xref: /openbmc/linux/arch/ia64/mm/tlb.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TLB support routines.
4  *
5  * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
9  *		Modified RID allocation for SMP
10  *          Goutham Rao <goutham.rao@intel.com>
11  *              IPI based ptc implementation and A-step IPI implementation.
12  * Rohit Seth <rohit.seth@intel.com>
13  * Ken Chen <kenneth.w.chen@intel.com>
14  * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
15  * Copyright (C) 2007 Intel Corp
16  *	Fenghua Yu <fenghua.yu@intel.com>
17  *	Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18  */
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/slab.h>
27 
28 #include <asm/delay.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pal.h>
32 #include <asm/tlbflush.h>
33 #include <asm/dma.h>
34 #include <asm/processor.h>
35 #include <asm/sal.h>
36 #include <asm/tlb.h>
37 
38 static struct {
39 	u64 mask;		/* mask of supported purge page-sizes */
40 	unsigned long max_bits;	/* log2 of largest supported purge page-size */
41 } purge;
42 
43 struct ia64_ctx ia64_ctx = {
44 	.lock =	__SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
45 	.next =	1,
46 	.max_ctx = ~0U
47 };
48 
49 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
50 DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
51 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
52 
53 struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
54 
55 /*
56  * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
57  * Called after cpu_init() has setup ia64_ctx.max_ctx based on
58  * maximum RID that is supported by boot CPU.
59  */
60 void __init
61 mmu_context_init (void)
62 {
63 	ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
64 					 SMP_CACHE_BYTES);
65 	if (!ia64_ctx.bitmap)
66 		panic("%s: Failed to allocate %u bytes\n", __func__,
67 		      (ia64_ctx.max_ctx + 1) >> 3);
68 	ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
69 					   SMP_CACHE_BYTES);
70 	if (!ia64_ctx.flushmap)
71 		panic("%s: Failed to allocate %u bytes\n", __func__,
72 		      (ia64_ctx.max_ctx + 1) >> 3);
73 }
74 
75 /*
76  * Acquire the ia64_ctx.lock before calling this function!
77  */
78 void
79 wrap_mmu_context (struct mm_struct *mm)
80 {
81 	int i, cpu;
82 	unsigned long flush_bit;
83 
84 	for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
85 		flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
86 		ia64_ctx.bitmap[i] ^= flush_bit;
87 	}
88 
89 	/* use offset at 300 to skip daemons */
90 	ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
91 				ia64_ctx.max_ctx, 300);
92 	ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
93 				ia64_ctx.max_ctx, ia64_ctx.next);
94 
95 	/*
96 	 * can't call flush_tlb_all() here because of race condition
97 	 * with O(1) scheduler [EF]
98 	 */
99 	cpu = get_cpu(); /* prevent preemption/migration */
100 	for_each_online_cpu(i)
101 		if (i != cpu)
102 			per_cpu(ia64_need_tlb_flush, i) = 1;
103 	put_cpu();
104 	local_flush_tlb_all();
105 }
106 
107 /*
108  * Implement "spinaphores" ... like counting semaphores, but they
109  * spin instead of sleeping.  If there are ever any other users for
110  * this primitive it can be moved up to a spinaphore.h header.
111  */
112 struct spinaphore {
113 	unsigned long	ticket;
114 	unsigned long	serve;
115 };
116 
117 static inline void spinaphore_init(struct spinaphore *ss, int val)
118 {
119 	ss->ticket = 0;
120 	ss->serve = val;
121 }
122 
123 static inline void down_spin(struct spinaphore *ss)
124 {
125 	unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
126 
127 	if (time_before(t, ss->serve))
128 		return;
129 
130 	ia64_invala();
131 
132 	for (;;) {
133 		asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
134 		if (time_before(t, serve))
135 			return;
136 		cpu_relax();
137 	}
138 }
139 
140 static inline void up_spin(struct spinaphore *ss)
141 {
142 	ia64_fetchadd(1, &ss->serve, rel);
143 }
144 
145 static struct spinaphore ptcg_sem;
146 static u16 nptcg = 1;
147 static int need_ptcg_sem = 1;
148 static int toolatetochangeptcgsem = 0;
149 
150 /*
151  * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
152  * purges which is reported from either PAL or SAL PALO.
153  *
154  * We don't have sanity checking for nptcg value. It's the user's responsibility
155  * for valid nptcg value on the platform. Otherwise, kernel may hang in some
156  * cases.
157  */
158 static int __init
159 set_nptcg(char *str)
160 {
161 	int value = 0;
162 
163 	get_option(&str, &value);
164 	setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
165 
166 	return 1;
167 }
168 
169 __setup("nptcg=", set_nptcg);
170 
171 /*
172  * Maximum number of simultaneous ptc.g purges in the system can
173  * be defined by PAL_VM_SUMMARY (in which case we should take
174  * the smallest value for any cpu in the system) or by the PAL
175  * override table (in which case we should ignore the value from
176  * PAL_VM_SUMMARY).
177  *
178  * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
179  * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
180  * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
181  *
182  * Complicating the logic here is the fact that num_possible_cpus()
183  * isn't fully setup until we start bringing cpus online.
184  */
185 void
186 setup_ptcg_sem(int max_purges, int nptcg_from)
187 {
188 	static int kp_override;
189 	static int palo_override;
190 	static int firstcpu = 1;
191 
192 	if (toolatetochangeptcgsem) {
193 		if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
194 			BUG_ON(1 < nptcg);
195 		else
196 			BUG_ON(max_purges < nptcg);
197 		return;
198 	}
199 
200 	if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
201 		kp_override = 1;
202 		nptcg = max_purges;
203 		goto resetsema;
204 	}
205 	if (kp_override) {
206 		need_ptcg_sem = num_possible_cpus() > nptcg;
207 		return;
208 	}
209 
210 	if (nptcg_from == NPTCG_FROM_PALO) {
211 		palo_override = 1;
212 
213 		/* In PALO max_purges == 0 really means it! */
214 		if (max_purges == 0)
215 			panic("Whoa! Platform does not support global TLB purges.\n");
216 		nptcg = max_purges;
217 		if (nptcg == PALO_MAX_TLB_PURGES) {
218 			need_ptcg_sem = 0;
219 			return;
220 		}
221 		goto resetsema;
222 	}
223 	if (palo_override) {
224 		if (nptcg != PALO_MAX_TLB_PURGES)
225 			need_ptcg_sem = (num_possible_cpus() > nptcg);
226 		return;
227 	}
228 
229 	/* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
230 	if (max_purges == 0) max_purges = 1;
231 
232 	if (firstcpu) {
233 		nptcg = max_purges;
234 		firstcpu = 0;
235 	}
236 	if (max_purges < nptcg)
237 		nptcg = max_purges;
238 	if (nptcg == PAL_MAX_PURGES) {
239 		need_ptcg_sem = 0;
240 		return;
241 	} else
242 		need_ptcg_sem = (num_possible_cpus() > nptcg);
243 
244 resetsema:
245 	spinaphore_init(&ptcg_sem, max_purges);
246 }
247 
248 void
249 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
250 		       unsigned long end, unsigned long nbits)
251 {
252 	struct mm_struct *active_mm = current->active_mm;
253 
254 	toolatetochangeptcgsem = 1;
255 
256 	if (mm != active_mm) {
257 		/* Restore region IDs for mm */
258 		if (mm && active_mm) {
259 			activate_context(mm);
260 		} else {
261 			flush_tlb_all();
262 			return;
263 		}
264 	}
265 
266 	if (need_ptcg_sem)
267 		down_spin(&ptcg_sem);
268 
269 	do {
270 		/*
271 		 * Flush ALAT entries also.
272 		 */
273 		ia64_ptcga(start, (nbits << 2));
274 		ia64_srlz_i();
275 		start += (1UL << nbits);
276 	} while (start < end);
277 
278 	if (need_ptcg_sem)
279 		up_spin(&ptcg_sem);
280 
281         if (mm != active_mm) {
282                 activate_context(active_mm);
283         }
284 }
285 
286 void
287 local_flush_tlb_all (void)
288 {
289 	unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
290 
291 	addr    = local_cpu_data->ptce_base;
292 	count0  = local_cpu_data->ptce_count[0];
293 	count1  = local_cpu_data->ptce_count[1];
294 	stride0 = local_cpu_data->ptce_stride[0];
295 	stride1 = local_cpu_data->ptce_stride[1];
296 
297 	local_irq_save(flags);
298 	for (i = 0; i < count0; ++i) {
299 		for (j = 0; j < count1; ++j) {
300 			ia64_ptce(addr);
301 			addr += stride1;
302 		}
303 		addr += stride0;
304 	}
305 	local_irq_restore(flags);
306 	ia64_srlz_i();			/* srlz.i implies srlz.d */
307 }
308 
309 static void
310 __flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
311 		 unsigned long end)
312 {
313 	struct mm_struct *mm = vma->vm_mm;
314 	unsigned long size = end - start;
315 	unsigned long nbits;
316 
317 #ifndef CONFIG_SMP
318 	if (mm != current->active_mm) {
319 		mm->context = 0;
320 		return;
321 	}
322 #endif
323 
324 	nbits = ia64_fls(size + 0xfff);
325 	while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
326 			(nbits < purge.max_bits))
327 		++nbits;
328 	if (nbits > purge.max_bits)
329 		nbits = purge.max_bits;
330 	start &= ~((1UL << nbits) - 1);
331 
332 	preempt_disable();
333 #ifdef CONFIG_SMP
334 	if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
335 		platform_global_tlb_purge(mm, start, end, nbits);
336 		preempt_enable();
337 		return;
338 	}
339 #endif
340 	do {
341 		ia64_ptcl(start, (nbits<<2));
342 		start += (1UL << nbits);
343 	} while (start < end);
344 	preempt_enable();
345 	ia64_srlz_i();			/* srlz.i implies srlz.d */
346 }
347 
348 void flush_tlb_range(struct vm_area_struct *vma,
349 		unsigned long start, unsigned long end)
350 {
351 	if (unlikely(end - start >= 1024*1024*1024*1024UL
352 			|| REGION_NUMBER(start) != REGION_NUMBER(end - 1))) {
353 		/*
354 		 * If we flush more than a tera-byte or across regions, we're
355 		 * probably better off just flushing the entire TLB(s).  This
356 		 * should be very rare and is not worth optimizing for.
357 		 */
358 		flush_tlb_all();
359 	} else {
360 		/* flush the address range from the tlb */
361 		__flush_tlb_range(vma, start, end);
362 		/* flush the virt. page-table area mapping the addr range */
363 		__flush_tlb_range(vma, ia64_thash(start), ia64_thash(end));
364 	}
365 }
366 EXPORT_SYMBOL(flush_tlb_range);
367 
368 void ia64_tlb_init(void)
369 {
370 	ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
371 	u64 tr_pgbits;
372 	long status;
373 	pal_vm_info_1_u_t vm_info_1;
374 	pal_vm_info_2_u_t vm_info_2;
375 	int cpu = smp_processor_id();
376 
377 	if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
378 		printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
379 		       "defaulting to architected purge page-sizes.\n", status);
380 		purge.mask = 0x115557000UL;
381 	}
382 	purge.max_bits = ia64_fls(purge.mask);
383 
384 	ia64_get_ptce(&ptce_info);
385 	local_cpu_data->ptce_base = ptce_info.base;
386 	local_cpu_data->ptce_count[0] = ptce_info.count[0];
387 	local_cpu_data->ptce_count[1] = ptce_info.count[1];
388 	local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
389 	local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
390 
391 	local_flush_tlb_all();	/* nuke left overs from bootstrapping... */
392 	status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
393 
394 	if (status) {
395 		printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
396 		per_cpu(ia64_tr_num, cpu) = 8;
397 		return;
398 	}
399 	per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
400 	if (per_cpu(ia64_tr_num, cpu) >
401 				(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
402 		per_cpu(ia64_tr_num, cpu) =
403 				vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
404 	if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
405 		static int justonce = 1;
406 		per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
407 		if (justonce) {
408 			justonce = 0;
409 			printk(KERN_DEBUG "TR register number exceeds "
410 			       "IA64_TR_ALLOC_MAX!\n");
411 		}
412 	}
413 }
414 
415 /*
416  * is_tr_overlap
417  *
418  * Check overlap with inserted TRs.
419  */
420 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
421 {
422 	u64 tr_log_size;
423 	u64 tr_end;
424 	u64 va_rr = ia64_get_rr(va);
425 	u64 va_rid = RR_TO_RID(va_rr);
426 	u64 va_end = va + (1<<log_size) - 1;
427 
428 	if (va_rid != RR_TO_RID(p->rr))
429 		return 0;
430 	tr_log_size = (p->itir & 0xff) >> 2;
431 	tr_end = p->ifa + (1<<tr_log_size) - 1;
432 
433 	if (va > tr_end || p->ifa > va_end)
434 		return 0;
435 	return 1;
436 
437 }
438 
439 /*
440  * ia64_insert_tr in virtual mode. Allocate a TR slot
441  *
442  * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
443  *
444  * va 	: virtual address.
445  * pte 	: pte entries inserted.
446  * log_size: range to be covered.
447  *
448  * Return value:  <0 :  error No.
449  *
450  *		  >=0 : slot number allocated for TR.
451  * Must be called with preemption disabled.
452  */
453 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
454 {
455 	int i, r;
456 	unsigned long psr;
457 	struct ia64_tr_entry *p;
458 	int cpu = smp_processor_id();
459 
460 	if (!ia64_idtrs[cpu]) {
461 		ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX,
462 						sizeof(struct ia64_tr_entry),
463 						GFP_KERNEL);
464 		if (!ia64_idtrs[cpu])
465 			return -ENOMEM;
466 	}
467 	r = -EINVAL;
468 	/*Check overlap with existing TR entries*/
469 	if (target_mask & 0x1) {
470 		p = ia64_idtrs[cpu];
471 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
472 								i++, p++) {
473 			if (p->pte & 0x1)
474 				if (is_tr_overlap(p, va, log_size)) {
475 					printk(KERN_DEBUG "Overlapped Entry"
476 						"Inserted for TR Register!!\n");
477 					goto out;
478 			}
479 		}
480 	}
481 	if (target_mask & 0x2) {
482 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
483 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
484 								i++, p++) {
485 			if (p->pte & 0x1)
486 				if (is_tr_overlap(p, va, log_size)) {
487 					printk(KERN_DEBUG "Overlapped Entry"
488 						"Inserted for TR Register!!\n");
489 					goto out;
490 				}
491 		}
492 	}
493 
494 	for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
495 		switch (target_mask & 0x3) {
496 		case 1:
497 			if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
498 				goto found;
499 			continue;
500 		case 2:
501 			if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
502 				goto found;
503 			continue;
504 		case 3:
505 			if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
506 			    !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
507 				goto found;
508 			continue;
509 		default:
510 			r = -EINVAL;
511 			goto out;
512 		}
513 	}
514 found:
515 	if (i >= per_cpu(ia64_tr_num, cpu))
516 		return -EBUSY;
517 
518 	/*Record tr info for mca hander use!*/
519 	if (i > per_cpu(ia64_tr_used, cpu))
520 		per_cpu(ia64_tr_used, cpu) = i;
521 
522 	psr = ia64_clear_ic();
523 	if (target_mask & 0x1) {
524 		ia64_itr(0x1, i, va, pte, log_size);
525 		ia64_srlz_i();
526 		p = ia64_idtrs[cpu] + i;
527 		p->ifa = va;
528 		p->pte = pte;
529 		p->itir = log_size << 2;
530 		p->rr = ia64_get_rr(va);
531 	}
532 	if (target_mask & 0x2) {
533 		ia64_itr(0x2, i, va, pte, log_size);
534 		ia64_srlz_i();
535 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
536 		p->ifa = va;
537 		p->pte = pte;
538 		p->itir = log_size << 2;
539 		p->rr = ia64_get_rr(va);
540 	}
541 	ia64_set_psr(psr);
542 	r = i;
543 out:
544 	return r;
545 }
546 EXPORT_SYMBOL_GPL(ia64_itr_entry);
547 
548 /*
549  * ia64_purge_tr
550  *
551  * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
552  * slot: slot number to be freed.
553  *
554  * Must be called with preemption disabled.
555  */
556 void ia64_ptr_entry(u64 target_mask, int slot)
557 {
558 	int cpu = smp_processor_id();
559 	int i;
560 	struct ia64_tr_entry *p;
561 
562 	if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
563 		return;
564 
565 	if (target_mask & 0x1) {
566 		p = ia64_idtrs[cpu] + slot;
567 		if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
568 			p->pte = 0;
569 			ia64_ptr(0x1, p->ifa, p->itir>>2);
570 			ia64_srlz_i();
571 		}
572 	}
573 
574 	if (target_mask & 0x2) {
575 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
576 		if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
577 			p->pte = 0;
578 			ia64_ptr(0x2, p->ifa, p->itir>>2);
579 			ia64_srlz_i();
580 		}
581 	}
582 
583 	for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
584 		if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
585 		    ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
586 			break;
587 	}
588 	per_cpu(ia64_tr_used, cpu) = i;
589 }
590 EXPORT_SYMBOL_GPL(ia64_ptr_entry);
591