xref: /openbmc/linux/arch/ia64/pci/pci.c (revision 367b8112)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 
23 #include <asm/machvec.h>
24 #include <asm/page.h>
25 #include <asm/system.h>
26 #include <asm/io.h>
27 #include <asm/sal.h>
28 #include <asm/smp.h>
29 #include <asm/irq.h>
30 #include <asm/hw_irq.h>
31 
32 /*
33  * Low-level SAL-based PCI configuration access functions. Note that SAL
34  * calls are already serialized (via sal_lock), so we don't need another
35  * synchronization mechanism here.
36  */
37 
38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
39 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
40 
41 /* SAL 3.2 adds support for extended config space. */
42 
43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
44 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
45 
46 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
47 	      int reg, int len, u32 *value)
48 {
49 	u64 addr, data = 0;
50 	int mode, result;
51 
52 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
53 		return -EINVAL;
54 
55 	if ((seg | reg) <= 255) {
56 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
57 		mode = 0;
58 	} else {
59 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
60 		mode = 1;
61 	}
62 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
63 	if (result != 0)
64 		return -EINVAL;
65 
66 	*value = (u32) data;
67 	return 0;
68 }
69 
70 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
71 	       int reg, int len, u32 value)
72 {
73 	u64 addr;
74 	int mode, result;
75 
76 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
77 		return -EINVAL;
78 
79 	if ((seg | reg) <= 255) {
80 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
81 		mode = 0;
82 	} else {
83 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
84 		mode = 1;
85 	}
86 	result = ia64_sal_pci_config_write(addr, mode, len, value);
87 	if (result != 0)
88 		return -EINVAL;
89 	return 0;
90 }
91 
92 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
93 							int size, u32 *value)
94 {
95 	return raw_pci_read(pci_domain_nr(bus), bus->number,
96 				 devfn, where, size, value);
97 }
98 
99 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
100 							int size, u32 value)
101 {
102 	return raw_pci_write(pci_domain_nr(bus), bus->number,
103 				  devfn, where, size, value);
104 }
105 
106 struct pci_ops pci_root_ops = {
107 	.read = pci_read,
108 	.write = pci_write,
109 };
110 
111 /* Called by ACPI when it finds a new root bus.  */
112 
113 static struct pci_controller * __devinit
114 alloc_pci_controller (int seg)
115 {
116 	struct pci_controller *controller;
117 
118 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
119 	if (!controller)
120 		return NULL;
121 
122 	controller->segment = seg;
123 	controller->node = -1;
124 	return controller;
125 }
126 
127 struct pci_root_info {
128 	struct pci_controller *controller;
129 	char *name;
130 };
131 
132 static unsigned int
133 new_space (u64 phys_base, int sparse)
134 {
135 	u64 mmio_base;
136 	int i;
137 
138 	if (phys_base == 0)
139 		return 0;	/* legacy I/O port space */
140 
141 	mmio_base = (u64) ioremap(phys_base, 0);
142 	for (i = 0; i < num_io_spaces; i++)
143 		if (io_space[i].mmio_base == mmio_base &&
144 		    io_space[i].sparse == sparse)
145 			return i;
146 
147 	if (num_io_spaces == MAX_IO_SPACES) {
148 		printk(KERN_ERR "PCI: Too many IO port spaces "
149 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
150 		return ~0;
151 	}
152 
153 	i = num_io_spaces++;
154 	io_space[i].mmio_base = mmio_base;
155 	io_space[i].sparse = sparse;
156 
157 	return i;
158 }
159 
160 static u64 __devinit
161 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
162 {
163 	struct resource *resource;
164 	char *name;
165 	u64 base, min, max, base_port;
166 	unsigned int sparse = 0, space_nr, len;
167 
168 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
169 	if (!resource) {
170 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
171 			info->name);
172 		goto out;
173 	}
174 
175 	len = strlen(info->name) + 32;
176 	name = kzalloc(len, GFP_KERNEL);
177 	if (!name) {
178 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
179 			info->name);
180 		goto free_resource;
181 	}
182 
183 	min = addr->minimum;
184 	max = min + addr->address_length - 1;
185 	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
186 		sparse = 1;
187 
188 	space_nr = new_space(addr->translation_offset, sparse);
189 	if (space_nr == ~0)
190 		goto free_name;
191 
192 	base = __pa(io_space[space_nr].mmio_base);
193 	base_port = IO_SPACE_BASE(space_nr);
194 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
195 		base_port + min, base_port + max);
196 
197 	/*
198 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
199 	 * mapping is done by the processor (not the bridge), ACPI may not
200 	 * mark it as sparse.
201 	 */
202 	if (space_nr == 0)
203 		sparse = 1;
204 
205 	resource->name  = name;
206 	resource->flags = IORESOURCE_MEM;
207 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
208 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
209 	insert_resource(&iomem_resource, resource);
210 
211 	return base_port;
212 
213 free_name:
214 	kfree(name);
215 free_resource:
216 	kfree(resource);
217 out:
218 	return ~0;
219 }
220 
221 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
222 	struct acpi_resource_address64 *addr)
223 {
224 	acpi_status status;
225 
226 	/*
227 	 * We're only interested in _CRS descriptors that are
228 	 *	- address space descriptors for memory or I/O space
229 	 *	- non-zero size
230 	 *	- producers, i.e., the address space is routed downstream,
231 	 *	  not consumed by the bridge itself
232 	 */
233 	status = acpi_resource_to_address64(resource, addr);
234 	if (ACPI_SUCCESS(status) &&
235 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
236 	     addr->resource_type == ACPI_IO_RANGE) &&
237 	    addr->address_length &&
238 	    addr->producer_consumer == ACPI_PRODUCER)
239 		return AE_OK;
240 
241 	return AE_ERROR;
242 }
243 
244 static acpi_status __devinit
245 count_window (struct acpi_resource *resource, void *data)
246 {
247 	unsigned int *windows = (unsigned int *) data;
248 	struct acpi_resource_address64 addr;
249 	acpi_status status;
250 
251 	status = resource_to_window(resource, &addr);
252 	if (ACPI_SUCCESS(status))
253 		(*windows)++;
254 
255 	return AE_OK;
256 }
257 
258 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
259 {
260 	struct pci_root_info *info = data;
261 	struct pci_window *window;
262 	struct acpi_resource_address64 addr;
263 	acpi_status status;
264 	unsigned long flags, offset = 0;
265 	struct resource *root;
266 
267 	/* Return AE_OK for non-window resources to keep scanning for more */
268 	status = resource_to_window(res, &addr);
269 	if (!ACPI_SUCCESS(status))
270 		return AE_OK;
271 
272 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
273 		flags = IORESOURCE_MEM;
274 		root = &iomem_resource;
275 		offset = addr.translation_offset;
276 	} else if (addr.resource_type == ACPI_IO_RANGE) {
277 		flags = IORESOURCE_IO;
278 		root = &ioport_resource;
279 		offset = add_io_space(info, &addr);
280 		if (offset == ~0)
281 			return AE_OK;
282 	} else
283 		return AE_OK;
284 
285 	window = &info->controller->window[info->controller->windows++];
286 	window->resource.name = info->name;
287 	window->resource.flags = flags;
288 	window->resource.start = addr.minimum + offset;
289 	window->resource.end = window->resource.start + addr.address_length - 1;
290 	window->resource.child = NULL;
291 	window->offset = offset;
292 
293 	if (insert_resource(root, &window->resource)) {
294 		printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
295 			window->resource.start, window->resource.end,
296 			root->name, info->name);
297 	}
298 
299 	return AE_OK;
300 }
301 
302 static void __devinit
303 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
304 {
305 	int i, j;
306 
307 	j = 0;
308 	for (i = 0; i < ctrl->windows; i++) {
309 		struct resource *res = &ctrl->window[i].resource;
310 		/* HP's firmware has a hack to work around a Windows bug.
311 		 * Ignore these tiny memory ranges */
312 		if ((res->flags & IORESOURCE_MEM) &&
313 		    (res->end - res->start < 16))
314 			continue;
315 		if (j >= PCI_BUS_NUM_RESOURCES) {
316 			printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
317 					res->end, res->flags);
318 			continue;
319 		}
320 		bus->resource[j++] = res;
321 	}
322 }
323 
324 struct pci_bus * __devinit
325 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
326 {
327 	struct pci_controller *controller;
328 	unsigned int windows = 0;
329 	struct pci_bus *pbus;
330 	char *name;
331 	int pxm;
332 
333 	controller = alloc_pci_controller(domain);
334 	if (!controller)
335 		goto out1;
336 
337 	controller->acpi_handle = device->handle;
338 
339 	pxm = acpi_get_pxm(controller->acpi_handle);
340 #ifdef CONFIG_NUMA
341 	if (pxm >= 0)
342 		controller->node = pxm_to_node(pxm);
343 #endif
344 
345 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
346 			&windows);
347 	if (windows) {
348 		struct pci_root_info info;
349 
350 		controller->window =
351 			kmalloc_node(sizeof(*controller->window) * windows,
352 				     GFP_KERNEL, controller->node);
353 		if (!controller->window)
354 			goto out2;
355 
356 		name = kmalloc(16, GFP_KERNEL);
357 		if (!name)
358 			goto out3;
359 
360 		sprintf(name, "PCI Bus %04x:%02x", domain, bus);
361 		info.controller = controller;
362 		info.name = name;
363 		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
364 			add_window, &info);
365 	}
366 	/*
367 	 * See arch/x86/pci/acpi.c.
368 	 * The desired pci bus might already be scanned in a quirk. We
369 	 * should handle the case here, but it appears that IA64 hasn't
370 	 * such quirk. So we just ignore the case now.
371 	 */
372 	pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
373 	if (pbus)
374 		pcibios_setup_root_windows(pbus, controller);
375 
376 	return pbus;
377 
378 out3:
379 	kfree(controller->window);
380 out2:
381 	kfree(controller);
382 out1:
383 	return NULL;
384 }
385 
386 void pcibios_resource_to_bus(struct pci_dev *dev,
387 		struct pci_bus_region *region, struct resource *res)
388 {
389 	struct pci_controller *controller = PCI_CONTROLLER(dev);
390 	unsigned long offset = 0;
391 	int i;
392 
393 	for (i = 0; i < controller->windows; i++) {
394 		struct pci_window *window = &controller->window[i];
395 		if (!(window->resource.flags & res->flags))
396 			continue;
397 		if (window->resource.start > res->start)
398 			continue;
399 		if (window->resource.end < res->end)
400 			continue;
401 		offset = window->offset;
402 		break;
403 	}
404 
405 	region->start = res->start - offset;
406 	region->end = res->end - offset;
407 }
408 EXPORT_SYMBOL(pcibios_resource_to_bus);
409 
410 void pcibios_bus_to_resource(struct pci_dev *dev,
411 		struct resource *res, struct pci_bus_region *region)
412 {
413 	struct pci_controller *controller = PCI_CONTROLLER(dev);
414 	unsigned long offset = 0;
415 	int i;
416 
417 	for (i = 0; i < controller->windows; i++) {
418 		struct pci_window *window = &controller->window[i];
419 		if (!(window->resource.flags & res->flags))
420 			continue;
421 		if (window->resource.start - window->offset > region->start)
422 			continue;
423 		if (window->resource.end - window->offset < region->end)
424 			continue;
425 		offset = window->offset;
426 		break;
427 	}
428 
429 	res->start = region->start + offset;
430 	res->end = region->end + offset;
431 }
432 EXPORT_SYMBOL(pcibios_bus_to_resource);
433 
434 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
435 {
436 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
437 	struct resource *devr = &dev->resource[idx];
438 
439 	if (!dev->bus)
440 		return 0;
441 	for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
442 		struct resource *busr = dev->bus->resource[i];
443 
444 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
445 			continue;
446 		if ((devr->start) && (devr->start >= busr->start) &&
447 				(devr->end <= busr->end))
448 			return 1;
449 	}
450 	return 0;
451 }
452 
453 static void __devinit
454 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
455 {
456 	struct pci_bus_region region;
457 	int i;
458 
459 	for (i = start; i < limit; i++) {
460 		if (!dev->resource[i].flags)
461 			continue;
462 		region.start = dev->resource[i].start;
463 		region.end = dev->resource[i].end;
464 		pcibios_bus_to_resource(dev, &dev->resource[i], &region);
465 		if ((is_valid_resource(dev, i)))
466 			pci_claim_resource(dev, i);
467 	}
468 }
469 
470 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
471 {
472 	pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
473 }
474 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
475 
476 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
477 {
478 	pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
479 }
480 
481 /*
482  *  Called after each bus is probed, but before its children are examined.
483  */
484 void __devinit
485 pcibios_fixup_bus (struct pci_bus *b)
486 {
487 	struct pci_dev *dev;
488 
489 	if (b->self) {
490 		pci_read_bridge_bases(b);
491 		pcibios_fixup_bridge_resources(b->self);
492 	}
493 	list_for_each_entry(dev, &b->devices, bus_list)
494 		pcibios_fixup_device_resources(dev);
495 	platform_pci_fixup_bus(b);
496 
497 	return;
498 }
499 
500 void __devinit
501 pcibios_update_irq (struct pci_dev *dev, int irq)
502 {
503 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
504 
505 	/* ??? FIXME -- record old value for shutdown.  */
506 }
507 
508 int
509 pcibios_enable_device (struct pci_dev *dev, int mask)
510 {
511 	int ret;
512 
513 	ret = pci_enable_resources(dev, mask);
514 	if (ret < 0)
515 		return ret;
516 
517 	if (!dev->msi_enabled)
518 		return acpi_pci_irq_enable(dev);
519 	return 0;
520 }
521 
522 void
523 pcibios_disable_device (struct pci_dev *dev)
524 {
525 	BUG_ON(atomic_read(&dev->enable_cnt));
526 	if (!dev->msi_enabled)
527 		acpi_pci_irq_disable(dev);
528 }
529 
530 void
531 pcibios_align_resource (void *data, struct resource *res,
532 		        resource_size_t size, resource_size_t align)
533 {
534 }
535 
536 /*
537  * PCI BIOS setup, always defaults to SAL interface
538  */
539 char * __devinit
540 pcibios_setup (char *str)
541 {
542 	return str;
543 }
544 
545 int
546 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
547 		     enum pci_mmap_state mmap_state, int write_combine)
548 {
549 	unsigned long size = vma->vm_end - vma->vm_start;
550 	pgprot_t prot;
551 
552 	/*
553 	 * I/O space cannot be accessed via normal processor loads and
554 	 * stores on this platform.
555 	 */
556 	if (mmap_state == pci_mmap_io)
557 		/*
558 		 * XXX we could relax this for I/O spaces for which ACPI
559 		 * indicates that the space is 1-to-1 mapped.  But at the
560 		 * moment, we don't support multiple PCI address spaces and
561 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
562 		 */
563 		return -EINVAL;
564 
565 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
566 		return -EINVAL;
567 
568 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
569 				    vma->vm_page_prot);
570 
571 	/*
572 	 * If the user requested WC, the kernel uses UC or WC for this region,
573 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
574 	 * use the same attribute the kernel uses.
575 	 */
576 	if (write_combine &&
577 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
578 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
579 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
580 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
581 	else
582 		vma->vm_page_prot = prot;
583 
584 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
585 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
586 		return -EAGAIN;
587 
588 	return 0;
589 }
590 
591 /**
592  * ia64_pci_get_legacy_mem - generic legacy mem routine
593  * @bus: bus to get legacy memory base address for
594  *
595  * Find the base of legacy memory for @bus.  This is typically the first
596  * megabyte of bus address space for @bus or is simply 0 on platforms whose
597  * chipsets support legacy I/O and memory routing.  Returns the base address
598  * or an error pointer if an error occurred.
599  *
600  * This is the ia64 generic version of this routine.  Other platforms
601  * are free to override it with a machine vector.
602  */
603 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
604 {
605 	return (char *)__IA64_UNCACHED_OFFSET;
606 }
607 
608 /**
609  * pci_mmap_legacy_page_range - map legacy memory space to userland
610  * @bus: bus whose legacy space we're mapping
611  * @vma: vma passed in by mmap
612  *
613  * Map legacy memory space for this device back to userspace using a machine
614  * vector to get the base address.
615  */
616 int
617 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
618 			   enum pci_mmap_state mmap_state)
619 {
620 	unsigned long size = vma->vm_end - vma->vm_start;
621 	pgprot_t prot;
622 	char *addr;
623 
624 	/* We only support mmap'ing of legacy memory space */
625 	if (mmap_state != pci_mmap_mem)
626 		return -ENOSYS;
627 
628 	/*
629 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
630 	 * for more details.
631 	 */
632 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
633 		return -EINVAL;
634 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
635 				    vma->vm_page_prot);
636 
637 	addr = pci_get_legacy_mem(bus);
638 	if (IS_ERR(addr))
639 		return PTR_ERR(addr);
640 
641 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
642 	vma->vm_page_prot = prot;
643 
644 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
645 			    size, vma->vm_page_prot))
646 		return -EAGAIN;
647 
648 	return 0;
649 }
650 
651 /**
652  * ia64_pci_legacy_read - read from legacy I/O space
653  * @bus: bus to read
654  * @port: legacy port value
655  * @val: caller allocated storage for returned value
656  * @size: number of bytes to read
657  *
658  * Simply reads @size bytes from @port and puts the result in @val.
659  *
660  * Again, this (and the write routine) are generic versions that can be
661  * overridden by the platform.  This is necessary on platforms that don't
662  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
663  */
664 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
665 {
666 	int ret = size;
667 
668 	switch (size) {
669 	case 1:
670 		*val = inb(port);
671 		break;
672 	case 2:
673 		*val = inw(port);
674 		break;
675 	case 4:
676 		*val = inl(port);
677 		break;
678 	default:
679 		ret = -EINVAL;
680 		break;
681 	}
682 
683 	return ret;
684 }
685 
686 /**
687  * ia64_pci_legacy_write - perform a legacy I/O write
688  * @bus: bus pointer
689  * @port: port to write
690  * @val: value to write
691  * @size: number of bytes to write from @val
692  *
693  * Simply writes @size bytes of @val to @port.
694  */
695 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
696 {
697 	int ret = size;
698 
699 	switch (size) {
700 	case 1:
701 		outb(val, port);
702 		break;
703 	case 2:
704 		outw(val, port);
705 		break;
706 	case 4:
707 		outl(val, port);
708 		break;
709 	default:
710 		ret = -EINVAL;
711 		break;
712 	}
713 
714 	return ret;
715 }
716 
717 /* It's defined in drivers/pci/pci.c */
718 extern u8 pci_cache_line_size;
719 
720 /**
721  * set_pci_cacheline_size - determine cacheline size for PCI devices
722  *
723  * We want to use the line-size of the outer-most cache.  We assume
724  * that this line-size is the same for all CPUs.
725  *
726  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
727  */
728 static void __init set_pci_cacheline_size(void)
729 {
730 	u64 levels, unique_caches;
731 	s64 status;
732 	pal_cache_config_info_t cci;
733 
734 	status = ia64_pal_cache_summary(&levels, &unique_caches);
735 	if (status != 0) {
736 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
737 			"(status=%ld)\n", __func__, status);
738 		return;
739 	}
740 
741 	status = ia64_pal_cache_config_info(levels - 1,
742 				/* cache_type (data_or_unified)= */ 2, &cci);
743 	if (status != 0) {
744 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
745 			"(status=%ld)\n", __func__, status);
746 		return;
747 	}
748 	pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
749 }
750 
751 static int __init pcibios_init(void)
752 {
753 	set_pci_cacheline_size();
754 	return 0;
755 }
756 
757 subsys_initcall(pcibios_init);
758