1 /* 2 * pci.c - Low-Level PCI Access in IA-64 3 * 4 * Derived from bios32.c of i386 tree. 5 * 6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * Copyright (C) 2004 Silicon Graphics, Inc. 10 * 11 * Note: Above list of copyright holders is incomplete... 12 */ 13 14 #include <linux/acpi.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/pci.h> 18 #include <linux/pci-acpi.h> 19 #include <linux/init.h> 20 #include <linux/ioport.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/bootmem.h> 24 #include <linux/export.h> 25 26 #include <asm/machvec.h> 27 #include <asm/page.h> 28 #include <asm/io.h> 29 #include <asm/sal.h> 30 #include <asm/smp.h> 31 #include <asm/irq.h> 32 #include <asm/hw_irq.h> 33 34 /* 35 * Low-level SAL-based PCI configuration access functions. Note that SAL 36 * calls are already serialized (via sal_lock), so we don't need another 37 * synchronization mechanism here. 38 */ 39 40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ 41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) 42 43 /* SAL 3.2 adds support for extended config space. */ 44 45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ 46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) 47 48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, 49 int reg, int len, u32 *value) 50 { 51 u64 addr, data = 0; 52 int mode, result; 53 54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 55 return -EINVAL; 56 57 if ((seg | reg) <= 255) { 58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 59 mode = 0; 60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 62 mode = 1; 63 } else { 64 return -EINVAL; 65 } 66 67 result = ia64_sal_pci_config_read(addr, mode, len, &data); 68 if (result != 0) 69 return -EINVAL; 70 71 *value = (u32) data; 72 return 0; 73 } 74 75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, 76 int reg, int len, u32 value) 77 { 78 u64 addr; 79 int mode, result; 80 81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) 82 return -EINVAL; 83 84 if ((seg | reg) <= 255) { 85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); 86 mode = 0; 87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { 88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); 89 mode = 1; 90 } else { 91 return -EINVAL; 92 } 93 result = ia64_sal_pci_config_write(addr, mode, len, value); 94 if (result != 0) 95 return -EINVAL; 96 return 0; 97 } 98 99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 100 int size, u32 *value) 101 { 102 return raw_pci_read(pci_domain_nr(bus), bus->number, 103 devfn, where, size, value); 104 } 105 106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 107 int size, u32 value) 108 { 109 return raw_pci_write(pci_domain_nr(bus), bus->number, 110 devfn, where, size, value); 111 } 112 113 struct pci_ops pci_root_ops = { 114 .read = pci_read, 115 .write = pci_write, 116 }; 117 118 struct pci_root_info { 119 struct acpi_pci_root_info common; 120 struct pci_controller controller; 121 struct list_head io_resources; 122 }; 123 124 static unsigned int new_space(u64 phys_base, int sparse) 125 { 126 u64 mmio_base; 127 int i; 128 129 if (phys_base == 0) 130 return 0; /* legacy I/O port space */ 131 132 mmio_base = (u64) ioremap(phys_base, 0); 133 for (i = 0; i < num_io_spaces; i++) 134 if (io_space[i].mmio_base == mmio_base && 135 io_space[i].sparse == sparse) 136 return i; 137 138 if (num_io_spaces == MAX_IO_SPACES) { 139 pr_err("PCI: Too many IO port spaces " 140 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); 141 return ~0; 142 } 143 144 i = num_io_spaces++; 145 io_space[i].mmio_base = mmio_base; 146 io_space[i].sparse = sparse; 147 148 return i; 149 } 150 151 static int add_io_space(struct device *dev, struct pci_root_info *info, 152 struct resource_entry *entry) 153 { 154 struct resource_entry *iospace; 155 struct resource *resource, *res = entry->res; 156 char *name; 157 unsigned long base, min, max, base_port; 158 unsigned int sparse = 0, space_nr, len; 159 160 len = strlen(info->common.name) + 32; 161 iospace = resource_list_create_entry(NULL, len); 162 if (!iospace) { 163 dev_err(dev, "PCI: No memory for %s I/O port space\n", 164 info->common.name); 165 return -ENOMEM; 166 } 167 168 if (res->flags & IORESOURCE_IO_SPARSE) 169 sparse = 1; 170 space_nr = new_space(entry->offset, sparse); 171 if (space_nr == ~0) 172 goto free_resource; 173 174 name = (char *)(iospace + 1); 175 min = res->start - entry->offset; 176 max = res->end - entry->offset; 177 base = __pa(io_space[space_nr].mmio_base); 178 base_port = IO_SPACE_BASE(space_nr); 179 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name, 180 base_port + min, base_port + max); 181 182 /* 183 * The SDM guarantees the legacy 0-64K space is sparse, but if the 184 * mapping is done by the processor (not the bridge), ACPI may not 185 * mark it as sparse. 186 */ 187 if (space_nr == 0) 188 sparse = 1; 189 190 resource = iospace->res; 191 resource->name = name; 192 resource->flags = IORESOURCE_MEM; 193 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); 194 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); 195 if (insert_resource(&iomem_resource, resource)) { 196 dev_err(dev, 197 "can't allocate host bridge io space resource %pR\n", 198 resource); 199 goto free_resource; 200 } 201 202 entry->offset = base_port; 203 res->start = min + base_port; 204 res->end = max + base_port; 205 resource_list_add_tail(iospace, &info->io_resources); 206 207 return 0; 208 209 free_resource: 210 resource_list_free_entry(iospace); 211 return -ENOSPC; 212 } 213 214 /* 215 * An IO port or MMIO resource assigned to a PCI host bridge may be 216 * consumed by the host bridge itself or available to its child 217 * bus/devices. The ACPI specification defines a bit (Producer/Consumer) 218 * to tell whether the resource is consumed by the host bridge itself, 219 * but firmware hasn't used that bit consistently, so we can't rely on it. 220 * 221 * On x86 and IA64 platforms, all IO port and MMIO resources are assumed 222 * to be available to child bus/devices except one special case: 223 * IO port [0xCF8-0xCFF] is consumed by the host bridge itself 224 * to access PCI configuration space. 225 * 226 * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF]. 227 */ 228 static bool resource_is_pcicfg_ioport(struct resource *res) 229 { 230 return (res->flags & IORESOURCE_IO) && 231 res->start == 0xCF8 && res->end == 0xCFF; 232 } 233 234 static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci) 235 { 236 struct device *dev = &ci->bridge->dev; 237 struct pci_root_info *info; 238 struct resource *res; 239 struct resource_entry *entry, *tmp; 240 int status; 241 242 status = acpi_pci_probe_root_resources(ci); 243 if (status > 0) { 244 info = container_of(ci, struct pci_root_info, common); 245 resource_list_for_each_entry_safe(entry, tmp, &ci->resources) { 246 res = entry->res; 247 if (res->flags & IORESOURCE_MEM) { 248 /* 249 * HP's firmware has a hack to work around a 250 * Windows bug. Ignore these tiny memory ranges. 251 */ 252 if (resource_size(res) <= 16) { 253 resource_list_del(entry); 254 insert_resource(&iomem_resource, 255 entry->res); 256 resource_list_add_tail(entry, 257 &info->io_resources); 258 } 259 } else if (res->flags & IORESOURCE_IO) { 260 if (resource_is_pcicfg_ioport(entry->res)) 261 resource_list_destroy_entry(entry); 262 else if (add_io_space(dev, info, entry)) 263 resource_list_destroy_entry(entry); 264 } 265 } 266 } 267 268 return status; 269 } 270 271 static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci) 272 { 273 struct pci_root_info *info; 274 struct resource_entry *entry, *tmp; 275 276 info = container_of(ci, struct pci_root_info, common); 277 resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) { 278 release_resource(entry->res); 279 resource_list_destroy_entry(entry); 280 } 281 kfree(info); 282 } 283 284 static struct acpi_pci_root_ops pci_acpi_root_ops = { 285 .pci_ops = &pci_root_ops, 286 .release_info = pci_acpi_root_release_info, 287 .prepare_resources = pci_acpi_root_prepare_resources, 288 }; 289 290 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root) 291 { 292 struct acpi_device *device = root->device; 293 struct pci_root_info *info; 294 295 info = kzalloc(sizeof(*info), GFP_KERNEL); 296 if (!info) { 297 dev_err(&device->dev, 298 "pci_bus %04x:%02x: ignored (out of memory)\n", 299 root->segment, (int)root->secondary.start); 300 return NULL; 301 } 302 303 info->controller.segment = root->segment; 304 info->controller.companion = device; 305 info->controller.node = acpi_get_node(device->handle); 306 INIT_LIST_HEAD(&info->io_resources); 307 return acpi_pci_root_create(root, &pci_acpi_root_ops, 308 &info->common, &info->controller); 309 } 310 311 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 312 { 313 /* 314 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL 315 * here, pci_create_root_bus() has been called by someone else and 316 * sysdata is likely to be different from what we expect. Let it go in 317 * that case. 318 */ 319 if (!bridge->dev.parent) { 320 struct pci_controller *controller = bridge->bus->sysdata; 321 ACPI_COMPANION_SET(&bridge->dev, controller->companion); 322 } 323 return 0; 324 } 325 326 void pcibios_fixup_device_resources(struct pci_dev *dev) 327 { 328 int idx; 329 330 if (!dev->bus) 331 return; 332 333 for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) { 334 struct resource *r = &dev->resource[idx]; 335 336 if (!r->flags || r->parent || !r->start) 337 continue; 338 339 pci_claim_resource(dev, idx); 340 } 341 } 342 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); 343 344 static void pcibios_fixup_bridge_resources(struct pci_dev *dev) 345 { 346 int idx; 347 348 if (!dev->bus) 349 return; 350 351 for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) { 352 struct resource *r = &dev->resource[idx]; 353 354 if (!r->flags || r->parent || !r->start) 355 continue; 356 357 pci_claim_bridge_resource(dev, idx); 358 } 359 } 360 361 /* 362 * Called after each bus is probed, but before its children are examined. 363 */ 364 void pcibios_fixup_bus(struct pci_bus *b) 365 { 366 struct pci_dev *dev; 367 368 if (b->self) { 369 pci_read_bridge_bases(b); 370 pcibios_fixup_bridge_resources(b->self); 371 } 372 list_for_each_entry(dev, &b->devices, bus_list) 373 pcibios_fixup_device_resources(dev); 374 platform_pci_fixup_bus(b); 375 } 376 377 void pcibios_add_bus(struct pci_bus *bus) 378 { 379 acpi_pci_add_bus(bus); 380 } 381 382 void pcibios_remove_bus(struct pci_bus *bus) 383 { 384 acpi_pci_remove_bus(bus); 385 } 386 387 void pcibios_set_master (struct pci_dev *dev) 388 { 389 /* No special bus mastering setup handling */ 390 } 391 392 int 393 pcibios_enable_device (struct pci_dev *dev, int mask) 394 { 395 int ret; 396 397 ret = pci_enable_resources(dev, mask); 398 if (ret < 0) 399 return ret; 400 401 if (!dev->msi_enabled) 402 return acpi_pci_irq_enable(dev); 403 return 0; 404 } 405 406 void 407 pcibios_disable_device (struct pci_dev *dev) 408 { 409 BUG_ON(atomic_read(&dev->enable_cnt)); 410 if (!dev->msi_enabled) 411 acpi_pci_irq_disable(dev); 412 } 413 414 resource_size_t 415 pcibios_align_resource (void *data, const struct resource *res, 416 resource_size_t size, resource_size_t align) 417 { 418 return res->start; 419 } 420 421 int 422 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, 423 enum pci_mmap_state mmap_state, int write_combine) 424 { 425 unsigned long size = vma->vm_end - vma->vm_start; 426 pgprot_t prot; 427 428 /* 429 * I/O space cannot be accessed via normal processor loads and 430 * stores on this platform. 431 */ 432 if (mmap_state == pci_mmap_io) 433 /* 434 * XXX we could relax this for I/O spaces for which ACPI 435 * indicates that the space is 1-to-1 mapped. But at the 436 * moment, we don't support multiple PCI address spaces and 437 * the legacy I/O space is not 1-to-1 mapped, so this is moot. 438 */ 439 return -EINVAL; 440 441 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 442 return -EINVAL; 443 444 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 445 vma->vm_page_prot); 446 447 /* 448 * If the user requested WC, the kernel uses UC or WC for this region, 449 * and the chipset supports WC, we can use WC. Otherwise, we have to 450 * use the same attribute the kernel uses. 451 */ 452 if (write_combine && 453 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || 454 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && 455 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) 456 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 457 else 458 vma->vm_page_prot = prot; 459 460 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 461 vma->vm_end - vma->vm_start, vma->vm_page_prot)) 462 return -EAGAIN; 463 464 return 0; 465 } 466 467 /** 468 * ia64_pci_get_legacy_mem - generic legacy mem routine 469 * @bus: bus to get legacy memory base address for 470 * 471 * Find the base of legacy memory for @bus. This is typically the first 472 * megabyte of bus address space for @bus or is simply 0 on platforms whose 473 * chipsets support legacy I/O and memory routing. Returns the base address 474 * or an error pointer if an error occurred. 475 * 476 * This is the ia64 generic version of this routine. Other platforms 477 * are free to override it with a machine vector. 478 */ 479 char *ia64_pci_get_legacy_mem(struct pci_bus *bus) 480 { 481 return (char *)__IA64_UNCACHED_OFFSET; 482 } 483 484 /** 485 * pci_mmap_legacy_page_range - map legacy memory space to userland 486 * @bus: bus whose legacy space we're mapping 487 * @vma: vma passed in by mmap 488 * 489 * Map legacy memory space for this device back to userspace using a machine 490 * vector to get the base address. 491 */ 492 int 493 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, 494 enum pci_mmap_state mmap_state) 495 { 496 unsigned long size = vma->vm_end - vma->vm_start; 497 pgprot_t prot; 498 char *addr; 499 500 /* We only support mmap'ing of legacy memory space */ 501 if (mmap_state != pci_mmap_mem) 502 return -ENOSYS; 503 504 /* 505 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt 506 * for more details. 507 */ 508 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 509 return -EINVAL; 510 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, 511 vma->vm_page_prot); 512 513 addr = pci_get_legacy_mem(bus); 514 if (IS_ERR(addr)) 515 return PTR_ERR(addr); 516 517 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; 518 vma->vm_page_prot = prot; 519 520 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 521 size, vma->vm_page_prot)) 522 return -EAGAIN; 523 524 return 0; 525 } 526 527 /** 528 * ia64_pci_legacy_read - read from legacy I/O space 529 * @bus: bus to read 530 * @port: legacy port value 531 * @val: caller allocated storage for returned value 532 * @size: number of bytes to read 533 * 534 * Simply reads @size bytes from @port and puts the result in @val. 535 * 536 * Again, this (and the write routine) are generic versions that can be 537 * overridden by the platform. This is necessary on platforms that don't 538 * support legacy I/O routing or that hard fail on legacy I/O timeouts. 539 */ 540 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) 541 { 542 int ret = size; 543 544 switch (size) { 545 case 1: 546 *val = inb(port); 547 break; 548 case 2: 549 *val = inw(port); 550 break; 551 case 4: 552 *val = inl(port); 553 break; 554 default: 555 ret = -EINVAL; 556 break; 557 } 558 559 return ret; 560 } 561 562 /** 563 * ia64_pci_legacy_write - perform a legacy I/O write 564 * @bus: bus pointer 565 * @port: port to write 566 * @val: value to write 567 * @size: number of bytes to write from @val 568 * 569 * Simply writes @size bytes of @val to @port. 570 */ 571 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) 572 { 573 int ret = size; 574 575 switch (size) { 576 case 1: 577 outb(val, port); 578 break; 579 case 2: 580 outw(val, port); 581 break; 582 case 4: 583 outl(val, port); 584 break; 585 default: 586 ret = -EINVAL; 587 break; 588 } 589 590 return ret; 591 } 592 593 /** 594 * set_pci_cacheline_size - determine cacheline size for PCI devices 595 * 596 * We want to use the line-size of the outer-most cache. We assume 597 * that this line-size is the same for all CPUs. 598 * 599 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). 600 */ 601 static void __init set_pci_dfl_cacheline_size(void) 602 { 603 unsigned long levels, unique_caches; 604 long status; 605 pal_cache_config_info_t cci; 606 607 status = ia64_pal_cache_summary(&levels, &unique_caches); 608 if (status != 0) { 609 pr_err("%s: ia64_pal_cache_summary() failed " 610 "(status=%ld)\n", __func__, status); 611 return; 612 } 613 614 status = ia64_pal_cache_config_info(levels - 1, 615 /* cache_type (data_or_unified)= */ 2, &cci); 616 if (status != 0) { 617 pr_err("%s: ia64_pal_cache_config_info() failed " 618 "(status=%ld)\n", __func__, status); 619 return; 620 } 621 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; 622 } 623 624 u64 ia64_dma_get_required_mask(struct device *dev) 625 { 626 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 627 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 628 u64 mask; 629 630 if (!high_totalram) { 631 /* convert to mask just covering totalram */ 632 low_totalram = (1 << (fls(low_totalram) - 1)); 633 low_totalram += low_totalram - 1; 634 mask = low_totalram; 635 } else { 636 high_totalram = (1 << (fls(high_totalram) - 1)); 637 high_totalram += high_totalram - 1; 638 mask = (((u64)high_totalram) << 32) + 0xffffffff; 639 } 640 return mask; 641 } 642 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); 643 644 u64 dma_get_required_mask(struct device *dev) 645 { 646 return platform_dma_get_required_mask(dev); 647 } 648 EXPORT_SYMBOL_GPL(dma_get_required_mask); 649 650 static int __init pcibios_init(void) 651 { 652 set_pci_dfl_cacheline_size(); 653 return 0; 654 } 655 656 subsys_initcall(pcibios_init); 657