1 /* 2 * TLB support routines. 3 * 4 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 7 * 08/02/00 A. Mallick <asit.k.mallick@intel.com> 8 * Modified RID allocation for SMP 9 * Goutham Rao <goutham.rao@intel.com> 10 * IPI based ptc implementation and A-step IPI implementation. 11 * Rohit Seth <rohit.seth@intel.com> 12 * Ken Chen <kenneth.w.chen@intel.com> 13 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation 14 * Copyright (C) 2007 Intel Corp 15 * Fenghua Yu <fenghua.yu@intel.com> 16 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. 17 */ 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/smp.h> 23 #include <linux/mm.h> 24 #include <linux/bootmem.h> 25 26 #include <asm/delay.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgalloc.h> 29 #include <asm/pal.h> 30 #include <asm/tlbflush.h> 31 #include <asm/dma.h> 32 #include <asm/processor.h> 33 #include <asm/sal.h> 34 #include <asm/tlb.h> 35 36 static struct { 37 u64 mask; /* mask of supported purge page-sizes */ 38 unsigned long max_bits; /* log2 of largest supported purge page-size */ 39 } purge; 40 41 struct ia64_ctx ia64_ctx = { 42 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), 43 .next = 1, 44 .max_ctx = ~0U 45 }; 46 47 DEFINE_PER_CPU(u8, ia64_need_tlb_flush); 48 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ 49 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ 50 51 struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; 52 53 /* 54 * Initializes the ia64_ctx.bitmap array based on max_ctx+1. 55 * Called after cpu_init() has setup ia64_ctx.max_ctx based on 56 * maximum RID that is supported by boot CPU. 57 */ 58 void __init 59 mmu_context_init (void) 60 { 61 ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3); 62 ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3); 63 } 64 65 /* 66 * Acquire the ia64_ctx.lock before calling this function! 67 */ 68 void 69 wrap_mmu_context (struct mm_struct *mm) 70 { 71 int i, cpu; 72 unsigned long flush_bit; 73 74 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { 75 flush_bit = xchg(&ia64_ctx.flushmap[i], 0); 76 ia64_ctx.bitmap[i] ^= flush_bit; 77 } 78 79 /* use offset at 300 to skip daemons */ 80 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, 81 ia64_ctx.max_ctx, 300); 82 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, 83 ia64_ctx.max_ctx, ia64_ctx.next); 84 85 /* 86 * can't call flush_tlb_all() here because of race condition 87 * with O(1) scheduler [EF] 88 */ 89 cpu = get_cpu(); /* prevent preemption/migration */ 90 for_each_online_cpu(i) 91 if (i != cpu) 92 per_cpu(ia64_need_tlb_flush, i) = 1; 93 put_cpu(); 94 local_flush_tlb_all(); 95 } 96 97 /* 98 * Implement "spinaphores" ... like counting semaphores, but they 99 * spin instead of sleeping. If there are ever any other users for 100 * this primitive it can be moved up to a spinaphore.h header. 101 */ 102 struct spinaphore { 103 unsigned long ticket; 104 unsigned long serve; 105 }; 106 107 static inline void spinaphore_init(struct spinaphore *ss, int val) 108 { 109 ss->ticket = 0; 110 ss->serve = val; 111 } 112 113 static inline void down_spin(struct spinaphore *ss) 114 { 115 unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; 116 117 if (time_before(t, ss->serve)) 118 return; 119 120 ia64_invala(); 121 122 for (;;) { 123 asm volatile ("ld4.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); 124 if (time_before(t, serve)) 125 return; 126 cpu_relax(); 127 } 128 } 129 130 static inline void up_spin(struct spinaphore *ss) 131 { 132 ia64_fetchadd(1, &ss->serve, rel); 133 } 134 135 static struct spinaphore ptcg_sem; 136 static u16 nptcg = 1; 137 static int need_ptcg_sem = 1; 138 static int toolatetochangeptcgsem = 0; 139 140 /* 141 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB 142 * purges which is reported from either PAL or SAL PALO. 143 * 144 * We don't have sanity checking for nptcg value. It's the user's responsibility 145 * for valid nptcg value on the platform. Otherwise, kernel may hang in some 146 * cases. 147 */ 148 static int __init 149 set_nptcg(char *str) 150 { 151 int value = 0; 152 153 get_option(&str, &value); 154 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); 155 156 return 1; 157 } 158 159 __setup("nptcg=", set_nptcg); 160 161 /* 162 * Maximum number of simultaneous ptc.g purges in the system can 163 * be defined by PAL_VM_SUMMARY (in which case we should take 164 * the smallest value for any cpu in the system) or by the PAL 165 * override table (in which case we should ignore the value from 166 * PAL_VM_SUMMARY). 167 * 168 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g 169 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, 170 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. 171 * 172 * Complicating the logic here is the fact that num_possible_cpus() 173 * isn't fully setup until we start bringing cpus online. 174 */ 175 void 176 setup_ptcg_sem(int max_purges, int nptcg_from) 177 { 178 static int kp_override; 179 static int palo_override; 180 static int firstcpu = 1; 181 182 if (toolatetochangeptcgsem) { 183 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) 184 BUG_ON(1 < nptcg); 185 else 186 BUG_ON(max_purges < nptcg); 187 return; 188 } 189 190 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { 191 kp_override = 1; 192 nptcg = max_purges; 193 goto resetsema; 194 } 195 if (kp_override) { 196 need_ptcg_sem = num_possible_cpus() > nptcg; 197 return; 198 } 199 200 if (nptcg_from == NPTCG_FROM_PALO) { 201 palo_override = 1; 202 203 /* In PALO max_purges == 0 really means it! */ 204 if (max_purges == 0) 205 panic("Whoa! Platform does not support global TLB purges.\n"); 206 nptcg = max_purges; 207 if (nptcg == PALO_MAX_TLB_PURGES) { 208 need_ptcg_sem = 0; 209 return; 210 } 211 goto resetsema; 212 } 213 if (palo_override) { 214 if (nptcg != PALO_MAX_TLB_PURGES) 215 need_ptcg_sem = (num_possible_cpus() > nptcg); 216 return; 217 } 218 219 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ 220 if (max_purges == 0) max_purges = 1; 221 222 if (firstcpu) { 223 nptcg = max_purges; 224 firstcpu = 0; 225 } 226 if (max_purges < nptcg) 227 nptcg = max_purges; 228 if (nptcg == PAL_MAX_PURGES) { 229 need_ptcg_sem = 0; 230 return; 231 } else 232 need_ptcg_sem = (num_possible_cpus() > nptcg); 233 234 resetsema: 235 spinaphore_init(&ptcg_sem, max_purges); 236 } 237 238 void 239 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, 240 unsigned long end, unsigned long nbits) 241 { 242 struct mm_struct *active_mm = current->active_mm; 243 244 toolatetochangeptcgsem = 1; 245 246 if (mm != active_mm) { 247 /* Restore region IDs for mm */ 248 if (mm && active_mm) { 249 activate_context(mm); 250 } else { 251 flush_tlb_all(); 252 return; 253 } 254 } 255 256 if (need_ptcg_sem) 257 down_spin(&ptcg_sem); 258 259 do { 260 /* 261 * Flush ALAT entries also. 262 */ 263 ia64_ptcga(start, (nbits << 2)); 264 ia64_srlz_i(); 265 start += (1UL << nbits); 266 } while (start < end); 267 268 if (need_ptcg_sem) 269 up_spin(&ptcg_sem); 270 271 if (mm != active_mm) { 272 activate_context(active_mm); 273 } 274 } 275 276 void 277 local_flush_tlb_all (void) 278 { 279 unsigned long i, j, flags, count0, count1, stride0, stride1, addr; 280 281 addr = local_cpu_data->ptce_base; 282 count0 = local_cpu_data->ptce_count[0]; 283 count1 = local_cpu_data->ptce_count[1]; 284 stride0 = local_cpu_data->ptce_stride[0]; 285 stride1 = local_cpu_data->ptce_stride[1]; 286 287 local_irq_save(flags); 288 for (i = 0; i < count0; ++i) { 289 for (j = 0; j < count1; ++j) { 290 ia64_ptce(addr); 291 addr += stride1; 292 } 293 addr += stride0; 294 } 295 local_irq_restore(flags); 296 ia64_srlz_i(); /* srlz.i implies srlz.d */ 297 } 298 299 void 300 flush_tlb_range (struct vm_area_struct *vma, unsigned long start, 301 unsigned long end) 302 { 303 struct mm_struct *mm = vma->vm_mm; 304 unsigned long size = end - start; 305 unsigned long nbits; 306 307 #ifndef CONFIG_SMP 308 if (mm != current->active_mm) { 309 mm->context = 0; 310 return; 311 } 312 #endif 313 314 nbits = ia64_fls(size + 0xfff); 315 while (unlikely (((1UL << nbits) & purge.mask) == 0) && 316 (nbits < purge.max_bits)) 317 ++nbits; 318 if (nbits > purge.max_bits) 319 nbits = purge.max_bits; 320 start &= ~((1UL << nbits) - 1); 321 322 preempt_disable(); 323 #ifdef CONFIG_SMP 324 if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { 325 platform_global_tlb_purge(mm, start, end, nbits); 326 preempt_enable(); 327 return; 328 } 329 #endif 330 do { 331 ia64_ptcl(start, (nbits<<2)); 332 start += (1UL << nbits); 333 } while (start < end); 334 preempt_enable(); 335 ia64_srlz_i(); /* srlz.i implies srlz.d */ 336 } 337 EXPORT_SYMBOL(flush_tlb_range); 338 339 void __devinit 340 ia64_tlb_init (void) 341 { 342 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */ 343 u64 tr_pgbits; 344 long status; 345 pal_vm_info_1_u_t vm_info_1; 346 pal_vm_info_2_u_t vm_info_2; 347 int cpu = smp_processor_id(); 348 349 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { 350 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " 351 "defaulting to architected purge page-sizes.\n", status); 352 purge.mask = 0x115557000UL; 353 } 354 purge.max_bits = ia64_fls(purge.mask); 355 356 ia64_get_ptce(&ptce_info); 357 local_cpu_data->ptce_base = ptce_info.base; 358 local_cpu_data->ptce_count[0] = ptce_info.count[0]; 359 local_cpu_data->ptce_count[1] = ptce_info.count[1]; 360 local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; 361 local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; 362 363 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ 364 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); 365 366 if (status) { 367 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); 368 per_cpu(ia64_tr_num, cpu) = 8; 369 return; 370 } 371 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; 372 if (per_cpu(ia64_tr_num, cpu) > 373 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) 374 per_cpu(ia64_tr_num, cpu) = 375 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; 376 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { 377 static int justonce = 1; 378 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; 379 if (justonce) { 380 justonce = 0; 381 printk(KERN_DEBUG "TR register number exceeds " 382 "IA64_TR_ALLOC_MAX!\n"); 383 } 384 } 385 } 386 387 /* 388 * is_tr_overlap 389 * 390 * Check overlap with inserted TRs. 391 */ 392 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) 393 { 394 u64 tr_log_size; 395 u64 tr_end; 396 u64 va_rr = ia64_get_rr(va); 397 u64 va_rid = RR_TO_RID(va_rr); 398 u64 va_end = va + (1<<log_size) - 1; 399 400 if (va_rid != RR_TO_RID(p->rr)) 401 return 0; 402 tr_log_size = (p->itir & 0xff) >> 2; 403 tr_end = p->ifa + (1<<tr_log_size) - 1; 404 405 if (va > tr_end || p->ifa > va_end) 406 return 0; 407 return 1; 408 409 } 410 411 /* 412 * ia64_insert_tr in virtual mode. Allocate a TR slot 413 * 414 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr 415 * 416 * va : virtual address. 417 * pte : pte entries inserted. 418 * log_size: range to be covered. 419 * 420 * Return value: <0 : error No. 421 * 422 * >=0 : slot number allocated for TR. 423 * Must be called with preemption disabled. 424 */ 425 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) 426 { 427 int i, r; 428 unsigned long psr; 429 struct ia64_tr_entry *p; 430 int cpu = smp_processor_id(); 431 432 if (!ia64_idtrs[cpu]) { 433 ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX * 434 sizeof (struct ia64_tr_entry), GFP_KERNEL); 435 if (!ia64_idtrs[cpu]) 436 return -ENOMEM; 437 } 438 r = -EINVAL; 439 /*Check overlap with existing TR entries*/ 440 if (target_mask & 0x1) { 441 p = ia64_idtrs[cpu]; 442 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 443 i++, p++) { 444 if (p->pte & 0x1) 445 if (is_tr_overlap(p, va, log_size)) { 446 printk(KERN_DEBUG "Overlapped Entry" 447 "Inserted for TR Reigster!!\n"); 448 goto out; 449 } 450 } 451 } 452 if (target_mask & 0x2) { 453 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; 454 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 455 i++, p++) { 456 if (p->pte & 0x1) 457 if (is_tr_overlap(p, va, log_size)) { 458 printk(KERN_DEBUG "Overlapped Entry" 459 "Inserted for TR Reigster!!\n"); 460 goto out; 461 } 462 } 463 } 464 465 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { 466 switch (target_mask & 0x3) { 467 case 1: 468 if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) 469 goto found; 470 continue; 471 case 2: 472 if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 473 goto found; 474 continue; 475 case 3: 476 if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && 477 !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 478 goto found; 479 continue; 480 default: 481 r = -EINVAL; 482 goto out; 483 } 484 } 485 found: 486 if (i >= per_cpu(ia64_tr_num, cpu)) 487 return -EBUSY; 488 489 /*Record tr info for mca hander use!*/ 490 if (i > per_cpu(ia64_tr_used, cpu)) 491 per_cpu(ia64_tr_used, cpu) = i; 492 493 psr = ia64_clear_ic(); 494 if (target_mask & 0x1) { 495 ia64_itr(0x1, i, va, pte, log_size); 496 ia64_srlz_i(); 497 p = ia64_idtrs[cpu] + i; 498 p->ifa = va; 499 p->pte = pte; 500 p->itir = log_size << 2; 501 p->rr = ia64_get_rr(va); 502 } 503 if (target_mask & 0x2) { 504 ia64_itr(0x2, i, va, pte, log_size); 505 ia64_srlz_i(); 506 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; 507 p->ifa = va; 508 p->pte = pte; 509 p->itir = log_size << 2; 510 p->rr = ia64_get_rr(va); 511 } 512 ia64_set_psr(psr); 513 r = i; 514 out: 515 return r; 516 } 517 EXPORT_SYMBOL_GPL(ia64_itr_entry); 518 519 /* 520 * ia64_purge_tr 521 * 522 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. 523 * slot: slot number to be freed. 524 * 525 * Must be called with preemption disabled. 526 */ 527 void ia64_ptr_entry(u64 target_mask, int slot) 528 { 529 int cpu = smp_processor_id(); 530 int i; 531 struct ia64_tr_entry *p; 532 533 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) 534 return; 535 536 if (target_mask & 0x1) { 537 p = ia64_idtrs[cpu] + slot; 538 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 539 p->pte = 0; 540 ia64_ptr(0x1, p->ifa, p->itir>>2); 541 ia64_srlz_i(); 542 } 543 } 544 545 if (target_mask & 0x2) { 546 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; 547 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 548 p->pte = 0; 549 ia64_ptr(0x2, p->ifa, p->itir>>2); 550 ia64_srlz_i(); 551 } 552 } 553 554 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { 555 if (((ia64_idtrs[cpu] + i)->pte & 0x1) || 556 ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 557 break; 558 } 559 per_cpu(ia64_tr_used, cpu) = i; 560 } 561 EXPORT_SYMBOL_GPL(ia64_ptr_entry); 562