1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TLB support routines. 4 * 5 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 8 * 08/02/00 A. Mallick <asit.k.mallick@intel.com> 9 * Modified RID allocation for SMP 10 * Goutham Rao <goutham.rao@intel.com> 11 * IPI based ptc implementation and A-step IPI implementation. 12 * Rohit Seth <rohit.seth@intel.com> 13 * Ken Chen <kenneth.w.chen@intel.com> 14 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation 15 * Copyright (C) 2007 Intel Corp 16 * Fenghua Yu <fenghua.yu@intel.com> 17 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. 18 */ 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/kernel.h> 22 #include <linux/sched.h> 23 #include <linux/smp.h> 24 #include <linux/mm.h> 25 #include <linux/memblock.h> 26 #include <linux/slab.h> 27 28 #include <asm/delay.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgalloc.h> 31 #include <asm/pal.h> 32 #include <asm/tlbflush.h> 33 #include <asm/dma.h> 34 #include <asm/processor.h> 35 #include <asm/sal.h> 36 #include <asm/tlb.h> 37 38 static struct { 39 u64 mask; /* mask of supported purge page-sizes */ 40 unsigned long max_bits; /* log2 of largest supported purge page-size */ 41 } purge; 42 43 struct ia64_ctx ia64_ctx = { 44 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), 45 .next = 1, 46 .max_ctx = ~0U 47 }; 48 49 DEFINE_PER_CPU(u8, ia64_need_tlb_flush); 50 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ 51 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ 52 53 struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; 54 55 /* 56 * Initializes the ia64_ctx.bitmap array based on max_ctx+1. 57 * Called after cpu_init() has setup ia64_ctx.max_ctx based on 58 * maximum RID that is supported by boot CPU. 59 */ 60 void __init 61 mmu_context_init (void) 62 { 63 ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, 64 SMP_CACHE_BYTES); 65 if (!ia64_ctx.bitmap) 66 panic("%s: Failed to allocate %u bytes\n", __func__, 67 (ia64_ctx.max_ctx + 1) >> 3); 68 ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, 69 SMP_CACHE_BYTES); 70 if (!ia64_ctx.flushmap) 71 panic("%s: Failed to allocate %u bytes\n", __func__, 72 (ia64_ctx.max_ctx + 1) >> 3); 73 } 74 75 /* 76 * Acquire the ia64_ctx.lock before calling this function! 77 */ 78 void 79 wrap_mmu_context (struct mm_struct *mm) 80 { 81 int i, cpu; 82 unsigned long flush_bit; 83 84 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { 85 flush_bit = xchg(&ia64_ctx.flushmap[i], 0); 86 ia64_ctx.bitmap[i] ^= flush_bit; 87 } 88 89 /* use offset at 300 to skip daemons */ 90 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, 91 ia64_ctx.max_ctx, 300); 92 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, 93 ia64_ctx.max_ctx, ia64_ctx.next); 94 95 /* 96 * can't call flush_tlb_all() here because of race condition 97 * with O(1) scheduler [EF] 98 */ 99 cpu = get_cpu(); /* prevent preemption/migration */ 100 for_each_online_cpu(i) 101 if (i != cpu) 102 per_cpu(ia64_need_tlb_flush, i) = 1; 103 put_cpu(); 104 local_flush_tlb_all(); 105 } 106 107 /* 108 * Implement "spinaphores" ... like counting semaphores, but they 109 * spin instead of sleeping. If there are ever any other users for 110 * this primitive it can be moved up to a spinaphore.h header. 111 */ 112 struct spinaphore { 113 unsigned long ticket; 114 unsigned long serve; 115 }; 116 117 static inline void spinaphore_init(struct spinaphore *ss, int val) 118 { 119 ss->ticket = 0; 120 ss->serve = val; 121 } 122 123 static inline void down_spin(struct spinaphore *ss) 124 { 125 unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; 126 127 if (time_before(t, ss->serve)) 128 return; 129 130 ia64_invala(); 131 132 for (;;) { 133 asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); 134 if (time_before(t, serve)) 135 return; 136 cpu_relax(); 137 } 138 } 139 140 static inline void up_spin(struct spinaphore *ss) 141 { 142 ia64_fetchadd(1, &ss->serve, rel); 143 } 144 145 static struct spinaphore ptcg_sem; 146 static u16 nptcg = 1; 147 static int need_ptcg_sem = 1; 148 static int toolatetochangeptcgsem = 0; 149 150 /* 151 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB 152 * purges which is reported from either PAL or SAL PALO. 153 * 154 * We don't have sanity checking for nptcg value. It's the user's responsibility 155 * for valid nptcg value on the platform. Otherwise, kernel may hang in some 156 * cases. 157 */ 158 static int __init 159 set_nptcg(char *str) 160 { 161 int value = 0; 162 163 get_option(&str, &value); 164 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); 165 166 return 1; 167 } 168 169 __setup("nptcg=", set_nptcg); 170 171 /* 172 * Maximum number of simultaneous ptc.g purges in the system can 173 * be defined by PAL_VM_SUMMARY (in which case we should take 174 * the smallest value for any cpu in the system) or by the PAL 175 * override table (in which case we should ignore the value from 176 * PAL_VM_SUMMARY). 177 * 178 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g 179 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, 180 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. 181 * 182 * Complicating the logic here is the fact that num_possible_cpus() 183 * isn't fully setup until we start bringing cpus online. 184 */ 185 void 186 setup_ptcg_sem(int max_purges, int nptcg_from) 187 { 188 static int kp_override; 189 static int palo_override; 190 static int firstcpu = 1; 191 192 if (toolatetochangeptcgsem) { 193 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) 194 BUG_ON(1 < nptcg); 195 else 196 BUG_ON(max_purges < nptcg); 197 return; 198 } 199 200 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { 201 kp_override = 1; 202 nptcg = max_purges; 203 goto resetsema; 204 } 205 if (kp_override) { 206 need_ptcg_sem = num_possible_cpus() > nptcg; 207 return; 208 } 209 210 if (nptcg_from == NPTCG_FROM_PALO) { 211 palo_override = 1; 212 213 /* In PALO max_purges == 0 really means it! */ 214 if (max_purges == 0) 215 panic("Whoa! Platform does not support global TLB purges.\n"); 216 nptcg = max_purges; 217 if (nptcg == PALO_MAX_TLB_PURGES) { 218 need_ptcg_sem = 0; 219 return; 220 } 221 goto resetsema; 222 } 223 if (palo_override) { 224 if (nptcg != PALO_MAX_TLB_PURGES) 225 need_ptcg_sem = (num_possible_cpus() > nptcg); 226 return; 227 } 228 229 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ 230 if (max_purges == 0) max_purges = 1; 231 232 if (firstcpu) { 233 nptcg = max_purges; 234 firstcpu = 0; 235 } 236 if (max_purges < nptcg) 237 nptcg = max_purges; 238 if (nptcg == PAL_MAX_PURGES) { 239 need_ptcg_sem = 0; 240 return; 241 } else 242 need_ptcg_sem = (num_possible_cpus() > nptcg); 243 244 resetsema: 245 spinaphore_init(&ptcg_sem, max_purges); 246 } 247 248 #ifdef CONFIG_SMP 249 static void 250 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, 251 unsigned long end, unsigned long nbits) 252 { 253 struct mm_struct *active_mm = current->active_mm; 254 255 toolatetochangeptcgsem = 1; 256 257 if (mm != active_mm) { 258 /* Restore region IDs for mm */ 259 if (mm && active_mm) { 260 activate_context(mm); 261 } else { 262 flush_tlb_all(); 263 return; 264 } 265 } 266 267 if (need_ptcg_sem) 268 down_spin(&ptcg_sem); 269 270 do { 271 /* 272 * Flush ALAT entries also. 273 */ 274 ia64_ptcga(start, (nbits << 2)); 275 ia64_srlz_i(); 276 start += (1UL << nbits); 277 } while (start < end); 278 279 if (need_ptcg_sem) 280 up_spin(&ptcg_sem); 281 282 if (mm != active_mm) { 283 activate_context(active_mm); 284 } 285 } 286 #endif /* CONFIG_SMP */ 287 288 void 289 local_flush_tlb_all (void) 290 { 291 unsigned long i, j, flags, count0, count1, stride0, stride1, addr; 292 293 addr = local_cpu_data->ptce_base; 294 count0 = local_cpu_data->ptce_count[0]; 295 count1 = local_cpu_data->ptce_count[1]; 296 stride0 = local_cpu_data->ptce_stride[0]; 297 stride1 = local_cpu_data->ptce_stride[1]; 298 299 local_irq_save(flags); 300 for (i = 0; i < count0; ++i) { 301 for (j = 0; j < count1; ++j) { 302 ia64_ptce(addr); 303 addr += stride1; 304 } 305 addr += stride0; 306 } 307 local_irq_restore(flags); 308 ia64_srlz_i(); /* srlz.i implies srlz.d */ 309 } 310 311 static void 312 __flush_tlb_range (struct vm_area_struct *vma, unsigned long start, 313 unsigned long end) 314 { 315 struct mm_struct *mm = vma->vm_mm; 316 unsigned long size = end - start; 317 unsigned long nbits; 318 319 #ifndef CONFIG_SMP 320 if (mm != current->active_mm) { 321 mm->context = 0; 322 return; 323 } 324 #endif 325 326 nbits = ia64_fls(size + 0xfff); 327 while (unlikely (((1UL << nbits) & purge.mask) == 0) && 328 (nbits < purge.max_bits)) 329 ++nbits; 330 if (nbits > purge.max_bits) 331 nbits = purge.max_bits; 332 start &= ~((1UL << nbits) - 1); 333 334 preempt_disable(); 335 #ifdef CONFIG_SMP 336 if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { 337 ia64_global_tlb_purge(mm, start, end, nbits); 338 preempt_enable(); 339 return; 340 } 341 #endif 342 do { 343 ia64_ptcl(start, (nbits<<2)); 344 start += (1UL << nbits); 345 } while (start < end); 346 preempt_enable(); 347 ia64_srlz_i(); /* srlz.i implies srlz.d */ 348 } 349 350 void flush_tlb_range(struct vm_area_struct *vma, 351 unsigned long start, unsigned long end) 352 { 353 if (unlikely(end - start >= 1024*1024*1024*1024UL 354 || REGION_NUMBER(start) != REGION_NUMBER(end - 1))) { 355 /* 356 * If we flush more than a tera-byte or across regions, we're 357 * probably better off just flushing the entire TLB(s). This 358 * should be very rare and is not worth optimizing for. 359 */ 360 flush_tlb_all(); 361 } else { 362 /* flush the address range from the tlb */ 363 __flush_tlb_range(vma, start, end); 364 /* flush the virt. page-table area mapping the addr range */ 365 __flush_tlb_range(vma, ia64_thash(start), ia64_thash(end)); 366 } 367 } 368 EXPORT_SYMBOL(flush_tlb_range); 369 370 void ia64_tlb_init(void) 371 { 372 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */ 373 u64 tr_pgbits; 374 long status; 375 pal_vm_info_1_u_t vm_info_1; 376 pal_vm_info_2_u_t vm_info_2; 377 int cpu = smp_processor_id(); 378 379 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { 380 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " 381 "defaulting to architected purge page-sizes.\n", status); 382 purge.mask = 0x115557000UL; 383 } 384 purge.max_bits = ia64_fls(purge.mask); 385 386 ia64_get_ptce(&ptce_info); 387 local_cpu_data->ptce_base = ptce_info.base; 388 local_cpu_data->ptce_count[0] = ptce_info.count[0]; 389 local_cpu_data->ptce_count[1] = ptce_info.count[1]; 390 local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; 391 local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; 392 393 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ 394 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); 395 396 if (status) { 397 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); 398 per_cpu(ia64_tr_num, cpu) = 8; 399 return; 400 } 401 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; 402 if (per_cpu(ia64_tr_num, cpu) > 403 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) 404 per_cpu(ia64_tr_num, cpu) = 405 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; 406 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { 407 static int justonce = 1; 408 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; 409 if (justonce) { 410 justonce = 0; 411 printk(KERN_DEBUG "TR register number exceeds " 412 "IA64_TR_ALLOC_MAX!\n"); 413 } 414 } 415 } 416 417 /* 418 * is_tr_overlap 419 * 420 * Check overlap with inserted TRs. 421 */ 422 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) 423 { 424 u64 tr_log_size; 425 u64 tr_end; 426 u64 va_rr = ia64_get_rr(va); 427 u64 va_rid = RR_TO_RID(va_rr); 428 u64 va_end = va + (1<<log_size) - 1; 429 430 if (va_rid != RR_TO_RID(p->rr)) 431 return 0; 432 tr_log_size = (p->itir & 0xff) >> 2; 433 tr_end = p->ifa + (1<<tr_log_size) - 1; 434 435 if (va > tr_end || p->ifa > va_end) 436 return 0; 437 return 1; 438 439 } 440 441 /* 442 * ia64_insert_tr in virtual mode. Allocate a TR slot 443 * 444 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr 445 * 446 * va : virtual address. 447 * pte : pte entries inserted. 448 * log_size: range to be covered. 449 * 450 * Return value: <0 : error No. 451 * 452 * >=0 : slot number allocated for TR. 453 * Must be called with preemption disabled. 454 */ 455 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) 456 { 457 int i, r; 458 unsigned long psr; 459 struct ia64_tr_entry *p; 460 int cpu = smp_processor_id(); 461 462 if (!ia64_idtrs[cpu]) { 463 ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX, 464 sizeof(struct ia64_tr_entry), 465 GFP_KERNEL); 466 if (!ia64_idtrs[cpu]) 467 return -ENOMEM; 468 } 469 r = -EINVAL; 470 /*Check overlap with existing TR entries*/ 471 if (target_mask & 0x1) { 472 p = ia64_idtrs[cpu]; 473 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 474 i++, p++) { 475 if (p->pte & 0x1) 476 if (is_tr_overlap(p, va, log_size)) { 477 printk(KERN_DEBUG "Overlapped Entry" 478 "Inserted for TR Register!!\n"); 479 goto out; 480 } 481 } 482 } 483 if (target_mask & 0x2) { 484 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; 485 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 486 i++, p++) { 487 if (p->pte & 0x1) 488 if (is_tr_overlap(p, va, log_size)) { 489 printk(KERN_DEBUG "Overlapped Entry" 490 "Inserted for TR Register!!\n"); 491 goto out; 492 } 493 } 494 } 495 496 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { 497 switch (target_mask & 0x3) { 498 case 1: 499 if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) 500 goto found; 501 continue; 502 case 2: 503 if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 504 goto found; 505 continue; 506 case 3: 507 if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && 508 !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 509 goto found; 510 continue; 511 default: 512 r = -EINVAL; 513 goto out; 514 } 515 } 516 found: 517 if (i >= per_cpu(ia64_tr_num, cpu)) 518 return -EBUSY; 519 520 /*Record tr info for mca hander use!*/ 521 if (i > per_cpu(ia64_tr_used, cpu)) 522 per_cpu(ia64_tr_used, cpu) = i; 523 524 psr = ia64_clear_ic(); 525 if (target_mask & 0x1) { 526 ia64_itr(0x1, i, va, pte, log_size); 527 ia64_srlz_i(); 528 p = ia64_idtrs[cpu] + i; 529 p->ifa = va; 530 p->pte = pte; 531 p->itir = log_size << 2; 532 p->rr = ia64_get_rr(va); 533 } 534 if (target_mask & 0x2) { 535 ia64_itr(0x2, i, va, pte, log_size); 536 ia64_srlz_i(); 537 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; 538 p->ifa = va; 539 p->pte = pte; 540 p->itir = log_size << 2; 541 p->rr = ia64_get_rr(va); 542 } 543 ia64_set_psr(psr); 544 r = i; 545 out: 546 return r; 547 } 548 EXPORT_SYMBOL_GPL(ia64_itr_entry); 549 550 /* 551 * ia64_purge_tr 552 * 553 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. 554 * slot: slot number to be freed. 555 * 556 * Must be called with preemption disabled. 557 */ 558 void ia64_ptr_entry(u64 target_mask, int slot) 559 { 560 int cpu = smp_processor_id(); 561 int i; 562 struct ia64_tr_entry *p; 563 564 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) 565 return; 566 567 if (target_mask & 0x1) { 568 p = ia64_idtrs[cpu] + slot; 569 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 570 p->pte = 0; 571 ia64_ptr(0x1, p->ifa, p->itir>>2); 572 ia64_srlz_i(); 573 } 574 } 575 576 if (target_mask & 0x2) { 577 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; 578 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 579 p->pte = 0; 580 ia64_ptr(0x2, p->ifa, p->itir>>2); 581 ia64_srlz_i(); 582 } 583 } 584 585 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { 586 if (((ia64_idtrs[cpu] + i)->pte & 0x1) || 587 ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 588 break; 589 } 590 per_cpu(ia64_tr_used, cpu) = i; 591 } 592 EXPORT_SYMBOL_GPL(ia64_ptr_entry); 593