1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include <asm/machvec.h> 24 #include <asm/page.h> 25 #include <asm/system.h> 26 #include <asm/io.h> 27 #include <asm/sal.h> 28 #include <asm/smp.h> 29 #include <asm/irq.h> 30 #include <asm/hw_irq.h> 31 32 /* 33 * Low-level SAL-based PCI configuration access functions. Note that SAL 34 * calls are already serialized (via sal_lock), so we don't need another 35 * synchronization mechanism here. 36 */ 37 38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 39 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 40 41 /* SAL 3.2 adds support for extended config space. */ 42 43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 44 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 45 46 static int 47 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn, 48 int reg, int len, u32 *value) 49 { 50 u64 addr, data = 0; 51 int mode, result; 52 53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 54 return -EINVAL; 55 56 if ((seg | reg) <= 255) { 57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 58 mode = 0; 59 } else { 60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 61 mode = 1; 62 } 63 result = ia64_sal_pci_config_read(addr, mode, len, &data); 64 if (result != 0) 65 return -EINVAL; 66 67 *value = (u32) data; 68 return 0; 69 } 70 71 static int 72 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn, 73 int reg, int len, u32 value) 74 { 75 u64 addr; 76 int mode, result; 77 78 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 79 return -EINVAL; 80 81 if ((seg | reg) <= 255) { 82 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 83 mode = 0; 84 } else { 85 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 86 mode = 1; 87 } 88 result = ia64_sal_pci_config_write(addr, mode, len, value); 89 if (result != 0) 90 return -EINVAL; 91 return 0; 92 } 93 94 static struct pci_raw_ops pci_sal_ops = { 95 .read = pci_sal_read, 96 .write = pci_sal_write 97 }; 98 99 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops; 100 101 static int 102 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) 103 { 104 return raw_pci_ops->read(pci_domain_nr(bus), bus->number, 105 devfn, where, size, value); 106 } 107 108 static int 109 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) 110 { 111 return raw_pci_ops->write(pci_domain_nr(bus), bus->number, 112 devfn, where, size, value); 113 } 114 115 struct pci_ops pci_root_ops = { 116 .read = pci_read, 117 .write = pci_write, 118 }; 119 120 /* Called by ACPI when it finds a new root bus. */ 121 122 static struct pci_controller * __devinit 123 alloc_pci_controller (int seg) 124 { 125 struct pci_controller *controller; 126 127 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 128 if (!controller) 129 return NULL; 130 131 controller->segment = seg; 132 controller->node = -1; 133 return controller; 134 } 135 136 struct pci_root_info { 137 struct pci_controller *controller; 138 char *name; 139 }; 140 141 static unsigned int 142 new_space (u64 phys_base, int sparse) 143 { 144 u64 mmio_base; 145 int i; 146 147 if (phys_base == 0) 148 return 0; /* legacy I/O port space */ 149 150 mmio_base = (u64) ioremap(phys_base, 0); 151 for (i = 0; i < num_io_spaces; i++) 152 if (io_space[i].mmio_base == mmio_base && 153 io_space[i].sparse == sparse) 154 return i; 155 156 if (num_io_spaces == MAX_IO_SPACES) { 157 printk(KERN_ERR "PCI: Too many IO port spaces " 158 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 159 return ~0; 160 } 161 162 i = num_io_spaces++; 163 io_space[i].mmio_base = mmio_base; 164 io_space[i].sparse = sparse; 165 166 return i; 167 } 168 169 static u64 __devinit 170 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) 171 { 172 struct resource *resource; 173 char *name; 174 u64 base, min, max, base_port; 175 unsigned int sparse = 0, space_nr, len; 176 177 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 178 if (!resource) { 179 printk(KERN_ERR "PCI: No memory for %s I/O port space\n", 180 info->name); 181 goto out; 182 } 183 184 len = strlen(info->name) + 32; 185 name = kzalloc(len, GFP_KERNEL); 186 if (!name) { 187 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", 188 info->name); 189 goto free_resource; 190 } 191 192 min = addr->minimum; 193 max = min + addr->address_length - 1; 194 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 195 sparse = 1; 196 197 space_nr = new_space(addr->translation_offset, sparse); 198 if (space_nr == ~0) 199 goto free_name; 200 201 base = __pa(io_space[space_nr].mmio_base); 202 base_port = IO_SPACE_BASE(space_nr); 203 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 204 base_port + min, base_port + max); 205 206 /* 207 * The SDM guarantees the legacy 0-64K space is sparse, but if the 208 * mapping is done by the processor (not the bridge), ACPI may not 209 * mark it as sparse. 210 */ 211 if (space_nr == 0) 212 sparse = 1; 213 214 resource->name = name; 215 resource->flags = IORESOURCE_MEM; 216 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 217 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 218 insert_resource(&iomem_resource, resource); 219 220 return base_port; 221 222 free_name: 223 kfree(name); 224 free_resource: 225 kfree(resource); 226 out: 227 return ~0; 228 } 229 230 static acpi_status __devinit resource_to_window(struct acpi_resource *resource, 231 struct acpi_resource_address64 *addr) 232 { 233 acpi_status status; 234 235 /* 236 * We're only interested in _CRS descriptors that are 237 * - address space descriptors for memory or I/O space 238 * - non-zero size 239 * - producers, i.e., the address space is routed downstream, 240 * not consumed by the bridge itself 241 */ 242 status = acpi_resource_to_address64(resource, addr); 243 if (ACPI_SUCCESS(status) && 244 (addr->resource_type == ACPI_MEMORY_RANGE || 245 addr->resource_type == ACPI_IO_RANGE) && 246 addr->address_length && 247 addr->producer_consumer == ACPI_PRODUCER) 248 return AE_OK; 249 250 return AE_ERROR; 251 } 252 253 static acpi_status __devinit 254 count_window (struct acpi_resource *resource, void *data) 255 { 256 unsigned int *windows = (unsigned int *) data; 257 struct acpi_resource_address64 addr; 258 acpi_status status; 259 260 status = resource_to_window(resource, &addr); 261 if (ACPI_SUCCESS(status)) 262 (*windows)++; 263 264 return AE_OK; 265 } 266 267 static __devinit acpi_status add_window(struct acpi_resource *res, void *data) 268 { 269 struct pci_root_info *info = data; 270 struct pci_window *window; 271 struct acpi_resource_address64 addr; 272 acpi_status status; 273 unsigned long flags, offset = 0; 274 struct resource *root; 275 276 /* Return AE_OK for non-window resources to keep scanning for more */ 277 status = resource_to_window(res, &addr); 278 if (!ACPI_SUCCESS(status)) 279 return AE_OK; 280 281 if (addr.resource_type == ACPI_MEMORY_RANGE) { 282 flags = IORESOURCE_MEM; 283 root = &iomem_resource; 284 offset = addr.translation_offset; 285 } else if (addr.resource_type == ACPI_IO_RANGE) { 286 flags = IORESOURCE_IO; 287 root = &ioport_resource; 288 offset = add_io_space(info, &addr); 289 if (offset == ~0) 290 return AE_OK; 291 } else 292 return AE_OK; 293 294 window = &info->controller->window[info->controller->windows++]; 295 window->resource.name = info->name; 296 window->resource.flags = flags; 297 window->resource.start = addr.minimum + offset; 298 window->resource.end = window->resource.start + addr.address_length - 1; 299 window->resource.child = NULL; 300 window->offset = offset; 301 302 if (insert_resource(root, &window->resource)) { 303 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n", 304 window->resource.start, window->resource.end, 305 root->name, info->name); 306 } 307 308 return AE_OK; 309 } 310 311 static void __devinit 312 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl) 313 { 314 int i, j; 315 316 j = 0; 317 for (i = 0; i < ctrl->windows; i++) { 318 struct resource *res = &ctrl->window[i].resource; 319 /* HP's firmware has a hack to work around a Windows bug. 320 * Ignore these tiny memory ranges */ 321 if ((res->flags & IORESOURCE_MEM) && 322 (res->end - res->start < 16)) 323 continue; 324 if (j >= PCI_BUS_NUM_RESOURCES) { 325 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start, 326 res->end, res->flags); 327 continue; 328 } 329 bus->resource[j++] = res; 330 } 331 } 332 333 struct pci_bus * __devinit 334 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus) 335 { 336 struct pci_root_info info; 337 struct pci_controller *controller; 338 unsigned int windows = 0; 339 struct pci_bus *pbus; 340 char *name; 341 int pxm; 342 343 controller = alloc_pci_controller(domain); 344 if (!controller) 345 goto out1; 346 347 controller->acpi_handle = device->handle; 348 349 pxm = acpi_get_pxm(controller->acpi_handle); 350 #ifdef CONFIG_NUMA 351 if (pxm >= 0) 352 controller->node = pxm_to_node(pxm); 353 #endif 354 355 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 356 &windows); 357 if (windows) { 358 controller->window = 359 kmalloc_node(sizeof(*controller->window) * windows, 360 GFP_KERNEL, controller->node); 361 if (!controller->window) 362 goto out2; 363 } 364 365 name = kmalloc(16, GFP_KERNEL); 366 if (!name) 367 goto out3; 368 369 sprintf(name, "PCI Bus %04x:%02x", domain, bus); 370 info.controller = controller; 371 info.name = name; 372 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window, 373 &info); 374 375 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller); 376 if (pbus) 377 pcibios_setup_root_windows(pbus, controller); 378 379 return pbus; 380 381 out3: 382 kfree(controller->window); 383 out2: 384 kfree(controller); 385 out1: 386 return NULL; 387 } 388 389 void pcibios_resource_to_bus(struct pci_dev *dev, 390 struct pci_bus_region *region, struct resource *res) 391 { 392 struct pci_controller *controller = PCI_CONTROLLER(dev); 393 unsigned long offset = 0; 394 int i; 395 396 for (i = 0; i < controller->windows; i++) { 397 struct pci_window *window = &controller->window[i]; 398 if (!(window->resource.flags & res->flags)) 399 continue; 400 if (window->resource.start > res->start) 401 continue; 402 if (window->resource.end < res->end) 403 continue; 404 offset = window->offset; 405 break; 406 } 407 408 region->start = res->start - offset; 409 region->end = res->end - offset; 410 } 411 EXPORT_SYMBOL(pcibios_resource_to_bus); 412 413 void pcibios_bus_to_resource(struct pci_dev *dev, 414 struct resource *res, struct pci_bus_region *region) 415 { 416 struct pci_controller *controller = PCI_CONTROLLER(dev); 417 unsigned long offset = 0; 418 int i; 419 420 for (i = 0; i < controller->windows; i++) { 421 struct pci_window *window = &controller->window[i]; 422 if (!(window->resource.flags & res->flags)) 423 continue; 424 if (window->resource.start - window->offset > region->start) 425 continue; 426 if (window->resource.end - window->offset < region->end) 427 continue; 428 offset = window->offset; 429 break; 430 } 431 432 res->start = region->start + offset; 433 res->end = region->end + offset; 434 } 435 EXPORT_SYMBOL(pcibios_bus_to_resource); 436 437 static int __devinit is_valid_resource(struct pci_dev *dev, int idx) 438 { 439 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 440 struct resource *devr = &dev->resource[idx]; 441 442 if (!dev->bus) 443 return 0; 444 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) { 445 struct resource *busr = dev->bus->resource[i]; 446 447 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 448 continue; 449 if ((devr->start) && (devr->start >= busr->start) && 450 (devr->end <= busr->end)) 451 return 1; 452 } 453 return 0; 454 } 455 456 static void __devinit 457 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 458 { 459 struct pci_bus_region region; 460 int i; 461 462 for (i = start; i < limit; i++) { 463 if (!dev->resource[i].flags) 464 continue; 465 region.start = dev->resource[i].start; 466 region.end = dev->resource[i].end; 467 pcibios_bus_to_resource(dev, &dev->resource[i], ®ion); 468 if ((is_valid_resource(dev, i))) 469 pci_claim_resource(dev, i); 470 } 471 } 472 473 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) 474 { 475 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 476 } 477 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 478 479 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) 480 { 481 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 482 } 483 484 /* 485 * Called after each bus is probed, but before its children are examined. 486 */ 487 void __devinit 488 pcibios_fixup_bus (struct pci_bus *b) 489 { 490 struct pci_dev *dev; 491 492 if (b->self) { 493 pci_read_bridge_bases(b); 494 pcibios_fixup_bridge_resources(b->self); 495 } 496 list_for_each_entry(dev, &b->devices, bus_list) 497 pcibios_fixup_device_resources(dev); 498 platform_pci_fixup_bus(b); 499 500 return; 501 } 502 503 void __devinit 504 pcibios_update_irq (struct pci_dev *dev, int irq) 505 { 506 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); 507 508 /* ??? FIXME -- record old value for shutdown. */ 509 } 510 511 static inline int 512 pcibios_enable_resources (struct pci_dev *dev, int mask) 513 { 514 u16 cmd, old_cmd; 515 int idx; 516 struct resource *r; 517 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM; 518 519 if (!dev) 520 return -EINVAL; 521 522 pci_read_config_word(dev, PCI_COMMAND, &cmd); 523 old_cmd = cmd; 524 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) { 525 /* Only set up the desired resources. */ 526 if (!(mask & (1 << idx))) 527 continue; 528 529 r = &dev->resource[idx]; 530 if (!(r->flags & type_mask)) 531 continue; 532 if ((idx == PCI_ROM_RESOURCE) && 533 (!(r->flags & IORESOURCE_ROM_ENABLE))) 534 continue; 535 if (!r->start && r->end) { 536 printk(KERN_ERR 537 "PCI: Device %s not available because of resource collisions\n", 538 pci_name(dev)); 539 return -EINVAL; 540 } 541 if (r->flags & IORESOURCE_IO) 542 cmd |= PCI_COMMAND_IO; 543 if (r->flags & IORESOURCE_MEM) 544 cmd |= PCI_COMMAND_MEMORY; 545 } 546 if (cmd != old_cmd) { 547 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd); 548 pci_write_config_word(dev, PCI_COMMAND, cmd); 549 } 550 return 0; 551 } 552 553 int 554 pcibios_enable_device (struct pci_dev *dev, int mask) 555 { 556 int ret; 557 558 ret = pcibios_enable_resources(dev, mask); 559 if (ret < 0) 560 return ret; 561 562 if (!dev->msi_enabled) 563 return acpi_pci_irq_enable(dev); 564 return 0; 565 } 566 567 void 568 pcibios_disable_device (struct pci_dev *dev) 569 { 570 BUG_ON(atomic_read(&dev->enable_cnt)); 571 if (!dev->msi_enabled) 572 acpi_pci_irq_disable(dev); 573 } 574 575 void 576 pcibios_align_resource (void *data, struct resource *res, 577 resource_size_t size, resource_size_t align) 578 { 579 } 580 581 /* 582 * PCI BIOS setup, always defaults to SAL interface 583 */ 584 char * __devinit 585 pcibios_setup (char *str) 586 { 587 return str; 588 } 589 590 int 591 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 592 enum pci_mmap_state mmap_state, int write_combine) 593 { 594 unsigned long size = vma->vm_end - vma->vm_start; 595 pgprot_t prot; 596 597 /* 598 * I/O space cannot be accessed via normal processor loads and 599 * stores on this platform. 600 */ 601 if (mmap_state == pci_mmap_io) 602 /* 603 * XXX we could relax this for I/O spaces for which ACPI 604 * indicates that the space is 1-to-1 mapped. But at the 605 * moment, we don't support multiple PCI address spaces and 606 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 607 */ 608 return -EINVAL; 609 610 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 611 return -EINVAL; 612 613 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 614 vma->vm_page_prot); 615 616 /* 617 * If the user requested WC, the kernel uses UC or WC for this region, 618 * and the chipset supports WC, we can use WC. Otherwise, we have to 619 * use the same attribute the kernel uses. 620 */ 621 if (write_combine && 622 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 623 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 624 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 625 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 626 else 627 vma->vm_page_prot = prot; 628 629 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 630 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 631 return -EAGAIN; 632 633 return 0; 634 } 635 636 /** 637 * ia64_pci_get_legacy_mem - generic legacy mem routine 638 * @bus: bus to get legacy memory base address for 639 * 640 * Find the base of legacy memory for @bus. This is typically the first 641 * megabyte of bus address space for @bus or is simply 0 on platforms whose 642 * chipsets support legacy I/O and memory routing. Returns the base address 643 * or an error pointer if an error occurred. 644 * 645 * This is the ia64 generic version of this routine. Other platforms 646 * are free to override it with a machine vector. 647 */ 648 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 649 { 650 return (char *)__IA64_UNCACHED_OFFSET; 651 } 652 653 /** 654 * pci_mmap_legacy_page_range - map legacy memory space to userland 655 * @bus: bus whose legacy space we're mapping 656 * @vma: vma passed in by mmap 657 * 658 * Map legacy memory space for this device back to userspace using a machine 659 * vector to get the base address. 660 */ 661 int 662 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma) 663 { 664 unsigned long size = vma->vm_end - vma->vm_start; 665 pgprot_t prot; 666 char *addr; 667 668 /* 669 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 670 * for more details. 671 */ 672 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 673 return -EINVAL; 674 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 675 vma->vm_page_prot); 676 677 addr = pci_get_legacy_mem(bus); 678 if (IS_ERR(addr)) 679 return PTR_ERR(addr); 680 681 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 682 vma->vm_page_prot = prot; 683 684 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 685 size, vma->vm_page_prot)) 686 return -EAGAIN; 687 688 return 0; 689 } 690 691 /** 692 * ia64_pci_legacy_read - read from legacy I/O space 693 * @bus: bus to read 694 * @port: legacy port value 695 * @val: caller allocated storage for returned value 696 * @size: number of bytes to read 697 * 698 * Simply reads @size bytes from @port and puts the result in @val. 699 * 700 * Again, this (and the write routine) are generic versions that can be 701 * overridden by the platform. This is necessary on platforms that don't 702 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 703 */ 704 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 705 { 706 int ret = size; 707 708 switch (size) { 709 case 1: 710 *val = inb(port); 711 break; 712 case 2: 713 *val = inw(port); 714 break; 715 case 4: 716 *val = inl(port); 717 break; 718 default: 719 ret = -EINVAL; 720 break; 721 } 722 723 return ret; 724 } 725 726 /** 727 * ia64_pci_legacy_write - perform a legacy I/O write 728 * @bus: bus pointer 729 * @port: port to write 730 * @val: value to write 731 * @size: number of bytes to write from @val 732 * 733 * Simply writes @size bytes of @val to @port. 734 */ 735 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 736 { 737 int ret = size; 738 739 switch (size) { 740 case 1: 741 outb(val, port); 742 break; 743 case 2: 744 outw(val, port); 745 break; 746 case 4: 747 outl(val, port); 748 break; 749 default: 750 ret = -EINVAL; 751 break; 752 } 753 754 return ret; 755 } 756 757 /* It's defined in drivers/pci/pci.c */ 758 extern u8 pci_cache_line_size; 759 760 /** 761 * set_pci_cacheline_size - determine cacheline size for PCI devices 762 * 763 * We want to use the line-size of the outer-most cache. We assume 764 * that this line-size is the same for all CPUs. 765 * 766 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 767 */ 768 static void __init set_pci_cacheline_size(void) 769 { 770 u64 levels, unique_caches; 771 s64 status; 772 pal_cache_config_info_t cci; 773 774 status = ia64_pal_cache_summary(&levels, &unique_caches); 775 if (status != 0) { 776 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " 777 "(status=%ld)\n", __FUNCTION__, status); 778 return; 779 } 780 781 status = ia64_pal_cache_config_info(levels - 1, 782 /* cache_type (data_or_unified)= */ 2, &cci); 783 if (status != 0) { 784 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " 785 "(status=%ld)\n", __FUNCTION__, status); 786 return; 787 } 788 pci_cache_line_size = (1 << cci.pcci_line_size) / 4; 789 } 790 791 static int __init pcibios_init(void) 792 { 793 set_pci_cacheline_size(); 794 return 0; 795 } 796 797 subsys_initcall(pcibios_init); 798