xref: /openbmc/linux/arch/ia64/mm/tlb.c (revision f42b3800)
1 /*
2  * TLB support routines.
3  *
4  * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8  *		Modified RID allocation for SMP
9  *          Goutham Rao <goutham.rao@intel.com>
10  *              IPI based ptc implementation and A-step IPI implementation.
11  * Rohit Seth <rohit.seth@intel.com>
12  * Ken Chen <kenneth.w.chen@intel.com>
13  * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14  * Copyright (C) 2007 Intel Corp
15  *	Fenghua Yu <fenghua.yu@intel.com>
16  *	Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
17  */
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/mm.h>
24 #include <linux/bootmem.h>
25 
26 #include <asm/delay.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pal.h>
30 #include <asm/tlbflush.h>
31 #include <asm/dma.h>
32 #include <asm/processor.h>
33 #include <asm/sal.h>
34 #include <asm/tlb.h>
35 
36 static struct {
37 	unsigned long mask;	/* mask of supported purge page-sizes */
38 	unsigned long max_bits;	/* log2 of largest supported purge page-size */
39 } purge;
40 
41 struct ia64_ctx ia64_ctx = {
42 	.lock =	__SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
43 	.next =	1,
44 	.max_ctx = ~0U
45 };
46 
47 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
48 DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
49 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
50 
51 struct ia64_tr_entry __per_cpu_idtrs[NR_CPUS][2][IA64_TR_ALLOC_MAX];
52 
53 /*
54  * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
55  * Called after cpu_init() has setup ia64_ctx.max_ctx based on
56  * maximum RID that is supported by boot CPU.
57  */
58 void __init
59 mmu_context_init (void)
60 {
61 	ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
62 	ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
63 }
64 
65 /*
66  * Acquire the ia64_ctx.lock before calling this function!
67  */
68 void
69 wrap_mmu_context (struct mm_struct *mm)
70 {
71 	int i, cpu;
72 	unsigned long flush_bit;
73 
74 	for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
75 		flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
76 		ia64_ctx.bitmap[i] ^= flush_bit;
77 	}
78 
79 	/* use offset at 300 to skip daemons */
80 	ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
81 				ia64_ctx.max_ctx, 300);
82 	ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
83 				ia64_ctx.max_ctx, ia64_ctx.next);
84 
85 	/*
86 	 * can't call flush_tlb_all() here because of race condition
87 	 * with O(1) scheduler [EF]
88 	 */
89 	cpu = get_cpu(); /* prevent preemption/migration */
90 	for_each_online_cpu(i)
91 		if (i != cpu)
92 			per_cpu(ia64_need_tlb_flush, i) = 1;
93 	put_cpu();
94 	local_flush_tlb_all();
95 }
96 
97 /*
98  * Implement "spinaphores" ... like counting semaphores, but they
99  * spin instead of sleeping.  If there are ever any other users for
100  * this primitive it can be moved up to a spinaphore.h header.
101  */
102 struct spinaphore {
103 	atomic_t	cur;
104 };
105 
106 static inline void spinaphore_init(struct spinaphore *ss, int val)
107 {
108 	atomic_set(&ss->cur, val);
109 }
110 
111 static inline void down_spin(struct spinaphore *ss)
112 {
113 	while (unlikely(!atomic_add_unless(&ss->cur, -1, 0)))
114 		while (atomic_read(&ss->cur) == 0)
115 			cpu_relax();
116 }
117 
118 static inline void up_spin(struct spinaphore *ss)
119 {
120 	atomic_add(1, &ss->cur);
121 }
122 
123 static struct spinaphore ptcg_sem;
124 static u16 nptcg = 1;
125 static int need_ptcg_sem = 1;
126 static int toolatetochangeptcgsem = 0;
127 
128 /*
129  * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
130  * purges which is reported from either PAL or SAL PALO.
131  *
132  * We don't have sanity checking for nptcg value. It's the user's responsibility
133  * for valid nptcg value on the platform. Otherwise, kernel may hang in some
134  * cases.
135  */
136 static int __init
137 set_nptcg(char *str)
138 {
139 	int value = 0;
140 
141 	get_option(&str, &value);
142 	setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
143 
144 	return 1;
145 }
146 
147 __setup("nptcg=", set_nptcg);
148 
149 /*
150  * Maximum number of simultaneous ptc.g purges in the system can
151  * be defined by PAL_VM_SUMMARY (in which case we should take
152  * the smallest value for any cpu in the system) or by the PAL
153  * override table (in which case we should ignore the value from
154  * PAL_VM_SUMMARY).
155  *
156  * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
157  * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
158  * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
159  *
160  * Complicating the logic here is the fact that num_possible_cpus()
161  * isn't fully setup until we start bringing cpus online.
162  */
163 void
164 setup_ptcg_sem(int max_purges, int nptcg_from)
165 {
166 	static int kp_override;
167 	static int palo_override;
168 	static int firstcpu = 1;
169 
170 	if (toolatetochangeptcgsem) {
171 		BUG_ON(max_purges < nptcg);
172 		return;
173 	}
174 
175 	if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
176 		kp_override = 1;
177 		nptcg = max_purges;
178 		goto resetsema;
179 	}
180 	if (kp_override) {
181 		need_ptcg_sem = num_possible_cpus() > nptcg;
182 		return;
183 	}
184 
185 	if (nptcg_from == NPTCG_FROM_PALO) {
186 		palo_override = 1;
187 
188 		/* In PALO max_purges == 0 really means it! */
189 		if (max_purges == 0)
190 			panic("Whoa! Platform does not support global TLB purges.\n");
191 		nptcg = max_purges;
192 		if (nptcg == PALO_MAX_TLB_PURGES) {
193 			need_ptcg_sem = 0;
194 			return;
195 		}
196 		goto resetsema;
197 	}
198 	if (palo_override) {
199 		if (nptcg != PALO_MAX_TLB_PURGES)
200 			need_ptcg_sem = (num_possible_cpus() > nptcg);
201 		return;
202 	}
203 
204 	/* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
205 	if (max_purges == 0) max_purges = 1;
206 
207 	if (firstcpu) {
208 		nptcg = max_purges;
209 		firstcpu = 0;
210 	}
211 	if (max_purges < nptcg)
212 		nptcg = max_purges;
213 	if (nptcg == PAL_MAX_PURGES) {
214 		need_ptcg_sem = 0;
215 		return;
216 	} else
217 		need_ptcg_sem = (num_possible_cpus() > nptcg);
218 
219 resetsema:
220 	spinaphore_init(&ptcg_sem, max_purges);
221 }
222 
223 void
224 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
225 		       unsigned long end, unsigned long nbits)
226 {
227 	struct mm_struct *active_mm = current->active_mm;
228 
229 	toolatetochangeptcgsem = 1;
230 
231 	if (mm != active_mm) {
232 		/* Restore region IDs for mm */
233 		if (mm && active_mm) {
234 			activate_context(mm);
235 		} else {
236 			flush_tlb_all();
237 			return;
238 		}
239 	}
240 
241 	if (need_ptcg_sem)
242 		down_spin(&ptcg_sem);
243 
244 	do {
245 		/*
246 		 * Flush ALAT entries also.
247 		 */
248 		ia64_ptcga(start, (nbits << 2));
249 		ia64_srlz_i();
250 		start += (1UL << nbits);
251 	} while (start < end);
252 
253 	if (need_ptcg_sem)
254 		up_spin(&ptcg_sem);
255 
256         if (mm != active_mm) {
257                 activate_context(active_mm);
258         }
259 }
260 
261 void
262 local_flush_tlb_all (void)
263 {
264 	unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
265 
266 	addr    = local_cpu_data->ptce_base;
267 	count0  = local_cpu_data->ptce_count[0];
268 	count1  = local_cpu_data->ptce_count[1];
269 	stride0 = local_cpu_data->ptce_stride[0];
270 	stride1 = local_cpu_data->ptce_stride[1];
271 
272 	local_irq_save(flags);
273 	for (i = 0; i < count0; ++i) {
274 		for (j = 0; j < count1; ++j) {
275 			ia64_ptce(addr);
276 			addr += stride1;
277 		}
278 		addr += stride0;
279 	}
280 	local_irq_restore(flags);
281 	ia64_srlz_i();			/* srlz.i implies srlz.d */
282 }
283 
284 void
285 flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
286 		 unsigned long end)
287 {
288 	struct mm_struct *mm = vma->vm_mm;
289 	unsigned long size = end - start;
290 	unsigned long nbits;
291 
292 #ifndef CONFIG_SMP
293 	if (mm != current->active_mm) {
294 		mm->context = 0;
295 		return;
296 	}
297 #endif
298 
299 	nbits = ia64_fls(size + 0xfff);
300 	while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
301 			(nbits < purge.max_bits))
302 		++nbits;
303 	if (nbits > purge.max_bits)
304 		nbits = purge.max_bits;
305 	start &= ~((1UL << nbits) - 1);
306 
307 	preempt_disable();
308 #ifdef CONFIG_SMP
309 	if (mm != current->active_mm || cpus_weight(mm->cpu_vm_mask) != 1) {
310 		platform_global_tlb_purge(mm, start, end, nbits);
311 		preempt_enable();
312 		return;
313 	}
314 #endif
315 	do {
316 		ia64_ptcl(start, (nbits<<2));
317 		start += (1UL << nbits);
318 	} while (start < end);
319 	preempt_enable();
320 	ia64_srlz_i();			/* srlz.i implies srlz.d */
321 }
322 EXPORT_SYMBOL(flush_tlb_range);
323 
324 void __devinit
325 ia64_tlb_init (void)
326 {
327 	ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
328 	unsigned long tr_pgbits;
329 	long status;
330 	pal_vm_info_1_u_t vm_info_1;
331 	pal_vm_info_2_u_t vm_info_2;
332 	int cpu = smp_processor_id();
333 
334 	if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
335 		printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
336 		       "defaulting to architected purge page-sizes.\n", status);
337 		purge.mask = 0x115557000UL;
338 	}
339 	purge.max_bits = ia64_fls(purge.mask);
340 
341 	ia64_get_ptce(&ptce_info);
342 	local_cpu_data->ptce_base = ptce_info.base;
343 	local_cpu_data->ptce_count[0] = ptce_info.count[0];
344 	local_cpu_data->ptce_count[1] = ptce_info.count[1];
345 	local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
346 	local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
347 
348 	local_flush_tlb_all();	/* nuke left overs from bootstrapping... */
349 	status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
350 
351 	if (status) {
352 		printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
353 		per_cpu(ia64_tr_num, cpu) = 8;
354 		return;
355 	}
356 	per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
357 	if (per_cpu(ia64_tr_num, cpu) >
358 				(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
359 		per_cpu(ia64_tr_num, cpu) =
360 				vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
361 	if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
362 		per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
363 		printk(KERN_DEBUG "TR register number exceeds IA64_TR_ALLOC_MAX!"
364 			"IA64_TR_ALLOC_MAX should be extended\n");
365 	}
366 }
367 
368 /*
369  * is_tr_overlap
370  *
371  * Check overlap with inserted TRs.
372  */
373 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
374 {
375 	u64 tr_log_size;
376 	u64 tr_end;
377 	u64 va_rr = ia64_get_rr(va);
378 	u64 va_rid = RR_TO_RID(va_rr);
379 	u64 va_end = va + (1<<log_size) - 1;
380 
381 	if (va_rid != RR_TO_RID(p->rr))
382 		return 0;
383 	tr_log_size = (p->itir & 0xff) >> 2;
384 	tr_end = p->ifa + (1<<tr_log_size) - 1;
385 
386 	if (va > tr_end || p->ifa > va_end)
387 		return 0;
388 	return 1;
389 
390 }
391 
392 /*
393  * ia64_insert_tr in virtual mode. Allocate a TR slot
394  *
395  * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
396  *
397  * va 	: virtual address.
398  * pte 	: pte entries inserted.
399  * log_size: range to be covered.
400  *
401  * Return value:  <0 :  error No.
402  *
403  *		  >=0 : slot number allocated for TR.
404  * Must be called with preemption disabled.
405  */
406 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
407 {
408 	int i, r;
409 	unsigned long psr;
410 	struct ia64_tr_entry *p;
411 	int cpu = smp_processor_id();
412 
413 	r = -EINVAL;
414 	/*Check overlap with existing TR entries*/
415 	if (target_mask & 0x1) {
416 		p = &__per_cpu_idtrs[cpu][0][0];
417 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
418 								i++, p++) {
419 			if (p->pte & 0x1)
420 				if (is_tr_overlap(p, va, log_size)) {
421 					printk(KERN_DEBUG "Overlapped Entry"
422 						"Inserted for TR Reigster!!\n");
423 					goto out;
424 			}
425 		}
426 	}
427 	if (target_mask & 0x2) {
428 		p = &__per_cpu_idtrs[cpu][1][0];
429 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
430 								i++, p++) {
431 			if (p->pte & 0x1)
432 				if (is_tr_overlap(p, va, log_size)) {
433 					printk(KERN_DEBUG "Overlapped Entry"
434 						"Inserted for TR Reigster!!\n");
435 					goto out;
436 				}
437 		}
438 	}
439 
440 	for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
441 		switch (target_mask & 0x3) {
442 		case 1:
443 			if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1))
444 				goto found;
445 			continue;
446 		case 2:
447 			if (!(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
448 				goto found;
449 			continue;
450 		case 3:
451 			if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1) &&
452 				!(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
453 				goto found;
454 			continue;
455 		default:
456 			r = -EINVAL;
457 			goto out;
458 		}
459 	}
460 found:
461 	if (i >= per_cpu(ia64_tr_num, cpu))
462 		return -EBUSY;
463 
464 	/*Record tr info for mca hander use!*/
465 	if (i > per_cpu(ia64_tr_used, cpu))
466 		per_cpu(ia64_tr_used, cpu) = i;
467 
468 	psr = ia64_clear_ic();
469 	if (target_mask & 0x1) {
470 		ia64_itr(0x1, i, va, pte, log_size);
471 		ia64_srlz_i();
472 		p = &__per_cpu_idtrs[cpu][0][i];
473 		p->ifa = va;
474 		p->pte = pte;
475 		p->itir = log_size << 2;
476 		p->rr = ia64_get_rr(va);
477 	}
478 	if (target_mask & 0x2) {
479 		ia64_itr(0x2, i, va, pte, log_size);
480 		ia64_srlz_i();
481 		p = &__per_cpu_idtrs[cpu][1][i];
482 		p->ifa = va;
483 		p->pte = pte;
484 		p->itir = log_size << 2;
485 		p->rr = ia64_get_rr(va);
486 	}
487 	ia64_set_psr(psr);
488 	r = i;
489 out:
490 	return r;
491 }
492 EXPORT_SYMBOL_GPL(ia64_itr_entry);
493 
494 /*
495  * ia64_purge_tr
496  *
497  * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
498  * slot: slot number to be freed.
499  *
500  * Must be called with preemption disabled.
501  */
502 void ia64_ptr_entry(u64 target_mask, int slot)
503 {
504 	int cpu = smp_processor_id();
505 	int i;
506 	struct ia64_tr_entry *p;
507 
508 	if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
509 		return;
510 
511 	if (target_mask & 0x1) {
512 		p = &__per_cpu_idtrs[cpu][0][slot];
513 		if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
514 			p->pte = 0;
515 			ia64_ptr(0x1, p->ifa, p->itir>>2);
516 			ia64_srlz_i();
517 		}
518 	}
519 
520 	if (target_mask & 0x2) {
521 		p = &__per_cpu_idtrs[cpu][1][slot];
522 		if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
523 			p->pte = 0;
524 			ia64_ptr(0x2, p->ifa, p->itir>>2);
525 			ia64_srlz_i();
526 		}
527 	}
528 
529 	for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
530 		if ((__per_cpu_idtrs[cpu][0][i].pte & 0x1) ||
531 				(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
532 			break;
533 	}
534 	per_cpu(ia64_tr_used, cpu) = i;
535 }
536 EXPORT_SYMBOL_GPL(ia64_ptr_entry);
537