177 unsigned long base, min, max, base_port; 178 unsigned int sparse = 0, space_nr, len; 179 180 len = strlen(info->name) + 32; 181 iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL); 182 if (!iospace) { 183 dev_err(&info->bridge->dev, 184 "PCI: No memory for %s I/O port space\n", 185 info->name); 186 goto out; 187 } 188 189 name = (char *)(iospace + 1); 190 191 min = addr->address.minimum; 192 max = min + addr->address.address_length - 1; 193 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 194 sparse = 1; 195 196 space_nr = new_space(addr->address.translation_offset, sparse); 197 if (space_nr == ~0) 198 goto free_resource; 199 200 base = __pa(io_space[space_nr].mmio_base); 201 base_port = IO_SPACE_BASE(space_nr); 202 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 203 base_port + min, base_port + max); 204 205 /* 206 * The SDM guarantees the legacy 0-64K space is sparse, but if the 207 * mapping is done by the processor (not the bridge), ACPI may not 208 * mark it as sparse. 209 */ 210 if (space_nr == 0) 211 sparse = 1; 212 213 resource = &iospace->res; 214 resource->name = name; 215 resource->flags = IORESOURCE_MEM; 216 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 217 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 218 if (insert_resource(&iomem_resource, resource)) { 219 dev_err(&info->bridge->dev, 220 "can't allocate host bridge io space resource %pR\n", 221 resource); 222 goto free_resource; 223 } 224 225 list_add_tail(&iospace->list, &info->io_resources); 226 return base_port; 227 228 free_resource: 229 kfree(iospace); 230 out: 231 return ~0; 232 } 233 234 static acpi_status resource_to_window(struct acpi_resource *resource, 235 struct acpi_resource_address64 *addr) 236 { 237 acpi_status status; 238 239 /* 240 * We're only interested in _CRS descriptors that are 241 * - address space descriptors for memory or I/O space 242 * - non-zero size 243 */ 244 status = acpi_resource_to_address64(resource, addr); 245 if (ACPI_SUCCESS(status) && 246 (addr->resource_type == ACPI_MEMORY_RANGE || 247 addr->resource_type == ACPI_IO_RANGE) && 248 addr->address.address_length) 249 return AE_OK; 250 251 return AE_ERROR; 252 } 253 254 static acpi_status count_window(struct acpi_resource *resource, void *data) 255 { 256 unsigned int *windows = (unsigned int *) data; 257 struct acpi_resource_address64 addr; 258 acpi_status status; 259 260 status = resource_to_window(resource, &addr); 261 if (ACPI_SUCCESS(status)) 262 (*windows)++; 263 264 return AE_OK; 265 } 266 267 static acpi_status add_window(struct acpi_resource *res, void *data) 268 { 269 struct pci_root_info *info = data; 270 struct resource *resource; 271 struct acpi_resource_address64 addr; 272 acpi_status status; 273 unsigned long flags, offset = 0; 274 struct resource *root; 275 276 /* Return AE_OK for non-window resources to keep scanning for more */ 277 status = resource_to_window(res, &addr); 278 if (!ACPI_SUCCESS(status)) 279 return AE_OK; 280 281 if (addr.resource_type == ACPI_MEMORY_RANGE) { 282 flags = IORESOURCE_MEM; 283 root = &iomem_resource; 284 offset = addr.address.translation_offset; 285 } else if (addr.resource_type == ACPI_IO_RANGE) { 286 flags = IORESOURCE_IO; 287 root = &ioport_resource; 288 offset = add_io_space(info, &addr); 289 if (offset == ~0) 290 return AE_OK; 291 } else 292 return AE_OK; 293 294 resource = &info->res[info->res_num]; 295 resource->name = info->name; 296 resource->flags = flags; 297 resource->start = addr.address.minimum + offset; 298 resource->end = resource->start + addr.address.address_length - 1; 299 info->res_offset[info->res_num] = offset; 300 301 if (insert_resource(root, resource)) { 302 dev_err(&info->bridge->dev, 303 "can't allocate host bridge window %pR\n", 304 resource); 305 } else { 306 if (offset) 307 dev_info(&info->bridge->dev, "host bridge window %pR " 308 "(PCI address [%#llx-%#llx])\n", 309 resource, 310 resource->start - offset, 311 resource->end - offset); 312 else 313 dev_info(&info->bridge->dev, 314 "host bridge window %pR\n", resource); 315 } 316 /* HP's firmware has a hack to work around a Windows bug. 317 * Ignore these tiny memory ranges */ 318 if (!((resource->flags & IORESOURCE_MEM) && 319 (resource->end - resource->start < 16))) 320 pci_add_resource_offset(&info->resources, resource, 321 info->res_offset[info->res_num]); 322 323 info->res_num++; 324 return AE_OK; 325 } 326 327 static void free_pci_root_info_res(struct pci_root_info *info) 328 { 329 struct iospace_resource *iospace, *tmp; 330 331 list_for_each_entry_safe(iospace, tmp, &info->io_resources, list) 332 kfree(iospace); 333 334 kfree(info->name); 335 kfree(info->res); 336 info->res = NULL; 337 kfree(info->res_offset); 338 info->res_offset = NULL; 339 info->res_num = 0; 340 kfree(info->controller); 341 info->controller = NULL; 342 } 343 344 static void __release_pci_root_info(struct pci_root_info *info) 345 { 346 int i; 347 struct resource *res; 348 struct iospace_resource *iospace; 349 350 list_for_each_entry(iospace, &info->io_resources, list) 351 release_resource(&iospace->res); 352 353 for (i = 0; i < info->res_num; i++) { 354 res = &info->res[i]; 355 356 if (!res->parent) 357 continue; 358 359 if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO))) 360 continue; 361 362 release_resource(res); 363 } 364 365 free_pci_root_info_res(info); 366 kfree(info); 367 } 368 369 static void release_pci_root_info(struct pci_host_bridge *bridge) 370 { 371 struct pci_root_info *info = bridge->release_data; 372 373 __release_pci_root_info(info); 374 } 375 376 static int 377 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device, 378 int busnum, int domain) 379 { 380 char *name; 381 382 name = kmalloc(16, GFP_KERNEL); 383 if (!name) 384 return -ENOMEM; 385 386 sprintf(name, "PCI Bus %04x:%02x", domain, busnum); 387 info->bridge = device; 388 info->name = name; 389 390 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 391 &info->res_num); 392 if (info->res_num) { 393 info->res = 394 kzalloc_node(sizeof(*info->res) * info->res_num, 395 GFP_KERNEL, info->controller->node); 396 if (!info->res) { 397 kfree(name); 398 return -ENOMEM; 399 } 400 401 info->res_offset = 402 kzalloc_node(sizeof(*info->res_offset) * info->res_num, 403 GFP_KERNEL, info->controller->node); 404 if (!info->res_offset) { 405 kfree(name); 406 kfree(info->res); 407 info->res = NULL; 408 return -ENOMEM; 409 } 410 411 info->res_num = 0; 412 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 413 add_window, info); 414 } else 415 kfree(name); 416 417 return 0; 418 } 419 420 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root) 421 { 422 struct acpi_device *device = root->device; 423 int domain = root->segment; 424 int bus = root->secondary.start; 425 struct pci_controller *controller; 426 struct pci_root_info *info = NULL; 427 int busnum = root->secondary.start; 428 struct pci_bus *pbus; 429 int ret; 430 431 controller = alloc_pci_controller(domain); 432 if (!controller) 433 return NULL; 434 435 controller->companion = device; 436 controller->node = acpi_get_node(device->handle); 437 438 info = kzalloc(sizeof(*info), GFP_KERNEL); 439 if (!info) { 440 dev_err(&device->dev, 441 "pci_bus %04x:%02x: ignored (out of memory)\n", 442 domain, busnum); 443 kfree(controller); 444 return NULL; 445 } 446 447 info->controller = controller; 448 INIT_LIST_HEAD(&info->io_resources); 449 INIT_LIST_HEAD(&info->resources); 450 451 ret = probe_pci_root_info(info, device, busnum, domain); 452 if (ret) { 453 kfree(info->controller); 454 kfree(info); 455 return NULL; 456 } 457 /* insert busn resource at first */ 458 pci_add_resource(&info->resources, &root->secondary); 459 /* 460 * See arch/x86/pci/acpi.c. 461 * The desired pci bus might already be scanned in a quirk. We 462 * should handle the case here, but it appears that IA64 hasn't 463 * such quirk. So we just ignore the case now. 464 */ 465 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller, 466 &info->resources); 467 if (!pbus) { 468 pci_free_resource_list(&info->resources); 469 __release_pci_root_info(info); 470 return NULL; 471 } 472 473 pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge), 474 release_pci_root_info, info); 475 pci_scan_child_bus(pbus); 476 return pbus; 477 } 478 479 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 480 { 481 /* 482 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL 483 * here, pci_create_root_bus() has been called by someone else and 484 * sysdata is likely to be different from what we expect. Let it go in 485 * that case. 486 */ 487 if (!bridge->dev.parent) { 488 struct pci_controller *controller = bridge->bus->sysdata; 489 ACPI_COMPANION_SET(&bridge->dev, controller->companion); 490 } 491 return 0; 492 } 493 494 void pcibios_fixup_device_resources(struct pci_dev *dev) 495 { 496 int idx; 497 498 if (!dev->bus) 499 return; 500 501 for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) { 502 struct resource *r = &dev->resource[idx]; 503 504 if (!r->flags || r->parent || !r->start) 505 continue; 506 507 pci_claim_resource(dev, idx); 508 } 509 } 510 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 511 512 static void pcibios_fixup_bridge_resources(struct pci_dev *dev) 513 { 514 int idx; 515 516 if (!dev->bus) 517 return; 518 519 for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) { 520 struct resource *r = &dev->resource[idx]; 521 522 if (!r->flags || r->parent || !r->start) 523 continue; 524 525 pci_claim_bridge_resource(dev, idx); 526 } 527 } 528 529 /* 530 * Called after each bus is probed, but before its children are examined. 531 */ 532 void pcibios_fixup_bus(struct pci_bus *b) 533 { 534 struct pci_dev *dev; 535 536 if (b->self) { 537 pci_read_bridge_bases(b); 538 pcibios_fixup_bridge_resources(b->self); 539 } 540 list_for_each_entry(dev, &b->devices, bus_list) 541 pcibios_fixup_device_resources(dev); 542 platform_pci_fixup_bus(b); 543 } 544 545 void pcibios_add_bus(struct pci_bus *bus) 546 { 547 acpi_pci_add_bus(bus); 548 } 549 550 void pcibios_remove_bus(struct pci_bus *bus) 551 { 552 acpi_pci_remove_bus(bus); 553 } 554 555 void pcibios_set_master (struct pci_dev *dev) 556 { 557 /* No special bus mastering setup handling */ 558 } 559 560 int 561 pcibios_enable_device (struct pci_dev *dev, int mask) 562 { 563 int ret; 564 565 ret = pci_enable_resources(dev, mask); 566 if (ret < 0) 567 return ret; 568 569 if (!dev->msi_enabled) 570 return acpi_pci_irq_enable(dev); 571 return 0; 572 } 573 574 void 575 pcibios_disable_device (struct pci_dev *dev) 576 { 577 BUG_ON(atomic_read(&dev->enable_cnt)); 578 if (!dev->msi_enabled) 579 acpi_pci_irq_disable(dev); 580 } 581 582 resource_size_t 583 pcibios_align_resource (void *data, const struct resource *res, 584 resource_size_t size, resource_size_t align) 585 { 586 return res->start; 587 } 588 589 int 590 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 591 enum pci_mmap_state mmap_state, int write_combine) 592 { 593 unsigned long size = vma->vm_end - vma->vm_start; 594 pgprot_t prot; 595 596 /* 597 * I/O space cannot be accessed via normal processor loads and 598 * stores on this platform. 599 */ 600 if (mmap_state == pci_mmap_io) 601 /* 602 * XXX we could relax this for I/O spaces for which ACPI 603 * indicates that the space is 1-to-1 mapped. But at the 604 * moment, we don't support multiple PCI address spaces and 605 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 606 */ 607 return -EINVAL; 608 609 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 610 return -EINVAL; 611 612 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 613 vma->vm_page_prot); 614 615 /* 616 * If the user requested WC, the kernel uses UC or WC for this region, 617 * and the chipset supports WC, we can use WC. Otherwise, we have to 618 * use the same attribute the kernel uses. 619 */ 620 if (write_combine && 621 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 622 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 623 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 624 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 625 else 626 vma->vm_page_prot = prot; 627 628 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 629 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 630 return -EAGAIN; 631 632 return 0; 633 } 634 635 /** 636 * ia64_pci_get_legacy_mem - generic legacy mem routine 637 * @bus: bus to get legacy memory base address for 638 * 639 * Find the base of legacy memory for @bus. This is typically the first 640 * megabyte of bus address space for @bus or is simply 0 on platforms whose 641 * chipsets support legacy I/O and memory routing. Returns the base address 642 * or an error pointer if an error occurred. 643 * 644 * This is the ia64 generic version of this routine. Other platforms 645 * are free to override it with a machine vector. 646 */ 647 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 648 { 649 return (char *)__IA64_UNCACHED_OFFSET; 650 } 651 652 /** 653 * pci_mmap_legacy_page_range - map legacy memory space to userland 654 * @bus: bus whose legacy space we're mapping 655 * @vma: vma passed in by mmap 656 * 657 * Map legacy memory space for this device back to userspace using a machine 658 * vector to get the base address. 659 */ 660 int 661 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 662 enum pci_mmap_state mmap_state) 663 { 664 unsigned long size = vma->vm_end - vma->vm_start; 665 pgprot_t prot; 666 char *addr; 667 668 /* We only support mmap'ing of legacy memory space */ 669 if (mmap_state != pci_mmap_mem) 670 return -ENOSYS; 671 672 /* 673 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 674 * for more details. 675 */ 676 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 677 return -EINVAL; 678 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 679 vma->vm_page_prot); 680 681 addr = pci_get_legacy_mem(bus); 682 if (IS_ERR(addr)) 683 return PTR_ERR(addr); 684 685 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 686 vma->vm_page_prot = prot; 687 688 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 689 size, vma->vm_page_prot)) 690 return -EAGAIN; 691 692 return 0; 693 } 694 695 /** 696 * ia64_pci_legacy_read - read from legacy I/O space 697 * @bus: bus to read 698 * @port: legacy port value 699 * @val: caller allocated storage for returned value 700 * @size: number of bytes to read 701 * 702 * Simply reads @size bytes from @port and puts the result in @val. 703 * 704 * Again, this (and the write routine) are generic versions that can be 705 * overridden by the platform. This is necessary on platforms that don't 706 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 707 */ 708 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 709 { 710 int ret = size; 711 712 switch (size) { 713 case 1: 714 *val = inb(port); 715 break; 716 case 2: 717 *val = inw(port); 718 break; 719 case 4: 720 *val = inl(port); 721 break; 722 default: 723 ret = -EINVAL; 724 break; 725 } 726 727 return ret; 728 } 729 730 /** 731 * ia64_pci_legacy_write - perform a legacy I/O write 732 * @bus: bus pointer 733 * @port: port to write 734 * @val: value to write 735 * @size: number of bytes to write from @val 736 * 737 * Simply writes @size bytes of @val to @port. 738 */ 739 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 740 { 741 int ret = size; 742 743 switch (size) { 744 case 1: 745 outb(val, port); 746 break; 747 case 2: 748 outw(val, port); 749 break; 750 case 4: 751 outl(val, port); 752 break; 753 default: 754 ret = -EINVAL; 755 break; 756 } 757 758 return ret; 759 } 760 761 /** 762 * set_pci_cacheline_size - determine cacheline size for PCI devices 763 * 764 * We want to use the line-size of the outer-most cache. We assume 765 * that this line-size is the same for all CPUs. 766 * 767 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 768 */ 769 static void __init set_pci_dfl_cacheline_size(void) 770 { 771 unsigned long levels, unique_caches; 772 long status; 773 pal_cache_config_info_t cci; 774 775 status = ia64_pal_cache_summary(&levels, &unique_caches); 776 if (status != 0) { 777 pr_err("%s: ia64_pal_cache_summary() failed " 778 "(status=%ld)\n", __func__, status); 779 return; 780 } 781 782 status = ia64_pal_cache_config_info(levels - 1, 783 /* cache_type (data_or_unified)= */ 2, &cci); 784 if (status != 0) { 785 pr_err("%s: ia64_pal_cache_config_info() failed " 786 "(status=%ld)\n", __func__, status); 787 return; 788 } 789 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 790 } 791 792 u64 ia64_dma_get_required_mask(struct device *dev) 793 { 794 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 795 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 796 u64 mask; 797 798 if (!high_totalram) { 799 /* convert to mask just covering totalram */ 800 low_totalram = (1 << (fls(low_totalram) - 1)); 801 low_totalram += low_totalram - 1; 802 mask = low_totalram; 803 } else { 804 high_totalram = (1 << (fls(high_totalram) - 1)); 805 high_totalram += high_totalram - 1; 806 mask = (((u64)high_totalram) << 32) + 0xffffffff; 807 } 808 return mask; 809 } 810 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 811 812 u64 dma_get_required_mask(struct device *dev) 813 { 814 return platform_dma_get_required_mask(dev); 815 } 816 EXPORT_SYMBOL_GPL(dma_get_required_mask); 817 818 static int __init pcibios_init(void) 819 { 820 set_pci_dfl_cacheline_size(); 821 return 0; 822 } 823 824 subsys_initcall(pcibios_init); 825