xref: /openbmc/linux/arch/ia64/mm/tlb.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TLB support routines.
4  *
5  * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
9  *		Modified RID allocation for SMP
10  *          Goutham Rao <goutham.rao@intel.com>
11  *              IPI based ptc implementation and A-step IPI implementation.
12  * Rohit Seth <rohit.seth@intel.com>
13  * Ken Chen <kenneth.w.chen@intel.com>
14  * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
15  * Copyright (C) 2007 Intel Corp
16  *	Fenghua Yu <fenghua.yu@intel.com>
17  *	Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18  */
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/slab.h>
27 
28 #include <asm/delay.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pal.h>
32 #include <asm/tlbflush.h>
33 #include <asm/dma.h>
34 #include <asm/processor.h>
35 #include <asm/sal.h>
36 #include <asm/tlb.h>
37 
38 static struct {
39 	u64 mask;		/* mask of supported purge page-sizes */
40 	unsigned long max_bits;	/* log2 of largest supported purge page-size */
41 } purge;
42 
43 struct ia64_ctx ia64_ctx = {
44 	.lock =	__SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
45 	.next =	1,
46 	.max_ctx = ~0U
47 };
48 
49 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
50 DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
51 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
52 
53 struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
54 
55 /*
56  * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
57  * Called after cpu_init() has setup ia64_ctx.max_ctx based on
58  * maximum RID that is supported by boot CPU.
59  */
60 void __init
61 mmu_context_init (void)
62 {
63 	ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
64 					 SMP_CACHE_BYTES);
65 	if (!ia64_ctx.bitmap)
66 		panic("%s: Failed to allocate %u bytes\n", __func__,
67 		      (ia64_ctx.max_ctx + 1) >> 3);
68 	ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
69 					   SMP_CACHE_BYTES);
70 	if (!ia64_ctx.flushmap)
71 		panic("%s: Failed to allocate %u bytes\n", __func__,
72 		      (ia64_ctx.max_ctx + 1) >> 3);
73 }
74 
75 /*
76  * Acquire the ia64_ctx.lock before calling this function!
77  */
78 void
79 wrap_mmu_context (struct mm_struct *mm)
80 {
81 	int i, cpu;
82 	unsigned long flush_bit;
83 
84 	for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
85 		flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
86 		ia64_ctx.bitmap[i] ^= flush_bit;
87 	}
88 
89 	/* use offset at 300 to skip daemons */
90 	ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
91 				ia64_ctx.max_ctx, 300);
92 	ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
93 				ia64_ctx.max_ctx, ia64_ctx.next);
94 
95 	/*
96 	 * can't call flush_tlb_all() here because of race condition
97 	 * with O(1) scheduler [EF]
98 	 */
99 	cpu = get_cpu(); /* prevent preemption/migration */
100 	for_each_online_cpu(i)
101 		if (i != cpu)
102 			per_cpu(ia64_need_tlb_flush, i) = 1;
103 	put_cpu();
104 	local_flush_tlb_all();
105 }
106 
107 /*
108  * Implement "spinaphores" ... like counting semaphores, but they
109  * spin instead of sleeping.  If there are ever any other users for
110  * this primitive it can be moved up to a spinaphore.h header.
111  */
112 struct spinaphore {
113 	unsigned long	ticket;
114 	unsigned long	serve;
115 };
116 
117 static inline void spinaphore_init(struct spinaphore *ss, int val)
118 {
119 	ss->ticket = 0;
120 	ss->serve = val;
121 }
122 
123 static inline void down_spin(struct spinaphore *ss)
124 {
125 	unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
126 
127 	if (time_before(t, ss->serve))
128 		return;
129 
130 	ia64_invala();
131 
132 	for (;;) {
133 		asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
134 		if (time_before(t, serve))
135 			return;
136 		cpu_relax();
137 	}
138 }
139 
140 static inline void up_spin(struct spinaphore *ss)
141 {
142 	ia64_fetchadd(1, &ss->serve, rel);
143 }
144 
145 static struct spinaphore ptcg_sem;
146 static u16 nptcg = 1;
147 static int need_ptcg_sem = 1;
148 static int toolatetochangeptcgsem = 0;
149 
150 /*
151  * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
152  * purges which is reported from either PAL or SAL PALO.
153  *
154  * We don't have sanity checking for nptcg value. It's the user's responsibility
155  * for valid nptcg value on the platform. Otherwise, kernel may hang in some
156  * cases.
157  */
158 static int __init
159 set_nptcg(char *str)
160 {
161 	int value = 0;
162 
163 	get_option(&str, &value);
164 	setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
165 
166 	return 1;
167 }
168 
169 __setup("nptcg=", set_nptcg);
170 
171 /*
172  * Maximum number of simultaneous ptc.g purges in the system can
173  * be defined by PAL_VM_SUMMARY (in which case we should take
174  * the smallest value for any cpu in the system) or by the PAL
175  * override table (in which case we should ignore the value from
176  * PAL_VM_SUMMARY).
177  *
178  * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
179  * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
180  * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
181  *
182  * Complicating the logic here is the fact that num_possible_cpus()
183  * isn't fully setup until we start bringing cpus online.
184  */
185 void
186 setup_ptcg_sem(int max_purges, int nptcg_from)
187 {
188 	static int kp_override;
189 	static int palo_override;
190 	static int firstcpu = 1;
191 
192 	if (toolatetochangeptcgsem) {
193 		if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
194 			BUG_ON(1 < nptcg);
195 		else
196 			BUG_ON(max_purges < nptcg);
197 		return;
198 	}
199 
200 	if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
201 		kp_override = 1;
202 		nptcg = max_purges;
203 		goto resetsema;
204 	}
205 	if (kp_override) {
206 		need_ptcg_sem = num_possible_cpus() > nptcg;
207 		return;
208 	}
209 
210 	if (nptcg_from == NPTCG_FROM_PALO) {
211 		palo_override = 1;
212 
213 		/* In PALO max_purges == 0 really means it! */
214 		if (max_purges == 0)
215 			panic("Whoa! Platform does not support global TLB purges.\n");
216 		nptcg = max_purges;
217 		if (nptcg == PALO_MAX_TLB_PURGES) {
218 			need_ptcg_sem = 0;
219 			return;
220 		}
221 		goto resetsema;
222 	}
223 	if (palo_override) {
224 		if (nptcg != PALO_MAX_TLB_PURGES)
225 			need_ptcg_sem = (num_possible_cpus() > nptcg);
226 		return;
227 	}
228 
229 	/* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
230 	if (max_purges == 0) max_purges = 1;
231 
232 	if (firstcpu) {
233 		nptcg = max_purges;
234 		firstcpu = 0;
235 	}
236 	if (max_purges < nptcg)
237 		nptcg = max_purges;
238 	if (nptcg == PAL_MAX_PURGES) {
239 		need_ptcg_sem = 0;
240 		return;
241 	} else
242 		need_ptcg_sem = (num_possible_cpus() > nptcg);
243 
244 resetsema:
245 	spinaphore_init(&ptcg_sem, max_purges);
246 }
247 
248 #ifdef CONFIG_SMP
249 static void
250 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
251 		       unsigned long end, unsigned long nbits)
252 {
253 	struct mm_struct *active_mm = current->active_mm;
254 
255 	toolatetochangeptcgsem = 1;
256 
257 	if (mm != active_mm) {
258 		/* Restore region IDs for mm */
259 		if (mm && active_mm) {
260 			activate_context(mm);
261 		} else {
262 			flush_tlb_all();
263 			return;
264 		}
265 	}
266 
267 	if (need_ptcg_sem)
268 		down_spin(&ptcg_sem);
269 
270 	do {
271 		/*
272 		 * Flush ALAT entries also.
273 		 */
274 		ia64_ptcga(start, (nbits << 2));
275 		ia64_srlz_i();
276 		start += (1UL << nbits);
277 	} while (start < end);
278 
279 	if (need_ptcg_sem)
280 		up_spin(&ptcg_sem);
281 
282         if (mm != active_mm) {
283                 activate_context(active_mm);
284         }
285 }
286 #endif /* CONFIG_SMP */
287 
288 void
289 local_flush_tlb_all (void)
290 {
291 	unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
292 
293 	addr    = local_cpu_data->ptce_base;
294 	count0  = local_cpu_data->ptce_count[0];
295 	count1  = local_cpu_data->ptce_count[1];
296 	stride0 = local_cpu_data->ptce_stride[0];
297 	stride1 = local_cpu_data->ptce_stride[1];
298 
299 	local_irq_save(flags);
300 	for (i = 0; i < count0; ++i) {
301 		for (j = 0; j < count1; ++j) {
302 			ia64_ptce(addr);
303 			addr += stride1;
304 		}
305 		addr += stride0;
306 	}
307 	local_irq_restore(flags);
308 	ia64_srlz_i();			/* srlz.i implies srlz.d */
309 }
310 
311 static void
312 __flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
313 		 unsigned long end)
314 {
315 	struct mm_struct *mm = vma->vm_mm;
316 	unsigned long size = end - start;
317 	unsigned long nbits;
318 
319 #ifndef CONFIG_SMP
320 	if (mm != current->active_mm) {
321 		mm->context = 0;
322 		return;
323 	}
324 #endif
325 
326 	nbits = ia64_fls(size + 0xfff);
327 	while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
328 			(nbits < purge.max_bits))
329 		++nbits;
330 	if (nbits > purge.max_bits)
331 		nbits = purge.max_bits;
332 	start &= ~((1UL << nbits) - 1);
333 
334 	preempt_disable();
335 #ifdef CONFIG_SMP
336 	if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
337 		ia64_global_tlb_purge(mm, start, end, nbits);
338 		preempt_enable();
339 		return;
340 	}
341 #endif
342 	do {
343 		ia64_ptcl(start, (nbits<<2));
344 		start += (1UL << nbits);
345 	} while (start < end);
346 	preempt_enable();
347 	ia64_srlz_i();			/* srlz.i implies srlz.d */
348 }
349 
350 void flush_tlb_range(struct vm_area_struct *vma,
351 		unsigned long start, unsigned long end)
352 {
353 	if (unlikely(end - start >= 1024*1024*1024*1024UL
354 			|| REGION_NUMBER(start) != REGION_NUMBER(end - 1))) {
355 		/*
356 		 * If we flush more than a tera-byte or across regions, we're
357 		 * probably better off just flushing the entire TLB(s).  This
358 		 * should be very rare and is not worth optimizing for.
359 		 */
360 		flush_tlb_all();
361 	} else {
362 		/* flush the address range from the tlb */
363 		__flush_tlb_range(vma, start, end);
364 		/* flush the virt. page-table area mapping the addr range */
365 		__flush_tlb_range(vma, ia64_thash(start), ia64_thash(end));
366 	}
367 }
368 EXPORT_SYMBOL(flush_tlb_range);
369 
370 void ia64_tlb_init(void)
371 {
372 	ia64_ptce_info_t ptce_info;
373 	u64 tr_pgbits;
374 	long status;
375 	pal_vm_info_1_u_t vm_info_1;
376 	pal_vm_info_2_u_t vm_info_2;
377 	int cpu = smp_processor_id();
378 
379 	if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
380 		printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
381 		       "defaulting to architected purge page-sizes.\n", status);
382 		purge.mask = 0x115557000UL;
383 	}
384 	purge.max_bits = ia64_fls(purge.mask);
385 
386 	ia64_get_ptce(&ptce_info);
387 	local_cpu_data->ptce_base = ptce_info.base;
388 	local_cpu_data->ptce_count[0] = ptce_info.count[0];
389 	local_cpu_data->ptce_count[1] = ptce_info.count[1];
390 	local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
391 	local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
392 
393 	local_flush_tlb_all();	/* nuke left overs from bootstrapping... */
394 	status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
395 
396 	if (status) {
397 		printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
398 		per_cpu(ia64_tr_num, cpu) = 8;
399 		return;
400 	}
401 	per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
402 	if (per_cpu(ia64_tr_num, cpu) >
403 				(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
404 		per_cpu(ia64_tr_num, cpu) =
405 				vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
406 	if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
407 		static int justonce = 1;
408 		per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
409 		if (justonce) {
410 			justonce = 0;
411 			printk(KERN_DEBUG "TR register number exceeds "
412 			       "IA64_TR_ALLOC_MAX!\n");
413 		}
414 	}
415 }
416 
417 /*
418  * is_tr_overlap
419  *
420  * Check overlap with inserted TRs.
421  */
422 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
423 {
424 	u64 tr_log_size;
425 	u64 tr_end;
426 	u64 va_rr = ia64_get_rr(va);
427 	u64 va_rid = RR_TO_RID(va_rr);
428 	u64 va_end = va + (1<<log_size) - 1;
429 
430 	if (va_rid != RR_TO_RID(p->rr))
431 		return 0;
432 	tr_log_size = (p->itir & 0xff) >> 2;
433 	tr_end = p->ifa + (1<<tr_log_size) - 1;
434 
435 	if (va > tr_end || p->ifa > va_end)
436 		return 0;
437 	return 1;
438 
439 }
440 
441 /*
442  * ia64_insert_tr in virtual mode. Allocate a TR slot
443  *
444  * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
445  *
446  * va 	: virtual address.
447  * pte 	: pte entries inserted.
448  * log_size: range to be covered.
449  *
450  * Return value:  <0 :  error No.
451  *
452  *		  >=0 : slot number allocated for TR.
453  * Must be called with preemption disabled.
454  */
455 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
456 {
457 	int i, r;
458 	unsigned long psr;
459 	struct ia64_tr_entry *p;
460 	int cpu = smp_processor_id();
461 
462 	if (!ia64_idtrs[cpu]) {
463 		ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX,
464 						sizeof(struct ia64_tr_entry),
465 						GFP_KERNEL);
466 		if (!ia64_idtrs[cpu])
467 			return -ENOMEM;
468 	}
469 	r = -EINVAL;
470 	/*Check overlap with existing TR entries*/
471 	if (target_mask & 0x1) {
472 		p = ia64_idtrs[cpu];
473 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
474 								i++, p++) {
475 			if (p->pte & 0x1)
476 				if (is_tr_overlap(p, va, log_size)) {
477 					printk(KERN_DEBUG "Overlapped Entry"
478 						"Inserted for TR Register!!\n");
479 					goto out;
480 			}
481 		}
482 	}
483 	if (target_mask & 0x2) {
484 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
485 		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
486 								i++, p++) {
487 			if (p->pte & 0x1)
488 				if (is_tr_overlap(p, va, log_size)) {
489 					printk(KERN_DEBUG "Overlapped Entry"
490 						"Inserted for TR Register!!\n");
491 					goto out;
492 				}
493 		}
494 	}
495 
496 	for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
497 		switch (target_mask & 0x3) {
498 		case 1:
499 			if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
500 				goto found;
501 			continue;
502 		case 2:
503 			if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
504 				goto found;
505 			continue;
506 		case 3:
507 			if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
508 			    !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
509 				goto found;
510 			continue;
511 		default:
512 			r = -EINVAL;
513 			goto out;
514 		}
515 	}
516 found:
517 	if (i >= per_cpu(ia64_tr_num, cpu))
518 		return -EBUSY;
519 
520 	/*Record tr info for mca hander use!*/
521 	if (i > per_cpu(ia64_tr_used, cpu))
522 		per_cpu(ia64_tr_used, cpu) = i;
523 
524 	psr = ia64_clear_ic();
525 	if (target_mask & 0x1) {
526 		ia64_itr(0x1, i, va, pte, log_size);
527 		ia64_srlz_i();
528 		p = ia64_idtrs[cpu] + i;
529 		p->ifa = va;
530 		p->pte = pte;
531 		p->itir = log_size << 2;
532 		p->rr = ia64_get_rr(va);
533 	}
534 	if (target_mask & 0x2) {
535 		ia64_itr(0x2, i, va, pte, log_size);
536 		ia64_srlz_i();
537 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
538 		p->ifa = va;
539 		p->pte = pte;
540 		p->itir = log_size << 2;
541 		p->rr = ia64_get_rr(va);
542 	}
543 	ia64_set_psr(psr);
544 	r = i;
545 out:
546 	return r;
547 }
548 EXPORT_SYMBOL_GPL(ia64_itr_entry);
549 
550 /*
551  * ia64_purge_tr
552  *
553  * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
554  * slot: slot number to be freed.
555  *
556  * Must be called with preemption disabled.
557  */
558 void ia64_ptr_entry(u64 target_mask, int slot)
559 {
560 	int cpu = smp_processor_id();
561 	int i;
562 	struct ia64_tr_entry *p;
563 
564 	if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
565 		return;
566 
567 	if (target_mask & 0x1) {
568 		p = ia64_idtrs[cpu] + slot;
569 		if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
570 			p->pte = 0;
571 			ia64_ptr(0x1, p->ifa, p->itir>>2);
572 			ia64_srlz_i();
573 		}
574 	}
575 
576 	if (target_mask & 0x2) {
577 		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
578 		if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
579 			p->pte = 0;
580 			ia64_ptr(0x2, p->ifa, p->itir>>2);
581 			ia64_srlz_i();
582 		}
583 	}
584 
585 	for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
586 		if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
587 		    ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
588 			break;
589 	}
590 	per_cpu(ia64_tr_used, cpu) = i;
591 }
592 EXPORT_SYMBOL_GPL(ia64_ptr_entry);
593