1 /* 2 * TLB support routines. 3 * 4 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 7 * 08/02/00 A. Mallick <asit.k.mallick@intel.com> 8 * Modified RID allocation for SMP 9 * Goutham Rao <goutham.rao@intel.com> 10 * IPI based ptc implementation and A-step IPI implementation. 11 * Rohit Seth <rohit.seth@intel.com> 12 * Ken Chen <kenneth.w.chen@intel.com> 13 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation 14 * Copyright (C) 2007 Intel Corp 15 * Fenghua Yu <fenghua.yu@intel.com> 16 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. 17 */ 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/smp.h> 23 #include <linux/mm.h> 24 #include <linux/bootmem.h> 25 #include <linux/slab.h> 26 27 #include <asm/delay.h> 28 #include <asm/mmu_context.h> 29 #include <asm/pgalloc.h> 30 #include <asm/pal.h> 31 #include <asm/tlbflush.h> 32 #include <asm/dma.h> 33 #include <asm/processor.h> 34 #include <asm/sal.h> 35 #include <asm/tlb.h> 36 37 static struct { 38 u64 mask; /* mask of supported purge page-sizes */ 39 unsigned long max_bits; /* log2 of largest supported purge page-size */ 40 } purge; 41 42 struct ia64_ctx ia64_ctx = { 43 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), 44 .next = 1, 45 .max_ctx = ~0U 46 }; 47 48 DEFINE_PER_CPU(u8, ia64_need_tlb_flush); 49 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ 50 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ 51 52 struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; 53 54 /* 55 * Initializes the ia64_ctx.bitmap array based on max_ctx+1. 56 * Called after cpu_init() has setup ia64_ctx.max_ctx based on 57 * maximum RID that is supported by boot CPU. 58 */ 59 void __init 60 mmu_context_init (void) 61 { 62 ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3); 63 ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3); 64 } 65 66 /* 67 * Acquire the ia64_ctx.lock before calling this function! 68 */ 69 void 70 wrap_mmu_context (struct mm_struct *mm) 71 { 72 int i, cpu; 73 unsigned long flush_bit; 74 75 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { 76 flush_bit = xchg(&ia64_ctx.flushmap[i], 0); 77 ia64_ctx.bitmap[i] ^= flush_bit; 78 } 79 80 /* use offset at 300 to skip daemons */ 81 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, 82 ia64_ctx.max_ctx, 300); 83 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, 84 ia64_ctx.max_ctx, ia64_ctx.next); 85 86 /* 87 * can't call flush_tlb_all() here because of race condition 88 * with O(1) scheduler [EF] 89 */ 90 cpu = get_cpu(); /* prevent preemption/migration */ 91 for_each_online_cpu(i) 92 if (i != cpu) 93 per_cpu(ia64_need_tlb_flush, i) = 1; 94 put_cpu(); 95 local_flush_tlb_all(); 96 } 97 98 /* 99 * Implement "spinaphores" ... like counting semaphores, but they 100 * spin instead of sleeping. If there are ever any other users for 101 * this primitive it can be moved up to a spinaphore.h header. 102 */ 103 struct spinaphore { 104 unsigned long ticket; 105 unsigned long serve; 106 }; 107 108 static inline void spinaphore_init(struct spinaphore *ss, int val) 109 { 110 ss->ticket = 0; 111 ss->serve = val; 112 } 113 114 static inline void down_spin(struct spinaphore *ss) 115 { 116 unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; 117 118 if (time_before(t, ss->serve)) 119 return; 120 121 ia64_invala(); 122 123 for (;;) { 124 asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); 125 if (time_before(t, serve)) 126 return; 127 cpu_relax(); 128 } 129 } 130 131 static inline void up_spin(struct spinaphore *ss) 132 { 133 ia64_fetchadd(1, &ss->serve, rel); 134 } 135 136 static struct spinaphore ptcg_sem; 137 static u16 nptcg = 1; 138 static int need_ptcg_sem = 1; 139 static int toolatetochangeptcgsem = 0; 140 141 /* 142 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB 143 * purges which is reported from either PAL or SAL PALO. 144 * 145 * We don't have sanity checking for nptcg value. It's the user's responsibility 146 * for valid nptcg value on the platform. Otherwise, kernel may hang in some 147 * cases. 148 */ 149 static int __init 150 set_nptcg(char *str) 151 { 152 int value = 0; 153 154 get_option(&str, &value); 155 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); 156 157 return 1; 158 } 159 160 __setup("nptcg=", set_nptcg); 161 162 /* 163 * Maximum number of simultaneous ptc.g purges in the system can 164 * be defined by PAL_VM_SUMMARY (in which case we should take 165 * the smallest value for any cpu in the system) or by the PAL 166 * override table (in which case we should ignore the value from 167 * PAL_VM_SUMMARY). 168 * 169 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g 170 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, 171 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. 172 * 173 * Complicating the logic here is the fact that num_possible_cpus() 174 * isn't fully setup until we start bringing cpus online. 175 */ 176 void 177 setup_ptcg_sem(int max_purges, int nptcg_from) 178 { 179 static int kp_override; 180 static int palo_override; 181 static int firstcpu = 1; 182 183 if (toolatetochangeptcgsem) { 184 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) 185 BUG_ON(1 < nptcg); 186 else 187 BUG_ON(max_purges < nptcg); 188 return; 189 } 190 191 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { 192 kp_override = 1; 193 nptcg = max_purges; 194 goto resetsema; 195 } 196 if (kp_override) { 197 need_ptcg_sem = num_possible_cpus() > nptcg; 198 return; 199 } 200 201 if (nptcg_from == NPTCG_FROM_PALO) { 202 palo_override = 1; 203 204 /* In PALO max_purges == 0 really means it! */ 205 if (max_purges == 0) 206 panic("Whoa! Platform does not support global TLB purges.\n"); 207 nptcg = max_purges; 208 if (nptcg == PALO_MAX_TLB_PURGES) { 209 need_ptcg_sem = 0; 210 return; 211 } 212 goto resetsema; 213 } 214 if (palo_override) { 215 if (nptcg != PALO_MAX_TLB_PURGES) 216 need_ptcg_sem = (num_possible_cpus() > nptcg); 217 return; 218 } 219 220 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ 221 if (max_purges == 0) max_purges = 1; 222 223 if (firstcpu) { 224 nptcg = max_purges; 225 firstcpu = 0; 226 } 227 if (max_purges < nptcg) 228 nptcg = max_purges; 229 if (nptcg == PAL_MAX_PURGES) { 230 need_ptcg_sem = 0; 231 return; 232 } else 233 need_ptcg_sem = (num_possible_cpus() > nptcg); 234 235 resetsema: 236 spinaphore_init(&ptcg_sem, max_purges); 237 } 238 239 void 240 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, 241 unsigned long end, unsigned long nbits) 242 { 243 struct mm_struct *active_mm = current->active_mm; 244 245 toolatetochangeptcgsem = 1; 246 247 if (mm != active_mm) { 248 /* Restore region IDs for mm */ 249 if (mm && active_mm) { 250 activate_context(mm); 251 } else { 252 flush_tlb_all(); 253 return; 254 } 255 } 256 257 if (need_ptcg_sem) 258 down_spin(&ptcg_sem); 259 260 do { 261 /* 262 * Flush ALAT entries also. 263 */ 264 ia64_ptcga(start, (nbits << 2)); 265 ia64_srlz_i(); 266 start += (1UL << nbits); 267 } while (start < end); 268 269 if (need_ptcg_sem) 270 up_spin(&ptcg_sem); 271 272 if (mm != active_mm) { 273 activate_context(active_mm); 274 } 275 } 276 277 void 278 local_flush_tlb_all (void) 279 { 280 unsigned long i, j, flags, count0, count1, stride0, stride1, addr; 281 282 addr = local_cpu_data->ptce_base; 283 count0 = local_cpu_data->ptce_count[0]; 284 count1 = local_cpu_data->ptce_count[1]; 285 stride0 = local_cpu_data->ptce_stride[0]; 286 stride1 = local_cpu_data->ptce_stride[1]; 287 288 local_irq_save(flags); 289 for (i = 0; i < count0; ++i) { 290 for (j = 0; j < count1; ++j) { 291 ia64_ptce(addr); 292 addr += stride1; 293 } 294 addr += stride0; 295 } 296 local_irq_restore(flags); 297 ia64_srlz_i(); /* srlz.i implies srlz.d */ 298 } 299 300 void 301 flush_tlb_range (struct vm_area_struct *vma, unsigned long start, 302 unsigned long end) 303 { 304 struct mm_struct *mm = vma->vm_mm; 305 unsigned long size = end - start; 306 unsigned long nbits; 307 308 #ifndef CONFIG_SMP 309 if (mm != current->active_mm) { 310 mm->context = 0; 311 return; 312 } 313 #endif 314 315 nbits = ia64_fls(size + 0xfff); 316 while (unlikely (((1UL << nbits) & purge.mask) == 0) && 317 (nbits < purge.max_bits)) 318 ++nbits; 319 if (nbits > purge.max_bits) 320 nbits = purge.max_bits; 321 start &= ~((1UL << nbits) - 1); 322 323 preempt_disable(); 324 #ifdef CONFIG_SMP 325 if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { 326 platform_global_tlb_purge(mm, start, end, nbits); 327 preempt_enable(); 328 return; 329 } 330 #endif 331 do { 332 ia64_ptcl(start, (nbits<<2)); 333 start += (1UL << nbits); 334 } while (start < end); 335 preempt_enable(); 336 ia64_srlz_i(); /* srlz.i implies srlz.d */ 337 } 338 EXPORT_SYMBOL(flush_tlb_range); 339 340 void ia64_tlb_init(void) 341 { 342 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */ 343 u64 tr_pgbits; 344 long status; 345 pal_vm_info_1_u_t vm_info_1; 346 pal_vm_info_2_u_t vm_info_2; 347 int cpu = smp_processor_id(); 348 349 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { 350 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " 351 "defaulting to architected purge page-sizes.\n", status); 352 purge.mask = 0x115557000UL; 353 } 354 purge.max_bits = ia64_fls(purge.mask); 355 356 ia64_get_ptce(&ptce_info); 357 local_cpu_data->ptce_base = ptce_info.base; 358 local_cpu_data->ptce_count[0] = ptce_info.count[0]; 359 local_cpu_data->ptce_count[1] = ptce_info.count[1]; 360 local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; 361 local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; 362 363 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ 364 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); 365 366 if (status) { 367 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); 368 per_cpu(ia64_tr_num, cpu) = 8; 369 return; 370 } 371 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; 372 if (per_cpu(ia64_tr_num, cpu) > 373 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) 374 per_cpu(ia64_tr_num, cpu) = 375 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; 376 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { 377 static int justonce = 1; 378 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; 379 if (justonce) { 380 justonce = 0; 381 printk(KERN_DEBUG "TR register number exceeds " 382 "IA64_TR_ALLOC_MAX!\n"); 383 } 384 } 385 } 386 387 /* 388 * is_tr_overlap 389 * 390 * Check overlap with inserted TRs. 391 */ 392 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) 393 { 394 u64 tr_log_size; 395 u64 tr_end; 396 u64 va_rr = ia64_get_rr(va); 397 u64 va_rid = RR_TO_RID(va_rr); 398 u64 va_end = va + (1<<log_size) - 1; 399 400 if (va_rid != RR_TO_RID(p->rr)) 401 return 0; 402 tr_log_size = (p->itir & 0xff) >> 2; 403 tr_end = p->ifa + (1<<tr_log_size) - 1; 404 405 if (va > tr_end || p->ifa > va_end) 406 return 0; 407 return 1; 408 409 } 410 411 /* 412 * ia64_insert_tr in virtual mode. Allocate a TR slot 413 * 414 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr 415 * 416 * va : virtual address. 417 * pte : pte entries inserted. 418 * log_size: range to be covered. 419 * 420 * Return value: <0 : error No. 421 * 422 * >=0 : slot number allocated for TR. 423 * Must be called with preemption disabled. 424 */ 425 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) 426 { 427 int i, r; 428 unsigned long psr; 429 struct ia64_tr_entry *p; 430 int cpu = smp_processor_id(); 431 432 if (!ia64_idtrs[cpu]) { 433 ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX * 434 sizeof (struct ia64_tr_entry), GFP_KERNEL); 435 if (!ia64_idtrs[cpu]) 436 return -ENOMEM; 437 } 438 r = -EINVAL; 439 /*Check overlap with existing TR entries*/ 440 if (target_mask & 0x1) { 441 p = ia64_idtrs[cpu]; 442 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 443 i++, p++) { 444 if (p->pte & 0x1) 445 if (is_tr_overlap(p, va, log_size)) { 446 printk(KERN_DEBUG "Overlapped Entry" 447 "Inserted for TR Register!!\n"); 448 goto out; 449 } 450 } 451 } 452 if (target_mask & 0x2) { 453 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; 454 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); 455 i++, p++) { 456 if (p->pte & 0x1) 457 if (is_tr_overlap(p, va, log_size)) { 458 printk(KERN_DEBUG "Overlapped Entry" 459 "Inserted for TR Register!!\n"); 460 goto out; 461 } 462 } 463 } 464 465 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { 466 switch (target_mask & 0x3) { 467 case 1: 468 if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) 469 goto found; 470 continue; 471 case 2: 472 if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 473 goto found; 474 continue; 475 case 3: 476 if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && 477 !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 478 goto found; 479 continue; 480 default: 481 r = -EINVAL; 482 goto out; 483 } 484 } 485 found: 486 if (i >= per_cpu(ia64_tr_num, cpu)) 487 return -EBUSY; 488 489 /*Record tr info for mca hander use!*/ 490 if (i > per_cpu(ia64_tr_used, cpu)) 491 per_cpu(ia64_tr_used, cpu) = i; 492 493 psr = ia64_clear_ic(); 494 if (target_mask & 0x1) { 495 ia64_itr(0x1, i, va, pte, log_size); 496 ia64_srlz_i(); 497 p = ia64_idtrs[cpu] + i; 498 p->ifa = va; 499 p->pte = pte; 500 p->itir = log_size << 2; 501 p->rr = ia64_get_rr(va); 502 } 503 if (target_mask & 0x2) { 504 ia64_itr(0x2, i, va, pte, log_size); 505 ia64_srlz_i(); 506 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; 507 p->ifa = va; 508 p->pte = pte; 509 p->itir = log_size << 2; 510 p->rr = ia64_get_rr(va); 511 } 512 ia64_set_psr(psr); 513 r = i; 514 out: 515 return r; 516 } 517 EXPORT_SYMBOL_GPL(ia64_itr_entry); 518 519 /* 520 * ia64_purge_tr 521 * 522 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. 523 * slot: slot number to be freed. 524 * 525 * Must be called with preemption disabled. 526 */ 527 void ia64_ptr_entry(u64 target_mask, int slot) 528 { 529 int cpu = smp_processor_id(); 530 int i; 531 struct ia64_tr_entry *p; 532 533 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) 534 return; 535 536 if (target_mask & 0x1) { 537 p = ia64_idtrs[cpu] + slot; 538 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 539 p->pte = 0; 540 ia64_ptr(0x1, p->ifa, p->itir>>2); 541 ia64_srlz_i(); 542 } 543 } 544 545 if (target_mask & 0x2) { 546 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; 547 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { 548 p->pte = 0; 549 ia64_ptr(0x2, p->ifa, p->itir>>2); 550 ia64_srlz_i(); 551 } 552 } 553 554 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { 555 if (((ia64_idtrs[cpu] + i)->pte & 0x1) || 556 ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) 557 break; 558 } 559 per_cpu(ia64_tr_used, cpu) = i; 560 } 561 EXPORT_SYMBOL_GPL(ia64_ptr_entry); 562