xref: /openbmc/linux/arch/ia64/pci/pci.c (revision 0edbfea5)
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33 
34 /*
35  * Low-level SAL-based PCI configuration access functions. Note that SAL
36  * calls are already serialized (via sal_lock), so we don't need another
37  * synchronization mechanism here.
38  */
39 
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
41 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 
43 /* SAL 3.2 adds support for extended config space. */
44 
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
46 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 	      int reg, int len, u32 *value)
50 {
51 	u64 addr, data = 0;
52 	int mode, result;
53 
54 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 		return -EINVAL;
56 
57 	if ((seg | reg) <= 255) {
58 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 		mode = 0;
60 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 		mode = 1;
63 	} else {
64 		return -EINVAL;
65 	}
66 
67 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 	if (result != 0)
69 		return -EINVAL;
70 
71 	*value = (u32) data;
72 	return 0;
73 }
74 
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 	       int reg, int len, u32 value)
77 {
78 	u64 addr;
79 	int mode, result;
80 
81 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 		return -EINVAL;
83 
84 	if ((seg | reg) <= 255) {
85 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 		mode = 0;
87 	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 		mode = 1;
90 	} else {
91 		return -EINVAL;
92 	}
93 	result = ia64_sal_pci_config_write(addr, mode, len, value);
94 	if (result != 0)
95 		return -EINVAL;
96 	return 0;
97 }
98 
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 							int size, u32 *value)
101 {
102 	return raw_pci_read(pci_domain_nr(bus), bus->number,
103 				 devfn, where, size, value);
104 }
105 
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 							int size, u32 value)
108 {
109 	return raw_pci_write(pci_domain_nr(bus), bus->number,
110 				  devfn, where, size, value);
111 }
112 
113 struct pci_ops pci_root_ops = {
114 	.read = pci_read,
115 	.write = pci_write,
116 };
117 
118 struct pci_root_info {
119 	struct acpi_pci_root_info common;
120 	struct pci_controller controller;
121 	struct list_head io_resources;
122 };
123 
124 static unsigned int new_space(u64 phys_base, int sparse)
125 {
126 	u64 mmio_base;
127 	int i;
128 
129 	if (phys_base == 0)
130 		return 0;	/* legacy I/O port space */
131 
132 	mmio_base = (u64) ioremap(phys_base, 0);
133 	for (i = 0; i < num_io_spaces; i++)
134 		if (io_space[i].mmio_base == mmio_base &&
135 		    io_space[i].sparse == sparse)
136 			return i;
137 
138 	if (num_io_spaces == MAX_IO_SPACES) {
139 		pr_err("PCI: Too many IO port spaces "
140 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
141 		return ~0;
142 	}
143 
144 	i = num_io_spaces++;
145 	io_space[i].mmio_base = mmio_base;
146 	io_space[i].sparse = sparse;
147 
148 	return i;
149 }
150 
151 static int add_io_space(struct device *dev, struct pci_root_info *info,
152 			struct resource_entry *entry)
153 {
154 	struct resource_entry *iospace;
155 	struct resource *resource, *res = entry->res;
156 	char *name;
157 	unsigned long base, min, max, base_port;
158 	unsigned int sparse = 0, space_nr, len;
159 
160 	len = strlen(info->common.name) + 32;
161 	iospace = resource_list_create_entry(NULL, len);
162 	if (!iospace) {
163 		dev_err(dev, "PCI: No memory for %s I/O port space\n",
164 			info->common.name);
165 		return -ENOMEM;
166 	}
167 
168 	if (res->flags & IORESOURCE_IO_SPARSE)
169 		sparse = 1;
170 	space_nr = new_space(entry->offset, sparse);
171 	if (space_nr == ~0)
172 		goto free_resource;
173 
174 	name = (char *)(iospace + 1);
175 	min = res->start - entry->offset;
176 	max = res->end - entry->offset;
177 	base = __pa(io_space[space_nr].mmio_base);
178 	base_port = IO_SPACE_BASE(space_nr);
179 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
180 		 base_port + min, base_port + max);
181 
182 	/*
183 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
184 	 * mapping is done by the processor (not the bridge), ACPI may not
185 	 * mark it as sparse.
186 	 */
187 	if (space_nr == 0)
188 		sparse = 1;
189 
190 	resource = iospace->res;
191 	resource->name  = name;
192 	resource->flags = IORESOURCE_MEM;
193 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
194 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
195 	if (insert_resource(&iomem_resource, resource)) {
196 		dev_err(dev,
197 			"can't allocate host bridge io space resource  %pR\n",
198 			resource);
199 		goto free_resource;
200 	}
201 
202 	entry->offset = base_port;
203 	res->start = min + base_port;
204 	res->end = max + base_port;
205 	resource_list_add_tail(iospace, &info->io_resources);
206 
207 	return 0;
208 
209 free_resource:
210 	resource_list_free_entry(iospace);
211 	return -ENOSPC;
212 }
213 
214 /*
215  * An IO port or MMIO resource assigned to a PCI host bridge may be
216  * consumed by the host bridge itself or available to its child
217  * bus/devices. The ACPI specification defines a bit (Producer/Consumer)
218  * to tell whether the resource is consumed by the host bridge itself,
219  * but firmware hasn't used that bit consistently, so we can't rely on it.
220  *
221  * On x86 and IA64 platforms, all IO port and MMIO resources are assumed
222  * to be available to child bus/devices except one special case:
223  *     IO port [0xCF8-0xCFF] is consumed by the host bridge itself
224  *     to access PCI configuration space.
225  *
226  * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
227  */
228 static bool resource_is_pcicfg_ioport(struct resource *res)
229 {
230 	return (res->flags & IORESOURCE_IO) &&
231 		res->start == 0xCF8 && res->end == 0xCFF;
232 }
233 
234 static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
235 {
236 	struct device *dev = &ci->bridge->dev;
237 	struct pci_root_info *info;
238 	struct resource *res;
239 	struct resource_entry *entry, *tmp;
240 	int status;
241 
242 	status = acpi_pci_probe_root_resources(ci);
243 	if (status > 0) {
244 		info = container_of(ci, struct pci_root_info, common);
245 		resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
246 			res = entry->res;
247 			if (res->flags & IORESOURCE_MEM) {
248 				/*
249 				 * HP's firmware has a hack to work around a
250 				 * Windows bug. Ignore these tiny memory ranges.
251 				 */
252 				if (resource_size(res) <= 16) {
253 					resource_list_del(entry);
254 					insert_resource(&iomem_resource,
255 							entry->res);
256 					resource_list_add_tail(entry,
257 							&info->io_resources);
258 				}
259 			} else if (res->flags & IORESOURCE_IO) {
260 				if (resource_is_pcicfg_ioport(entry->res))
261 					resource_list_destroy_entry(entry);
262 				else if (add_io_space(dev, info, entry))
263 					resource_list_destroy_entry(entry);
264 			}
265 		}
266 	}
267 
268 	return status;
269 }
270 
271 static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
272 {
273 	struct pci_root_info *info;
274 	struct resource_entry *entry, *tmp;
275 
276 	info = container_of(ci, struct pci_root_info, common);
277 	resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
278 		release_resource(entry->res);
279 		resource_list_destroy_entry(entry);
280 	}
281 	kfree(info);
282 }
283 
284 static struct acpi_pci_root_ops pci_acpi_root_ops = {
285 	.pci_ops = &pci_root_ops,
286 	.release_info = pci_acpi_root_release_info,
287 	.prepare_resources = pci_acpi_root_prepare_resources,
288 };
289 
290 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
291 {
292 	struct acpi_device *device = root->device;
293 	struct pci_root_info *info;
294 
295 	info = kzalloc(sizeof(*info), GFP_KERNEL);
296 	if (!info) {
297 		dev_err(&device->dev,
298 			"pci_bus %04x:%02x: ignored (out of memory)\n",
299 			root->segment, (int)root->secondary.start);
300 		return NULL;
301 	}
302 
303 	info->controller.segment = root->segment;
304 	info->controller.companion = device;
305 	info->controller.node = acpi_get_node(device->handle);
306 	INIT_LIST_HEAD(&info->io_resources);
307 	return acpi_pci_root_create(root, &pci_acpi_root_ops,
308 				    &info->common, &info->controller);
309 }
310 
311 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
312 {
313 	/*
314 	 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
315 	 * here, pci_create_root_bus() has been called by someone else and
316 	 * sysdata is likely to be different from what we expect.  Let it go in
317 	 * that case.
318 	 */
319 	if (!bridge->dev.parent) {
320 		struct pci_controller *controller = bridge->bus->sysdata;
321 		ACPI_COMPANION_SET(&bridge->dev, controller->companion);
322 	}
323 	return 0;
324 }
325 
326 void pcibios_fixup_device_resources(struct pci_dev *dev)
327 {
328 	int idx;
329 
330 	if (!dev->bus)
331 		return;
332 
333 	for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
334 		struct resource *r = &dev->resource[idx];
335 
336 		if (!r->flags || r->parent || !r->start)
337 			continue;
338 
339 		pci_claim_resource(dev, idx);
340 	}
341 }
342 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
343 
344 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
345 {
346 	int idx;
347 
348 	if (!dev->bus)
349 		return;
350 
351 	for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
352 		struct resource *r = &dev->resource[idx];
353 
354 		if (!r->flags || r->parent || !r->start)
355 			continue;
356 
357 		pci_claim_bridge_resource(dev, idx);
358 	}
359 }
360 
361 /*
362  *  Called after each bus is probed, but before its children are examined.
363  */
364 void pcibios_fixup_bus(struct pci_bus *b)
365 {
366 	struct pci_dev *dev;
367 
368 	if (b->self) {
369 		pci_read_bridge_bases(b);
370 		pcibios_fixup_bridge_resources(b->self);
371 	}
372 	list_for_each_entry(dev, &b->devices, bus_list)
373 		pcibios_fixup_device_resources(dev);
374 	platform_pci_fixup_bus(b);
375 }
376 
377 void pcibios_add_bus(struct pci_bus *bus)
378 {
379 	acpi_pci_add_bus(bus);
380 }
381 
382 void pcibios_remove_bus(struct pci_bus *bus)
383 {
384 	acpi_pci_remove_bus(bus);
385 }
386 
387 void pcibios_set_master (struct pci_dev *dev)
388 {
389 	/* No special bus mastering setup handling */
390 }
391 
392 int
393 pcibios_enable_device (struct pci_dev *dev, int mask)
394 {
395 	int ret;
396 
397 	ret = pci_enable_resources(dev, mask);
398 	if (ret < 0)
399 		return ret;
400 
401 	if (!dev->msi_enabled)
402 		return acpi_pci_irq_enable(dev);
403 	return 0;
404 }
405 
406 void
407 pcibios_disable_device (struct pci_dev *dev)
408 {
409 	BUG_ON(atomic_read(&dev->enable_cnt));
410 	if (!dev->msi_enabled)
411 		acpi_pci_irq_disable(dev);
412 }
413 
414 resource_size_t
415 pcibios_align_resource (void *data, const struct resource *res,
416 		        resource_size_t size, resource_size_t align)
417 {
418 	return res->start;
419 }
420 
421 int
422 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
423 		     enum pci_mmap_state mmap_state, int write_combine)
424 {
425 	unsigned long size = vma->vm_end - vma->vm_start;
426 	pgprot_t prot;
427 
428 	/*
429 	 * I/O space cannot be accessed via normal processor loads and
430 	 * stores on this platform.
431 	 */
432 	if (mmap_state == pci_mmap_io)
433 		/*
434 		 * XXX we could relax this for I/O spaces for which ACPI
435 		 * indicates that the space is 1-to-1 mapped.  But at the
436 		 * moment, we don't support multiple PCI address spaces and
437 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
438 		 */
439 		return -EINVAL;
440 
441 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
442 		return -EINVAL;
443 
444 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
445 				    vma->vm_page_prot);
446 
447 	/*
448 	 * If the user requested WC, the kernel uses UC or WC for this region,
449 	 * and the chipset supports WC, we can use WC. Otherwise, we have to
450 	 * use the same attribute the kernel uses.
451 	 */
452 	if (write_combine &&
453 	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
454 	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
455 	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
456 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
457 	else
458 		vma->vm_page_prot = prot;
459 
460 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
461 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
462 		return -EAGAIN;
463 
464 	return 0;
465 }
466 
467 /**
468  * ia64_pci_get_legacy_mem - generic legacy mem routine
469  * @bus: bus to get legacy memory base address for
470  *
471  * Find the base of legacy memory for @bus.  This is typically the first
472  * megabyte of bus address space for @bus or is simply 0 on platforms whose
473  * chipsets support legacy I/O and memory routing.  Returns the base address
474  * or an error pointer if an error occurred.
475  *
476  * This is the ia64 generic version of this routine.  Other platforms
477  * are free to override it with a machine vector.
478  */
479 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
480 {
481 	return (char *)__IA64_UNCACHED_OFFSET;
482 }
483 
484 /**
485  * pci_mmap_legacy_page_range - map legacy memory space to userland
486  * @bus: bus whose legacy space we're mapping
487  * @vma: vma passed in by mmap
488  *
489  * Map legacy memory space for this device back to userspace using a machine
490  * vector to get the base address.
491  */
492 int
493 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
494 			   enum pci_mmap_state mmap_state)
495 {
496 	unsigned long size = vma->vm_end - vma->vm_start;
497 	pgprot_t prot;
498 	char *addr;
499 
500 	/* We only support mmap'ing of legacy memory space */
501 	if (mmap_state != pci_mmap_mem)
502 		return -ENOSYS;
503 
504 	/*
505 	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
506 	 * for more details.
507 	 */
508 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
509 		return -EINVAL;
510 	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
511 				    vma->vm_page_prot);
512 
513 	addr = pci_get_legacy_mem(bus);
514 	if (IS_ERR(addr))
515 		return PTR_ERR(addr);
516 
517 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
518 	vma->vm_page_prot = prot;
519 
520 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
521 			    size, vma->vm_page_prot))
522 		return -EAGAIN;
523 
524 	return 0;
525 }
526 
527 /**
528  * ia64_pci_legacy_read - read from legacy I/O space
529  * @bus: bus to read
530  * @port: legacy port value
531  * @val: caller allocated storage for returned value
532  * @size: number of bytes to read
533  *
534  * Simply reads @size bytes from @port and puts the result in @val.
535  *
536  * Again, this (and the write routine) are generic versions that can be
537  * overridden by the platform.  This is necessary on platforms that don't
538  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
539  */
540 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
541 {
542 	int ret = size;
543 
544 	switch (size) {
545 	case 1:
546 		*val = inb(port);
547 		break;
548 	case 2:
549 		*val = inw(port);
550 		break;
551 	case 4:
552 		*val = inl(port);
553 		break;
554 	default:
555 		ret = -EINVAL;
556 		break;
557 	}
558 
559 	return ret;
560 }
561 
562 /**
563  * ia64_pci_legacy_write - perform a legacy I/O write
564  * @bus: bus pointer
565  * @port: port to write
566  * @val: value to write
567  * @size: number of bytes to write from @val
568  *
569  * Simply writes @size bytes of @val to @port.
570  */
571 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
572 {
573 	int ret = size;
574 
575 	switch (size) {
576 	case 1:
577 		outb(val, port);
578 		break;
579 	case 2:
580 		outw(val, port);
581 		break;
582 	case 4:
583 		outl(val, port);
584 		break;
585 	default:
586 		ret = -EINVAL;
587 		break;
588 	}
589 
590 	return ret;
591 }
592 
593 /**
594  * set_pci_cacheline_size - determine cacheline size for PCI devices
595  *
596  * We want to use the line-size of the outer-most cache.  We assume
597  * that this line-size is the same for all CPUs.
598  *
599  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
600  */
601 static void __init set_pci_dfl_cacheline_size(void)
602 {
603 	unsigned long levels, unique_caches;
604 	long status;
605 	pal_cache_config_info_t cci;
606 
607 	status = ia64_pal_cache_summary(&levels, &unique_caches);
608 	if (status != 0) {
609 		pr_err("%s: ia64_pal_cache_summary() failed "
610 			"(status=%ld)\n", __func__, status);
611 		return;
612 	}
613 
614 	status = ia64_pal_cache_config_info(levels - 1,
615 				/* cache_type (data_or_unified)= */ 2, &cci);
616 	if (status != 0) {
617 		pr_err("%s: ia64_pal_cache_config_info() failed "
618 			"(status=%ld)\n", __func__, status);
619 		return;
620 	}
621 	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
622 }
623 
624 u64 ia64_dma_get_required_mask(struct device *dev)
625 {
626 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
627 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
628 	u64 mask;
629 
630 	if (!high_totalram) {
631 		/* convert to mask just covering totalram */
632 		low_totalram = (1 << (fls(low_totalram) - 1));
633 		low_totalram += low_totalram - 1;
634 		mask = low_totalram;
635 	} else {
636 		high_totalram = (1 << (fls(high_totalram) - 1));
637 		high_totalram += high_totalram - 1;
638 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
639 	}
640 	return mask;
641 }
642 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
643 
644 u64 dma_get_required_mask(struct device *dev)
645 {
646 	return platform_dma_get_required_mask(dev);
647 }
648 EXPORT_SYMBOL_GPL(dma_get_required_mask);
649 
650 static int __init pcibios_init(void)
651 {
652 	set_pci_dfl_cacheline_size();
653 	return 0;
654 }
655 
656 subsys_initcall(pcibios_init);
657