1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/pci-acpi.h> 19 #include <linux/init.h> 20 #include <linux/ioport.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/bootmem.h> 24 #include <linux/export.h> 25 26 #include <asm/machvec.h> 27 #include <asm/page.h> 28 #include <asm/io.h> 29 #include <asm/sal.h> 30 #include <asm/smp.h> 31 #include <asm/irq.h> 32 #include <asm/hw_irq.h> 33 34 /* 35 * Low-level SAL-based PCI configuration access functions. Note that SAL 36 * calls are already serialized (via sal_lock), so we don't need another 37 * synchronization mechanism here. 38 */ 39 40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 42 43 /* SAL 3.2 adds support for extended config space. */ 44 45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 47 48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 49 int reg, int len, u32 *value) 50 { 51 u64 addr, data = 0; 52 int mode, result; 53 54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 55 return -EINVAL; 56 57 if ((seg | reg) <= 255) { 58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 59 mode = 0; 60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 62 mode = 1; 63 } else { 64 return -EINVAL; 65 } 66 67 result = ia64_sal_pci_config_read(addr, mode, len, &data); 68 if (result != 0) 69 return -EINVAL; 70 71 *value = (u32) data; 72 return 0; 73 } 74 75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 76 int reg, int len, u32 value) 77 { 78 u64 addr; 79 int mode, result; 80 81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 82 return -EINVAL; 83 84 if ((seg | reg) <= 255) { 85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 86 mode = 0; 87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 89 mode = 1; 90 } else { 91 return -EINVAL; 92 } 93 result = ia64_sal_pci_config_write(addr, mode, len, value); 94 if (result != 0) 95 return -EINVAL; 96 return 0; 97 } 98 99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 100 int size, u32 *value) 101 { 102 return raw_pci_read(pci_domain_nr(bus), bus->number, 103 devfn, where, size, value); 104 } 105 106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 107 int size, u32 value) 108 { 109 return raw_pci_write(pci_domain_nr(bus), bus->number, 110 devfn, where, size, value); 111 } 112 113 struct pci_ops pci_root_ops = { 114 .read = pci_read, 115 .write = pci_write, 116 }; 117 118 /* Called by ACPI when it finds a new root bus. */ 119 120 static struct pci_controller *alloc_pci_controller(int seg) 121 { 122 struct pci_controller *controller; 123 124 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 125 if (!controller) 126 return NULL; 127 128 controller->segment = seg; 129 return controller; 130 } 131 132 struct pci_root_info { 133 struct acpi_device *bridge; 134 struct pci_controller *controller; 135 struct list_head resources; 136 struct resource *res; 137 resource_size_t *res_offset; 138 unsigned int res_num; 139 struct list_head io_resources; 140 char *name; 141 }; 142 143 static unsigned int 144 new_space (u64 phys_base, int sparse) 145 { 146 u64 mmio_base; 147 int i; 148 149 if (phys_base == 0) 150 return 0; /* legacy I/O port space */ 151 152 mmio_base = (u64) ioremap(phys_base, 0); 153 for (i = 0; i < num_io_spaces; i++) 154 if (io_space[i].mmio_base == mmio_base && 155 io_space[i].sparse == sparse) 156 return i; 157 158 if (num_io_spaces == MAX_IO_SPACES) { 159 pr_err("PCI: Too many IO port spaces " 160 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 161 return ~0; 162 } 163 164 i = num_io_spaces++; 165 io_space[i].mmio_base = mmio_base; 166 io_space[i].sparse = sparse; 167 168 return i; 169 } 170 171 static u64 add_io_space(struct pci_root_info *info, 172 struct acpi_resource_address64 *addr) 173 { 174 struct iospace_resource *iospace; 175 struct resource *resource; 176 char *name; 177 unsigned long base, min, max, base_port; 178 unsigned int sparse = 0, space_nr, len; 179 180 len = strlen(info->name) + 32; 181 iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL); 182 if (!iospace) { 183 dev_err(&info->bridge->dev, 184 "PCI: No memory for %s I/O port space\n", 185 info->name); 186 goto out; 187 } 188 189 name = (char *)(iospace + 1); 190 191 min = addr->minimum; 192 max = min + addr->address_length - 1; 193 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) 194 sparse = 1; 195 196 space_nr = new_space(addr->translation_offset, sparse); 197 if (space_nr == ~0) 198 goto free_resource; 199 200 base = __pa(io_space[space_nr].mmio_base); 201 base_port = IO_SPACE_BASE(space_nr); 202 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, 203 base_port + min, base_port + max); 204 205 /* 206 * The SDM guarantees the legacy 0-64K space is sparse, but if the 207 * mapping is done by the processor (not the bridge), ACPI may not 208 * mark it as sparse. 209 */ 210 if (space_nr == 0) 211 sparse = 1; 212 213 resource = &iospace->res; 214 resource->name = name; 215 resource->flags = IORESOURCE_MEM; 216 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 217 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 218 if (insert_resource(&iomem_resource, resource)) { 219 dev_err(&info->bridge->dev, 220 "can't allocate host bridge io space resource %pR\n", 221 resource); 222 goto free_resource; 223 } 224 225 list_add_tail(&iospace->list, &info->io_resources); 226 return base_port; 227 228 free_resource: 229 kfree(iospace); 230 out: 231 return ~0; 232 } 233 234 static acpi_status resource_to_window(struct acpi_resource *resource, 235 struct acpi_resource_address64 *addr) 236 { 237 acpi_status status; 238 239 /* 240 * We're only interested in _CRS descriptors that are 241 * - address space descriptors for memory or I/O space 242 * - non-zero size 243 * - producers, i.e., the address space is routed downstream, 244 * not consumed by the bridge itself 245 */ 246 status = acpi_resource_to_address64(resource, addr); 247 if (ACPI_SUCCESS(status) && 248 (addr->resource_type == ACPI_MEMORY_RANGE || 249 addr->resource_type == ACPI_IO_RANGE) && 250 addr->address_length && 251 addr->producer_consumer == ACPI_PRODUCER) 252 return AE_OK; 253 254 return AE_ERROR; 255 } 256 257 static acpi_status count_window(struct acpi_resource *resource, void *data) 258 { 259 unsigned int *windows = (unsigned int *) data; 260 struct acpi_resource_address64 addr; 261 acpi_status status; 262 263 status = resource_to_window(resource, &addr); 264 if (ACPI_SUCCESS(status)) 265 (*windows)++; 266 267 return AE_OK; 268 } 269 270 static acpi_status add_window(struct acpi_resource *res, void *data) 271 { 272 struct pci_root_info *info = data; 273 struct resource *resource; 274 struct acpi_resource_address64 addr; 275 acpi_status status; 276 unsigned long flags, offset = 0; 277 struct resource *root; 278 279 /* Return AE_OK for non-window resources to keep scanning for more */ 280 status = resource_to_window(res, &addr); 281 if (!ACPI_SUCCESS(status)) 282 return AE_OK; 283 284 if (addr.resource_type == ACPI_MEMORY_RANGE) { 285 flags = IORESOURCE_MEM; 286 root = &iomem_resource; 287 offset = addr.translation_offset; 288 } else if (addr.resource_type == ACPI_IO_RANGE) { 289 flags = IORESOURCE_IO; 290 root = &ioport_resource; 291 offset = add_io_space(info, &addr); 292 if (offset == ~0) 293 return AE_OK; 294 } else 295 return AE_OK; 296 297 resource = &info->res[info->res_num]; 298 resource->name = info->name; 299 resource->flags = flags; 300 resource->start = addr.minimum + offset; 301 resource->end = resource->start + addr.address_length - 1; 302 info->res_offset[info->res_num] = offset; 303 304 if (insert_resource(root, resource)) { 305 dev_err(&info->bridge->dev, 306 "can't allocate host bridge window %pR\n", 307 resource); 308 } else { 309 if (offset) 310 dev_info(&info->bridge->dev, "host bridge window %pR " 311 "(PCI address [%#llx-%#llx])\n", 312 resource, 313 resource->start - offset, 314 resource->end - offset); 315 else 316 dev_info(&info->bridge->dev, 317 "host bridge window %pR\n", resource); 318 } 319 /* HP's firmware has a hack to work around a Windows bug. 320 * Ignore these tiny memory ranges */ 321 if (!((resource->flags & IORESOURCE_MEM) && 322 (resource->end - resource->start < 16))) 323 pci_add_resource_offset(&info->resources, resource, 324 info->res_offset[info->res_num]); 325 326 info->res_num++; 327 return AE_OK; 328 } 329 330 static void free_pci_root_info_res(struct pci_root_info *info) 331 { 332 struct iospace_resource *iospace, *tmp; 333 334 list_for_each_entry_safe(iospace, tmp, &info->io_resources, list) 335 kfree(iospace); 336 337 kfree(info->name); 338 kfree(info->res); 339 info->res = NULL; 340 kfree(info->res_offset); 341 info->res_offset = NULL; 342 info->res_num = 0; 343 kfree(info->controller); 344 info->controller = NULL; 345 } 346 347 static void __release_pci_root_info(struct pci_root_info *info) 348 { 349 int i; 350 struct resource *res; 351 struct iospace_resource *iospace; 352 353 list_for_each_entry(iospace, &info->io_resources, list) 354 release_resource(&iospace->res); 355 356 for (i = 0; i < info->res_num; i++) { 357 res = &info->res[i]; 358 359 if (!res->parent) 360 continue; 361 362 if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO))) 363 continue; 364 365 release_resource(res); 366 } 367 368 free_pci_root_info_res(info); 369 kfree(info); 370 } 371 372 static void release_pci_root_info(struct pci_host_bridge *bridge) 373 { 374 struct pci_root_info *info = bridge->release_data; 375 376 __release_pci_root_info(info); 377 } 378 379 static int 380 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device, 381 int busnum, int domain) 382 { 383 char *name; 384 385 name = kmalloc(16, GFP_KERNEL); 386 if (!name) 387 return -ENOMEM; 388 389 sprintf(name, "PCI Bus %04x:%02x", domain, busnum); 390 info->bridge = device; 391 info->name = name; 392 393 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, 394 &info->res_num); 395 if (info->res_num) { 396 info->res = 397 kzalloc_node(sizeof(*info->res) * info->res_num, 398 GFP_KERNEL, info->controller->node); 399 if (!info->res) { 400 kfree(name); 401 return -ENOMEM; 402 } 403 404 info->res_offset = 405 kzalloc_node(sizeof(*info->res_offset) * info->res_num, 406 GFP_KERNEL, info->controller->node); 407 if (!info->res_offset) { 408 kfree(name); 409 kfree(info->res); 410 info->res = NULL; 411 return -ENOMEM; 412 } 413 414 info->res_num = 0; 415 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 416 add_window, info); 417 } else 418 kfree(name); 419 420 return 0; 421 } 422 423 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root) 424 { 425 struct acpi_device *device = root->device; 426 int domain = root->segment; 427 int bus = root->secondary.start; 428 struct pci_controller *controller; 429 struct pci_root_info *info = NULL; 430 int busnum = root->secondary.start; 431 struct pci_bus *pbus; 432 int ret; 433 434 controller = alloc_pci_controller(domain); 435 if (!controller) 436 return NULL; 437 438 controller->companion = device; 439 controller->node = acpi_get_node(device->handle); 440 441 info = kzalloc(sizeof(*info), GFP_KERNEL); 442 if (!info) { 443 dev_err(&device->dev, 444 "pci_bus %04x:%02x: ignored (out of memory)\n", 445 domain, busnum); 446 kfree(controller); 447 return NULL; 448 } 449 450 info->controller = controller; 451 INIT_LIST_HEAD(&info->io_resources); 452 INIT_LIST_HEAD(&info->resources); 453 454 ret = probe_pci_root_info(info, device, busnum, domain); 455 if (ret) { 456 kfree(info->controller); 457 kfree(info); 458 return NULL; 459 } 460 /* insert busn resource at first */ 461 pci_add_resource(&info->resources, &root->secondary); 462 /* 463 * See arch/x86/pci/acpi.c. 464 * The desired pci bus might already be scanned in a quirk. We 465 * should handle the case here, but it appears that IA64 hasn't 466 * such quirk. So we just ignore the case now. 467 */ 468 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller, 469 &info->resources); 470 if (!pbus) { 471 pci_free_resource_list(&info->resources); 472 __release_pci_root_info(info); 473 return NULL; 474 } 475 476 pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge), 477 release_pci_root_info, info); 478 pci_scan_child_bus(pbus); 479 return pbus; 480 } 481 482 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 483 { 484 struct pci_controller *controller = bridge->bus->sysdata; 485 486 ACPI_COMPANION_SET(&bridge->dev, controller->companion); 487 return 0; 488 } 489 490 static int is_valid_resource(struct pci_dev *dev, int idx) 491 { 492 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; 493 struct resource *devr = &dev->resource[idx], *busr; 494 495 if (!dev->bus) 496 return 0; 497 498 pci_bus_for_each_resource(dev->bus, busr, i) { 499 if (!busr || ((busr->flags ^ devr->flags) & type_mask)) 500 continue; 501 if ((devr->start) && (devr->start >= busr->start) && 502 (devr->end <= busr->end)) 503 return 1; 504 } 505 return 0; 506 } 507 508 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) 509 { 510 int i; 511 512 for (i = start; i < limit; i++) { 513 if (!dev->resource[i].flags) 514 continue; 515 if ((is_valid_resource(dev, i))) 516 pci_claim_resource(dev, i); 517 } 518 } 519 520 void pcibios_fixup_device_resources(struct pci_dev *dev) 521 { 522 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); 523 } 524 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 525 526 static void pcibios_fixup_bridge_resources(struct pci_dev *dev) 527 { 528 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); 529 } 530 531 /* 532 * Called after each bus is probed, but before its children are examined. 533 */ 534 void pcibios_fixup_bus(struct pci_bus *b) 535 { 536 struct pci_dev *dev; 537 538 if (b->self) { 539 pci_read_bridge_bases(b); 540 pcibios_fixup_bridge_resources(b->self); 541 } 542 list_for_each_entry(dev, &b->devices, bus_list) 543 pcibios_fixup_device_resources(dev); 544 platform_pci_fixup_bus(b); 545 } 546 547 void pcibios_add_bus(struct pci_bus *bus) 548 { 549 acpi_pci_add_bus(bus); 550 } 551 552 void pcibios_remove_bus(struct pci_bus *bus) 553 { 554 acpi_pci_remove_bus(bus); 555 } 556 557 void pcibios_set_master (struct pci_dev *dev) 558 { 559 /* No special bus mastering setup handling */ 560 } 561 562 int 563 pcibios_enable_device (struct pci_dev *dev, int mask) 564 { 565 int ret; 566 567 ret = pci_enable_resources(dev, mask); 568 if (ret < 0) 569 return ret; 570 571 if (!dev->msi_enabled) 572 return acpi_pci_irq_enable(dev); 573 return 0; 574 } 575 576 void 577 pcibios_disable_device (struct pci_dev *dev) 578 { 579 BUG_ON(atomic_read(&dev->enable_cnt)); 580 if (!dev->msi_enabled) 581 acpi_pci_irq_disable(dev); 582 } 583 584 resource_size_t 585 pcibios_align_resource (void *data, const struct resource *res, 586 resource_size_t size, resource_size_t align) 587 { 588 return res->start; 589 } 590 591 int 592 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 593 enum pci_mmap_state mmap_state, int write_combine) 594 { 595 unsigned long size = vma->vm_end - vma->vm_start; 596 pgprot_t prot; 597 598 /* 599 * I/O space cannot be accessed via normal processor loads and 600 * stores on this platform. 601 */ 602 if (mmap_state == pci_mmap_io) 603 /* 604 * XXX we could relax this for I/O spaces for which ACPI 605 * indicates that the space is 1-to-1 mapped. But at the 606 * moment, we don't support multiple PCI address spaces and 607 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 608 */ 609 return -EINVAL; 610 611 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 612 return -EINVAL; 613 614 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 615 vma->vm_page_prot); 616 617 /* 618 * If the user requested WC, the kernel uses UC or WC for this region, 619 * and the chipset supports WC, we can use WC. Otherwise, we have to 620 * use the same attribute the kernel uses. 621 */ 622 if (write_combine && 623 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 624 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 625 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 626 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 627 else 628 vma->vm_page_prot = prot; 629 630 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 631 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 632 return -EAGAIN; 633 634 return 0; 635 } 636 637 /** 638 * ia64_pci_get_legacy_mem - generic legacy mem routine 639 * @bus: bus to get legacy memory base address for 640 * 641 * Find the base of legacy memory for @bus. This is typically the first 642 * megabyte of bus address space for @bus or is simply 0 on platforms whose 643 * chipsets support legacy I/O and memory routing. Returns the base address 644 * or an error pointer if an error occurred. 645 * 646 * This is the ia64 generic version of this routine. Other platforms 647 * are free to override it with a machine vector. 648 */ 649 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 650 { 651 return (char *)__IA64_UNCACHED_OFFSET; 652 } 653 654 /** 655 * pci_mmap_legacy_page_range - map legacy memory space to userland 656 * @bus: bus whose legacy space we're mapping 657 * @vma: vma passed in by mmap 658 * 659 * Map legacy memory space for this device back to userspace using a machine 660 * vector to get the base address. 661 */ 662 int 663 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 664 enum pci_mmap_state mmap_state) 665 { 666 unsigned long size = vma->vm_end - vma->vm_start; 667 pgprot_t prot; 668 char *addr; 669 670 /* We only support mmap'ing of legacy memory space */ 671 if (mmap_state != pci_mmap_mem) 672 return -ENOSYS; 673 674 /* 675 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 676 * for more details. 677 */ 678 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 679 return -EINVAL; 680 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 681 vma->vm_page_prot); 682 683 addr = pci_get_legacy_mem(bus); 684 if (IS_ERR(addr)) 685 return PTR_ERR(addr); 686 687 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 688 vma->vm_page_prot = prot; 689 690 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 691 size, vma->vm_page_prot)) 692 return -EAGAIN; 693 694 return 0; 695 } 696 697 /** 698 * ia64_pci_legacy_read - read from legacy I/O space 699 * @bus: bus to read 700 * @port: legacy port value 701 * @val: caller allocated storage for returned value 702 * @size: number of bytes to read 703 * 704 * Simply reads @size bytes from @port and puts the result in @val. 705 * 706 * Again, this (and the write routine) are generic versions that can be 707 * overridden by the platform. This is necessary on platforms that don't 708 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 709 */ 710 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 711 { 712 int ret = size; 713 714 switch (size) { 715 case 1: 716 *val = inb(port); 717 break; 718 case 2: 719 *val = inw(port); 720 break; 721 case 4: 722 *val = inl(port); 723 break; 724 default: 725 ret = -EINVAL; 726 break; 727 } 728 729 return ret; 730 } 731 732 /** 733 * ia64_pci_legacy_write - perform a legacy I/O write 734 * @bus: bus pointer 735 * @port: port to write 736 * @val: value to write 737 * @size: number of bytes to write from @val 738 * 739 * Simply writes @size bytes of @val to @port. 740 */ 741 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 742 { 743 int ret = size; 744 745 switch (size) { 746 case 1: 747 outb(val, port); 748 break; 749 case 2: 750 outw(val, port); 751 break; 752 case 4: 753 outl(val, port); 754 break; 755 default: 756 ret = -EINVAL; 757 break; 758 } 759 760 return ret; 761 } 762 763 /** 764 * set_pci_cacheline_size - determine cacheline size for PCI devices 765 * 766 * We want to use the line-size of the outer-most cache. We assume 767 * that this line-size is the same for all CPUs. 768 * 769 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 770 */ 771 static void __init set_pci_dfl_cacheline_size(void) 772 { 773 unsigned long levels, unique_caches; 774 long status; 775 pal_cache_config_info_t cci; 776 777 status = ia64_pal_cache_summary(&levels, &unique_caches); 778 if (status != 0) { 779 pr_err("%s: ia64_pal_cache_summary() failed " 780 "(status=%ld)\n", __func__, status); 781 return; 782 } 783 784 status = ia64_pal_cache_config_info(levels - 1, 785 /* cache_type (data_or_unified)= */ 2, &cci); 786 if (status != 0) { 787 pr_err("%s: ia64_pal_cache_config_info() failed " 788 "(status=%ld)\n", __func__, status); 789 return; 790 } 791 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 792 } 793 794 u64 ia64_dma_get_required_mask(struct device *dev) 795 { 796 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 797 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 798 u64 mask; 799 800 if (!high_totalram) { 801 /* convert to mask just covering totalram */ 802 low_totalram = (1 << (fls(low_totalram) - 1)); 803 low_totalram += low_totalram - 1; 804 mask = low_totalram; 805 } else { 806 high_totalram = (1 << (fls(high_totalram) - 1)); 807 high_totalram += high_totalram - 1; 808 mask = (((u64)high_totalram) << 32) + 0xffffffff; 809 } 810 return mask; 811 } 812 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 813 814 u64 dma_get_required_mask(struct device *dev) 815 { 816 return platform_dma_get_required_mask(dev); 817 } 818 EXPORT_SYMBOL_GPL(dma_get_required_mask); 819 820 static int __init pcibios_init(void) 821 { 822 set_pci_dfl_cacheline_size(); 823 return 0; 824 } 825 826 subsys_initcall(pcibios_init); 827