1 /* 2 * TLB support routines. 3 * 4 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 7 * 08/02/00 A. Mallick <asit.k.mallick@intel.com> 8 * Modified RID allocation for SMP 9 * Goutham Rao <goutham.rao@intel.com> 10 * IPI based ptc implementation and A-step IPI implementation. 11 * Rohit Seth <rohit.seth@intel.com> 12 * Ken Chen <kenneth.w.chen@intel.com> 13 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation 14 * Copyright (C) 2007 Intel Corp 15 * Fenghua Yu <fenghua.yu@intel.com> 16 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. 17 */ 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/smp.h> 23 #include <linux/mm.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 27 #include <asm/delay.h> 28 #include <asm/mmu_context.h> 29 #include <asm/pgalloc.h> 30 #include <asm/pal.h> 31 #include <asm/tlbflush.h> 32 #include <asm/dma.h> 33 #include <asm/processor.h> 34 #include <asm/sal.h> 35 #include <asm/tlb.h> 36 37 static struct { 38 u64 mask; /* mask of supported purge page-sizes */ 39 unsigned long max_bits; /* log2 of largest supported purge page-size */ 40 } purge; 41 42 struct ia64_ctx ia64_ctx = { 43 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), 44 .next = 1, 45 .max_ctx = ~0U 46 }; 47 48 DEFINE_PER_CPU(u8, ia64_need_tlb_flush); 49 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ 50 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ 51 52 struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; 53 54 /* 55 * Initializes the ia64_ctx.bitmap array based on max_ctx+1. 56 * Called after cpu_init() has setup ia64_ctx.max_ctx based on 57 * maximum RID that is supported by boot CPU. 58 */ 59 void __init 60 mmu_context_init (void) 61 { 62 ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, 63 SMP_CACHE_BYTES); 64 ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, 65 SMP_CACHE_BYTES); 66 } 67 68 /* 69 * Acquire the ia64_ctx.lock before calling this function! 70 */ 71 void 72 wrap_mmu_context (struct mm_struct *mm) 73 { 74 int i, cpu; 75 unsigned long flush_bit; 76 77 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { 78 flush_bit = xchg(&ia64_ctx.flushmap[i], 0); 79 ia64_ctx.bitmap[i] ^= flush_bit; 80 } 81 82 /* use offset at 300 to skip daemons */ 83 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, 84 ia64_ctx.max_ctx, 300); 85 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, 86 ia64_ctx.max_ctx, ia64_ctx.next); 87 88 /* 89 * can't call flush_tlb_all() here because of race condition 90 * with O(1) scheduler [EF] 91 */ 92 cpu = get_cpu(); /* prevent preemption/migration */ 93 for_each_online_cpu(i) 94 if (i != cpu) 95 per_cpu(ia64_need_tlb_flush, i) = 1; 96 put_cpu(); 97 local_flush_tlb_all(); 98 } 99 100 /* 101 * Implement "spinaphores" ... like counting semaphores, but they 102 * spin instead of sleeping. If there are ever any other users for 103 * this primitive it can be moved up to a spinaphore.h header. 104 */ 105 struct spinaphore { 106 unsigned long ticket; 107 unsigned long serve; 108 }; 109 110 static inline void spinaphore_init(struct spinaphore *ss, int val) 111 { 112 ss->ticket = 0; 113 ss->serve = val; 114 } 115 116 static inline void down_spin(struct spinaphore *ss) 117 { 118 unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; 119 120 if (time_before(t, ss->serve)) 121 return; 122 123 ia64_invala(); 124 125 for (;;) { 126 asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); 127 if (time_before(t, serve)) 128 return; 129 cpu_relax(); 130 } 131 } 132 133 static inline void up_spin(struct spinaphore *ss) 134 { 135 ia64_fetchadd(1, &ss->serve, rel); 136 } 137 138 static struct spinaphore ptcg_sem; 139 static u16 nptcg = 1; 140 static int need_ptcg_sem = 1; 141 static int toolatetochangeptcgsem = 0; 142 143 /* 144 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB 145 * purges which is reported from either PAL or SAL PALO. 146 * 147 * We don't have sanity checking for nptcg value. It's the user's responsibility 148 * for valid nptcg value on the platform. Otherwise, kernel may hang in some 149 * cases. 150 */ 151 static int __init 152 set_nptcg(char *str) 153 { 154 int value = 0; 155 156 get_option(&str, &value); 157 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); 158 159 return 1; 160 } 161 162 __setup("nptcg=", set_nptcg); 163 164 /* 165 * Maximum number of simultaneous ptc.g purges in the system can 166 * be defined by PAL_VM_SUMMARY (in which case we should take 167 * the smallest value for any cpu in the system) or by the PAL 168 * override table (in which case we should ignore the value from 169 * PAL_VM_SUMMARY). 170 * 171 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g 172 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, 173 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. 174 * 175 * Complicating the logic here is the fact that num_possible_cpus() 176 * isn't fully setup until we start bringing cpus online. 177 */ 178 void 179 setup_ptcg_sem(int max_purges, int nptcg_from) 180 { 181 static int kp_override; 182 static int palo_override; 183 static int firstcpu = 1; 184 185 if (toolatetochangeptcgsem) { 186 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) 187 BUG_ON(1 < nptcg); 188 else 189 BUG_ON(max_purges < nptcg); 190 return; 191 } 192 193 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { 194 kp_override = 1; 195 nptcg = max_purges; 196 goto resetsema; 197 } 198 if (kp_override) { 199 need_ptcg_sem = num_possible_cpus() > nptcg; 200 return; 201 } 202 203 if (nptcg_from == NPTCG_FROM_PALO) { 204 palo_override = 1; 205 206 /* In PALO max_purges == 0 really means it! */ 207 if (max_purges == 0) 208 panic("Whoa! Platform does not support global TLB purges.\n"); 209 nptcg = max_purges; 210 if (nptcg == PALO_MAX_TLB_PURGES) { 211 need_ptcg_sem = 0; 212 return; 213 } 214 goto resetsema; 215 } 216 if (palo_override) { 217 if (nptcg != PALO_MAX_TLB_PURGES) 218 need_ptcg_sem = (num_possible_cpus() > nptcg); 219 return; 220 } 221 222 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ 223 if (max_purges == 0) max_purges = 1; 224 225 if (firstcpu) { 226 nptcg = max_purges; 227 firstcpu = 0; 228 } 229 if (max_purges < nptcg) 230 nptcg = max_purges; 231 if (nptcg == PAL_MAX_PURGES) { 232 need_ptcg_sem = 0; 233 return; 234 } else 235 need_ptcg_sem = (num_possible_cpus() > nptcg); 236 237 resetsema: 238 spinaphore_init(&ptcg_sem, max_purges); 239 } 240 241 void 242 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, 243 unsigned long end, unsigned long nbits) 244 { 245 struct mm_struct *active_mm = current->active_mm; 246 247 toolatetochangeptcgsem = 1; 248 249 if (mm != active_mm) { 250 /* Restore region IDs for mm */ 251 if (mm && active_mm) { 252 activate_context(mm); 253 } else { 254 flush_tlb_all(); 255 return; 256 } 257 } 258 259 if (need_ptcg_sem) 260 down_spin(&ptcg_sem); 261 262 do { 263 /* 264 * Flush ALAT entries also. 265 */ 266 ia64_ptcga(start, (nbits << 2)); 267 ia64_srlz_i(); 268 start += (1UL << nbits); 269 } while (start < end); 270 271 if (need_ptcg_sem) 272 up_spin(&ptcg_sem); 273 274 if (mm != active_mm) { 275 activate_context(active_mm); 276 } 277 } 278 279 void 280 local_flush_tlb_all (void) 281 { 282 unsigned long i, j, flags, count0, count1, stride0, stride1, addr; 283 284 addr = local_cpu_data->ptce_base; 285 count0 = local_cpu_data->ptce_count[0]; 286 count1 = local_cpu_data->ptce_count[1]; 287 stride0 = local_cpu_data->ptce_stride[0]; 288 stride1 = local_cpu_data->ptce_stride[1]; 289 290 local_irq_save(flags); 291 for (i = 0; i < count0; ++i) { 292 for (j = 0; j < count1; ++j) { 293 ia64_ptce(addr); 294 addr += stride1; 295 } 296 addr += stride0; 297 } 298 local_irq_restore(flags); 299 ia64_srlz_i(); /* srlz.i implies srlz.d */ 300 } 301 302 void 303 flush_tlb_range (struct vm_area_struct *vma, unsigned long start, 304 unsigned long end) 305 { 306 struct mm_struct *mm = vma->vm_mm; 307 unsigned long size = end - start; 308 unsigned long nbits; 309 310 #ifndef CONFIG_SMP 311 if (mm != current->active_mm) { 312 mm->context = 0; 313 return; 314 } 315 #endif 316 317 nbits = ia64_fls(size + 0xfff); 318 while (unlikely (((1UL << nbits) & purge.mask) == 0) && 319 (nbits < purge.max_bits)) 320 ++nbits; 321 if (nbits > purge.max_bits) 322 nbits = purge.max_bits; 323 start &= ~((1UL << nbits) - 1); 324 325 preempt_disable(); 326 #ifdef CONFIG_SMP 327 if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { 328 platform_global_tlb_purge(mm, start, end, nbits); 329 preempt_enable(); 330 return; 331 } 332 #endif 333 do { 334 ia64_ptcl(start, (nbits<<2)); 335 start += (1UL << nbits); 336 } while (start < end); 337 preempt_enable(); 338 ia64_srlz_i(); /* srlz.i implies srlz.d */ 339 } 340 EXPORT_SYMBOL(flush_tlb_range); 341 342 void ia64_tlb_init(void) 343 { 344 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */ 345 u64 tr_pgbits; 346 long status; 347 pal_vm_info_1_u_t vm_info_1; 348 pal_vm_info_2_u_t vm_info_2; 349 int cpu = smp_processor_id(); 350 351 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { 352 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " 353 "defaulting to architected purge page-sizes.\n", status); 354 purge.mask = 0x115557000UL; 355 } 356 purge.max_bits = ia64_fls(purge.mask); 357 358 ia64_get_ptce(&ptce_info); 359 local_cpu_data->ptce_base = ptce_info.base; 360 local_cpu_data->ptce_count[0] = ptce_info.count[0]; 361 local_cpu_data->ptce_count[1] = ptce_info.count[1]; 362 local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; 363 local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; 364 365 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ 366 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); 367 368 if (status) { 369 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); 370 per_cpu(ia64_tr_num, cpu) = 8; 371 return; 372 } 373 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; 374 if (per_cpu(ia64_tr_num, cpu) > 375 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) 376 per_cpu(ia64_tr_num, cpu) = 377 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; 378 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { 379 static int justonce = 1; 380 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; 381 if (justonce) { 382 justonce = 0; 383 printk(KERN_DEBUG "TR register number exceeds " 384 "IA64_TR_ALLOC_MAX!\n"); 385 } 386 } 387 } 388 389 /* 390 * is_tr_overlap 391 * 392 * Check overlap with inserted TRs. 393 */ 394 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) 395 { 396 u64 tr_log_size; 397 u64 tr_end; 398 u64 va_rr = ia64_get_rr(va); 399 u64 va_rid = RR_TO_RID(va_rr); 400 u64 va_end = va + (1<<log_size) - 1; 401 402 if (va_rid != RR_TO_RID(p->rr)) 403 return 0; 404 tr_log_size = (p->itir & 0xff) >> 2; 405 tr_end = p->ifa + (1<<tr_log_size) - 1; 406 407 if (va > tr_end || p->ifa > va_end) 408 return 0; 409 return 1; 410 411 } 412 413 /* 414 * ia64_insert_tr in virtual mode. Allocate a TR slot 415 * 416 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr 417 * 418 * va : virtual address. 419 * pte : pte entries inserted. 420 * log_size: range to be covered. 421 * 422 * Return value: <0 : error No. 423 * 424 * >=0 : slot number allocated for TR. 425 * Must be called with preemption disabled. 426 */ 427 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) 428 { 429 int i, r; 430 unsigned long psr; 431 struct ia64_tr_entry *p; 432 int cpu = smp_processor_id(); 433 434 if (!ia64_idtrs[cpu]) { 435 ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX, 436 sizeof(struct ia64_tr_entry), 437 GFP_KERNEL); 438 if (!ia64_idtrs[cpu]) 439 return -ENOMEM; 440 } 441 r = -EINVAL; 442 /*Check overlap with existing TR entries*/ 443 if (target_mask & 0x1) { 444 p = ia64_idtrs[cpu]; 445 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 446 i++, p++) { 447 if (p->pte & 0x1) 448 if (is_tr_overlap(p, va, log_size)) { 449 printk(KERN_DEBUG "Overlapped Entry" 450 "Inserted for TR Register!!\n"); 451 goto out; 452 } 453 } 454 } 455 if (target_mask & 0x2) { 456 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; 457 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 458 i++, p++) { 459 if (p->pte & 0x1) 460 if (is_tr_overlap(p, va, log_size)) { 461 printk(KERN_DEBUG "Overlapped Entry" 462 "Inserted for TR Register!!\n"); 463 goto out; 464 } 465 } 466 } 467 468 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { 469 switch (target_mask & 0x3) { 470 case 1: 471 if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) 472 goto found; 473 continue; 474 case 2: 475 if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 476 goto found; 477 continue; 478 case 3: 479 if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && 480 !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 481 goto found; 482 continue; 483 default: 484 r = -EINVAL; 485 goto out; 486 } 487 } 488 found: 489 if (i >= per_cpu(ia64_tr_num, cpu)) 490 return -EBUSY; 491 492 /*Record tr info for mca hander use!*/ 493 if (i > per_cpu(ia64_tr_used, cpu)) 494 per_cpu(ia64_tr_used, cpu) = i; 495 496 psr = ia64_clear_ic(); 497 if (target_mask & 0x1) { 498 ia64_itr(0x1, i, va, pte, log_size); 499 ia64_srlz_i(); 500 p = ia64_idtrs[cpu] + i; 501 p->ifa = va; 502 p->pte = pte; 503 p->itir = log_size << 2; 504 p->rr = ia64_get_rr(va); 505 } 506 if (target_mask & 0x2) { 507 ia64_itr(0x2, i, va, pte, log_size); 508 ia64_srlz_i(); 509 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; 510 p->ifa = va; 511 p->pte = pte; 512 p->itir = log_size << 2; 513 p->rr = ia64_get_rr(va); 514 } 515 ia64_set_psr(psr); 516 r = i; 517 out: 518 return r; 519 } 520 EXPORT_SYMBOL_GPL(ia64_itr_entry); 521 522 /* 523 * ia64_purge_tr 524 * 525 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. 526 * slot: slot number to be freed. 527 * 528 * Must be called with preemption disabled. 529 */ 530 void ia64_ptr_entry(u64 target_mask, int slot) 531 { 532 int cpu = smp_processor_id(); 533 int i; 534 struct ia64_tr_entry *p; 535 536 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) 537 return; 538 539 if (target_mask & 0x1) { 540 p = ia64_idtrs[cpu] + slot; 541 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 542 p->pte = 0; 543 ia64_ptr(0x1, p->ifa, p->itir>>2); 544 ia64_srlz_i(); 545 } 546 } 547 548 if (target_mask & 0x2) { 549 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; 550 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 551 p->pte = 0; 552 ia64_ptr(0x2, p->ifa, p->itir>>2); 553 ia64_srlz_i(); 554 } 555 } 556 557 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { 558 if (((ia64_idtrs[cpu] + i)->pte & 0x1) || 559 ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 560 break; 561 } 562 per_cpu(ia64_tr_used, cpu) = i; 563 } 564 EXPORT_SYMBOL_GPL(ia64_ptr_entry); 565