xref: /openbmc/linux/arch/ia64/mm/tlb.c (revision b6dcefde)
1 /*
2  * TLB support routines.
3  *
4  * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8  *		Modified RID allocation for SMP
9  *          Goutham Rao <goutham.rao@intel.com>
10  *              IPI based ptc implementation and A-step IPI implementation.
11  * Rohit Seth <rohit.seth@intel.com>
12  * Ken Chen <kenneth.w.chen@intel.com>
13  * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14  * Copyright (C) 2007 Intel Corp
15  *	Fenghua Yu <fenghua.yu@intel.com>
16  *	Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
17  */
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/mm.h>
24 #include <linux/bootmem.h>
25 
26 #include <asm/delay.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pal.h>
30 #include <asm/tlbflush.h>
31 #include <asm/dma.h>
32 #include <asm/processor.h>
33 #include <asm/sal.h>
34 #include <asm/tlb.h>
35 
36 static struct {
37 	u64 mask;		/* mask of supported purge page-sizes */
38 	unsigned long max_bits;	/* log2 of largest supported purge page-size */
39 } purge;
40 
41 struct ia64_ctx ia64_ctx = {
42 	.lock =	__SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
43 	.next =	1,
44 	.max_ctx = ~0U
45 };
46 
47 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
48 DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
49 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
50 
51 struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
52 
53 /*
54  * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
55  * Called after cpu_init() has setup ia64_ctx.max_ctx based on
56  * maximum RID that is supported by boot CPU.
57  */
58 void __init
59 mmu_context_init (void)
60 {
61 	ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
62 	ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
63 }
64 
65 /*
66  * Acquire the ia64_ctx.lock before calling this function!
67  */
68 void
69 wrap_mmu_context (struct mm_struct *mm)
70 {
71 	int i, cpu;
72 	unsigned long flush_bit;
73 
74 	for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
75 		flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
76 		ia64_ctx.bitmap[i] ^= flush_bit;
77 	}
78 
79 	/* use offset at 300 to skip daemons */
80 	ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
81 				ia64_ctx.max_ctx, 300);
82 	ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
83 				ia64_ctx.max_ctx, ia64_ctx.next);
84 
85 	/*
86 	 * can't call flush_tlb_all() here because of race condition
87 	 * with O(1) scheduler [EF]
88 	 */
89 	cpu = get_cpu(); /* prevent preemption/migration */
90 	for_each_online_cpu(i)
91 		if (i != cpu)
92 			per_cpu(ia64_need_tlb_flush, i) = 1;
93 	put_cpu();
94 	local_flush_tlb_all();
95 }
96 
97 /*
98  * Implement "spinaphores" ... like counting semaphores, but they
99  * spin instead of sleeping.  If there are ever any other users for
100  * this primitive it can be moved up to a spinaphore.h header.
101  */
102 struct spinaphore {
103 	unsigned long	ticket;
104 	unsigned long	serve;
105 };
106 
107 static inline void spinaphore_init(struct spinaphore *ss, int val)
108 {
109 	ss->ticket = 0;
110 	ss->serve = val;
111 }
112 
113 static inline void down_spin(struct spinaphore *ss)
114 {
115 	unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
116 
117 	if (time_before(t, ss->serve))
118 		return;
119 
120 	ia64_invala();
121 
122 	for (;;) {
123 		asm volatile ("ld4.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
124 		if (time_before(t, serve))
125 			return;
126 		cpu_relax();
127 	}
128 }
129 
130 static inline void up_spin(struct spinaphore *ss)
131 {
132 	ia64_fetchadd(1, &ss->serve, rel);
133 }
134 
135 static struct spinaphore ptcg_sem;
136 static u16 nptcg = 1;
137 static int need_ptcg_sem = 1;
138 static int toolatetochangeptcgsem = 0;
139 
140 /*
141  * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
142  * purges which is reported from either PAL or SAL PALO.
143  *
144  * We don't have sanity checking for nptcg value. It's the user's responsibility
145  * for valid nptcg value on the platform. Otherwise, kernel may hang in some
146  * cases.
147  */
148 static int __init
149 set_nptcg(char *str)
150 {
151 	int value = 0;
152 
153 	get_option(&str, &value);
154 	setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
155 
156 	return 1;
157 }
158 
159 __setup("nptcg=", set_nptcg);
160 
161 /*
162  * Maximum number of simultaneous ptc.g purges in the system can
163  * be defined by PAL_VM_SUMMARY (in which case we should take
164  * the smallest value for any cpu in the system) or by the PAL
165  * override table (in which case we should ignore the value from
166  * PAL_VM_SUMMARY).
167  *
168  * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
169  * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
170  * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
171  *
172  * Complicating the logic here is the fact that num_possible_cpus()
173  * isn't fully setup until we start bringing cpus online.
174  */
175 void
176 setup_ptcg_sem(int max_purges, int nptcg_from)
177 {
178 	static int kp_override;
179 	static int palo_override;
180 	static int firstcpu = 1;
181 
182 	if (toolatetochangeptcgsem) {
183 		if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
184 			BUG_ON(1 < nptcg);
185 		else
186 			BUG_ON(max_purges < nptcg);
187 		return;
188 	}
189 
190 	if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
191 		kp_override = 1;
192 		nptcg = max_purges;
193 		goto resetsema;
194 	}
195 	if (kp_override) {
196 		need_ptcg_sem = num_possible_cpus() > nptcg;
197 		return;
198 	}
199 
200 	if (nptcg_from == NPTCG_FROM_PALO) {
201 		palo_override = 1;
202 
203 		/* In PALO max_purges == 0 really means it! */
204 		if (max_purges == 0)
205 			panic("Whoa! Platform does not support global TLB purges.\n");
206 		nptcg = max_purges;
207 		if (nptcg == PALO_MAX_TLB_PURGES) {
208 			need_ptcg_sem = 0;
209 			return;
210 		}
211 		goto resetsema;
212 	}
213 	if (palo_override) {
214 		if (nptcg != PALO_MAX_TLB_PURGES)
215 			need_ptcg_sem = (num_possible_cpus() > nptcg);
216 		return;
217 	}
218 
219 	/* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
220 	if (max_purges == 0) max_purges = 1;
221 
222 	if (firstcpu) {
223 		nptcg = max_purges;
224 		firstcpu = 0;
225 	}
226 	if (max_purges < nptcg)
227 		nptcg = max_purges;
228 	if (nptcg == PAL_MAX_PURGES) {
229 		need_ptcg_sem = 0;
230 		return;
231 	} else
232 		need_ptcg_sem = (num_possible_cpus() > nptcg);
233 
234 resetsema:
235 	spinaphore_init(&ptcg_sem, max_purges);
236 }
237 
238 void
239 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
240 		       unsigned long end, unsigned long nbits)
241 {
242 	struct mm_struct *active_mm = current->active_mm;
243 
244 	toolatetochangeptcgsem = 1;
245 
246 	if (mm != active_mm) {
247 		/* Restore region IDs for mm */
248 		if (mm && active_mm) {
249 			activate_context(mm);
250 		} else {
251 			flush_tlb_all();
252 			return;
253 		}
254 	}
255 
256 	if (need_ptcg_sem)
257 		down_spin(&ptcg_sem);
258 
259 	do {
260 		/*
261 		 * Flush ALAT entries also.
262 		 */
263 		ia64_ptcga(start, (nbits << 2));
264 		ia64_srlz_i();
265 		start += (1UL << nbits);
266 	} while (start < end);
267 
268 	if (need_ptcg_sem)
269 		up_spin(&ptcg_sem);
270 
271         if (mm != active_mm) {
272                 activate_context(active_mm);
273         }
274 }
275 
276 void
277 local_flush_tlb_all (void)
278 {
279 	unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
280 
281 	addr    = local_cpu_data->ptce_base;
282 	count0  = local_cpu_data->ptce_count[0];
283 	count1  = local_cpu_data->ptce_count[1];
284 	stride0 = local_cpu_data->ptce_stride[0];
285 	stride1 = local_cpu_data->ptce_stride[1];
286 
287 	local_irq_save(flags);
288 	for (i = 0; i < count0; ++i) {
289 		for (j = 0; j < count1; ++j) {
290 			ia64_ptce(addr);
291 			addr += stride1;
292 		}
293 		addr += stride0;
294 	}
295 	local_irq_restore(flags);
296 	ia64_srlz_i();			/* srlz.i implies srlz.d */
297 }
298 
299 void
300 flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
301 		 unsigned long end)
302 {
303 	struct mm_struct *mm = vma->vm_mm;
304 	unsigned long size = end - start;
305 	unsigned long nbits;
306 
307 #ifndef CONFIG_SMP
308 	if (mm != current->active_mm) {
309 		mm->context = 0;
310 		return;
311 	}
312 #endif
313 
314 	nbits = ia64_fls(size + 0xfff);
315 	while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
316 			(nbits < purge.max_bits))
317 		++nbits;
318 	if (nbits > purge.max_bits)
319 		nbits = purge.max_bits;
320 	start &= ~((1UL << nbits) - 1);
321 
322 	preempt_disable();
323 #ifdef CONFIG_SMP
324 	if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
325 		platform_global_tlb_purge(mm, start, end, nbits);
326 		preempt_enable();
327 		return;
328 	}
329 #endif
330 	do {
331 		ia64_ptcl(start, (nbits<<2));
332 		start += (1UL << nbits);
333 	} while (start < end);
334 	preempt_enable();
335 	ia64_srlz_i();			/* srlz.i implies srlz.d */
336 }
337 EXPORT_SYMBOL(flush_tlb_range);
338 
339 void __devinit
340 ia64_tlb_init (void)
341 {
342 	ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
343 	u64 tr_pgbits;
344 	long status;
345 	pal_vm_info_1_u_t vm_info_1;
346 	pal_vm_info_2_u_t vm_info_2;
347 	int cpu = smp_processor_id();
348 
349 	if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
350 		printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
351 		       "defaulting to architected purge page-sizes.\n", status);
352 		purge.mask = 0x115557000UL;
353 	}
354 	purge.max_bits = ia64_fls(purge.mask);
355 
356 	ia64_get_ptce(&ptce_info);
357 	local_cpu_data->ptce_base = ptce_info.base;
358 	local_cpu_data->ptce_count[0] = ptce_info.count[0];
359 	local_cpu_data->ptce_count[1] = ptce_info.count[1];
360 	local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
361 	local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
362 
363 	local_flush_tlb_all();	/* nuke left overs from bootstrapping... */
364 	status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
365 
366 	if (status) {
367 		printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
368 		per_cpu(ia64_tr_num, cpu) = 8;
369 		return;
370 	}
371 	per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
372 	if (per_cpu(ia64_tr_num, cpu) >
373 				(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
374 		per_cpu(ia64_tr_num, cpu) =
375 				vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
376 	if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
377 		static int justonce = 1;
378 		per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
379 		if (justonce) {
380 			justonce = 0;
381 			printk(KERN_DEBUG "TR register number exceeds "
382 			       "IA64_TR_ALLOC_MAX!\n");
383 		}
384 	}
385 }
386 
387 /*
388  * is_tr_overlap
389  *
390  * Check overlap with inserted TRs.
391  */
392 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
393 {
394 	u64 tr_log_size;
395 	u64 tr_end;
396 	u64 va_rr = ia64_get_rr(va);
397 	u64 va_rid = RR_TO_RID(va_rr);
398 	u64 va_end = va + (1<<log_size) - 1;
399 
400 	if (va_rid != RR_TO_RID(p->rr))
401 		return 0;
402 	tr_log_size = (p->itir & 0xff) >> 2;
403 	tr_end = p->ifa + (1<<tr_log_size) - 1;
404 
405 	if (va > tr_end || p->ifa > va_end)
406 		return 0;
407 	return 1;
408 
409 }
410 
411 /*
412  * ia64_insert_tr in virtual mode. Allocate a TR slot
413  *
414  * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
415  *
416  * va 	: virtual address.
417  * pte 	: pte entries inserted.
418  * log_size: range to be covered.
419  *
420  * Return value:  <0 :  error No.
421  *
422  *		  >=0 : slot number allocated for TR.
423  * Must be called with preemption disabled.
424  */
425 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
426 {
427 	int i, r;
428 	unsigned long psr;
429 	struct ia64_tr_entry *p;
430 	int cpu = smp_processor_id();
431 
432 	if (!ia64_idtrs[cpu]) {
433 		ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX *
434 				sizeof (struct ia64_tr_entry), GFP_KERNEL);
435 		if (!ia64_idtrs[cpu])
436 			return -ENOMEM;
437 	}
438 	r = -EINVAL;
439 	/*Check overlap with existing TR entries*/
440 	if (target_mask & 0x1) {
441 		p = ia64_idtrs[cpu];
442 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
443 								i++, p++) {
444 			if (p->pte & 0x1)
445 				if (is_tr_overlap(p, va, log_size)) {
446 					printk(KERN_DEBUG "Overlapped Entry"
447 						"Inserted for TR Reigster!!\n");
448 					goto out;
449 			}
450 		}
451 	}
452 	if (target_mask & 0x2) {
453 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
454 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
455 								i++, p++) {
456 			if (p->pte & 0x1)
457 				if (is_tr_overlap(p, va, log_size)) {
458 					printk(KERN_DEBUG "Overlapped Entry"
459 						"Inserted for TR Reigster!!\n");
460 					goto out;
461 				}
462 		}
463 	}
464 
465 	for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
466 		switch (target_mask & 0x3) {
467 		case 1:
468 			if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
469 				goto found;
470 			continue;
471 		case 2:
472 			if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
473 				goto found;
474 			continue;
475 		case 3:
476 			if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
477 			    !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
478 				goto found;
479 			continue;
480 		default:
481 			r = -EINVAL;
482 			goto out;
483 		}
484 	}
485 found:
486 	if (i >= per_cpu(ia64_tr_num, cpu))
487 		return -EBUSY;
488 
489 	/*Record tr info for mca hander use!*/
490 	if (i > per_cpu(ia64_tr_used, cpu))
491 		per_cpu(ia64_tr_used, cpu) = i;
492 
493 	psr = ia64_clear_ic();
494 	if (target_mask & 0x1) {
495 		ia64_itr(0x1, i, va, pte, log_size);
496 		ia64_srlz_i();
497 		p = ia64_idtrs[cpu] + i;
498 		p->ifa = va;
499 		p->pte = pte;
500 		p->itir = log_size << 2;
501 		p->rr = ia64_get_rr(va);
502 	}
503 	if (target_mask & 0x2) {
504 		ia64_itr(0x2, i, va, pte, log_size);
505 		ia64_srlz_i();
506 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
507 		p->ifa = va;
508 		p->pte = pte;
509 		p->itir = log_size << 2;
510 		p->rr = ia64_get_rr(va);
511 	}
512 	ia64_set_psr(psr);
513 	r = i;
514 out:
515 	return r;
516 }
517 EXPORT_SYMBOL_GPL(ia64_itr_entry);
518 
519 /*
520  * ia64_purge_tr
521  *
522  * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
523  * slot: slot number to be freed.
524  *
525  * Must be called with preemption disabled.
526  */
527 void ia64_ptr_entry(u64 target_mask, int slot)
528 {
529 	int cpu = smp_processor_id();
530 	int i;
531 	struct ia64_tr_entry *p;
532 
533 	if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
534 		return;
535 
536 	if (target_mask & 0x1) {
537 		p = ia64_idtrs[cpu] + slot;
538 		if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
539 			p->pte = 0;
540 			ia64_ptr(0x1, p->ifa, p->itir>>2);
541 			ia64_srlz_i();
542 		}
543 	}
544 
545 	if (target_mask & 0x2) {
546 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
547 		if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
548 			p->pte = 0;
549 			ia64_ptr(0x2, p->ifa, p->itir>>2);
550 			ia64_srlz_i();
551 		}
552 	}
553 
554 	for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
555 		if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
556 		    ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
557 			break;
558 	}
559 	per_cpu(ia64_tr_used, cpu) = i;
560 }
561 EXPORT_SYMBOL_GPL(ia64_ptr_entry);
562