xref: /openbmc/linux/arch/ia64/mm/init.c (revision feac8c8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 
11 #include <linux/bootmem.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmzone.h>
18 #include <linux/module.h>
19 #include <linux/personality.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/swap.h>
23 #include <linux/proc_fs.h>
24 #include <linux/bitops.h>
25 #include <linux/kexec.h>
26 
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/machvec.h>
30 #include <asm/numa.h>
31 #include <asm/patch.h>
32 #include <asm/pgalloc.h>
33 #include <asm/sal.h>
34 #include <asm/sections.h>
35 #include <asm/tlb.h>
36 #include <linux/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39 
40 extern void ia64_tlb_init (void);
41 
42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
43 
44 #ifdef CONFIG_VIRTUAL_MEM_MAP
45 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 EXPORT_SYMBOL(VMALLOC_END);
47 struct page *vmem_map;
48 EXPORT_SYMBOL(vmem_map);
49 #endif
50 
51 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
52 EXPORT_SYMBOL(zero_page_memmap_ptr);
53 
54 void
55 __ia64_sync_icache_dcache (pte_t pte)
56 {
57 	unsigned long addr;
58 	struct page *page;
59 
60 	page = pte_page(pte);
61 	addr = (unsigned long) page_address(page);
62 
63 	if (test_bit(PG_arch_1, &page->flags))
64 		return;				/* i-cache is already coherent with d-cache */
65 
66 	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
67 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
68 }
69 
70 /*
71  * Since DMA is i-cache coherent, any (complete) pages that were written via
72  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
73  * flush them when they get mapped into an executable vm-area.
74  */
75 void
76 dma_mark_clean(void *addr, size_t size)
77 {
78 	unsigned long pg_addr, end;
79 
80 	pg_addr = PAGE_ALIGN((unsigned long) addr);
81 	end = (unsigned long) addr + size;
82 	while (pg_addr + PAGE_SIZE <= end) {
83 		struct page *page = virt_to_page(pg_addr);
84 		set_bit(PG_arch_1, &page->flags);
85 		pg_addr += PAGE_SIZE;
86 	}
87 }
88 
89 inline void
90 ia64_set_rbs_bot (void)
91 {
92 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
93 
94 	if (stack_size > MAX_USER_STACK_SIZE)
95 		stack_size = MAX_USER_STACK_SIZE;
96 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
97 }
98 
99 /*
100  * This performs some platform-dependent address space initialization.
101  * On IA-64, we want to setup the VM area for the register backing
102  * store (which grows upwards) and install the gateway page which is
103  * used for signal trampolines, etc.
104  */
105 void
106 ia64_init_addr_space (void)
107 {
108 	struct vm_area_struct *vma;
109 
110 	ia64_set_rbs_bot();
111 
112 	/*
113 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
114 	 * the problem.  When the process attempts to write to the register backing store
115 	 * for the first time, it will get a SEGFAULT in this case.
116 	 */
117 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
118 	if (vma) {
119 		INIT_LIST_HEAD(&vma->anon_vma_chain);
120 		vma->vm_mm = current->mm;
121 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
122 		vma->vm_end = vma->vm_start + PAGE_SIZE;
123 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
124 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
125 		down_write(&current->mm->mmap_sem);
126 		if (insert_vm_struct(current->mm, vma)) {
127 			up_write(&current->mm->mmap_sem);
128 			kmem_cache_free(vm_area_cachep, vma);
129 			return;
130 		}
131 		up_write(&current->mm->mmap_sem);
132 	}
133 
134 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
135 	if (!(current->personality & MMAP_PAGE_ZERO)) {
136 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
137 		if (vma) {
138 			INIT_LIST_HEAD(&vma->anon_vma_chain);
139 			vma->vm_mm = current->mm;
140 			vma->vm_end = PAGE_SIZE;
141 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
142 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
143 					VM_DONTEXPAND | VM_DONTDUMP;
144 			down_write(&current->mm->mmap_sem);
145 			if (insert_vm_struct(current->mm, vma)) {
146 				up_write(&current->mm->mmap_sem);
147 				kmem_cache_free(vm_area_cachep, vma);
148 				return;
149 			}
150 			up_write(&current->mm->mmap_sem);
151 		}
152 	}
153 }
154 
155 void
156 free_initmem (void)
157 {
158 	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
159 			   -1, "unused kernel");
160 }
161 
162 void __init
163 free_initrd_mem (unsigned long start, unsigned long end)
164 {
165 	/*
166 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
167 	 * Thus EFI and the kernel may have different page sizes. It is
168 	 * therefore possible to have the initrd share the same page as
169 	 * the end of the kernel (given current setup).
170 	 *
171 	 * To avoid freeing/using the wrong page (kernel sized) we:
172 	 *	- align up the beginning of initrd
173 	 *	- align down the end of initrd
174 	 *
175 	 *  |             |
176 	 *  |=============| a000
177 	 *  |             |
178 	 *  |             |
179 	 *  |             | 9000
180 	 *  |/////////////|
181 	 *  |/////////////|
182 	 *  |=============| 8000
183 	 *  |///INITRD////|
184 	 *  |/////////////|
185 	 *  |/////////////| 7000
186 	 *  |             |
187 	 *  |KKKKKKKKKKKKK|
188 	 *  |=============| 6000
189 	 *  |KKKKKKKKKKKKK|
190 	 *  |KKKKKKKKKKKKK|
191 	 *  K=kernel using 8KB pages
192 	 *
193 	 * In this example, we must free page 8000 ONLY. So we must align up
194 	 * initrd_start and keep initrd_end as is.
195 	 */
196 	start = PAGE_ALIGN(start);
197 	end = end & PAGE_MASK;
198 
199 	if (start < end)
200 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
201 
202 	for (; start < end; start += PAGE_SIZE) {
203 		if (!virt_addr_valid(start))
204 			continue;
205 		free_reserved_page(virt_to_page(start));
206 	}
207 }
208 
209 /*
210  * This installs a clean page in the kernel's page table.
211  */
212 static struct page * __init
213 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
214 {
215 	pgd_t *pgd;
216 	pud_t *pud;
217 	pmd_t *pmd;
218 	pte_t *pte;
219 
220 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
221 
222 	{
223 		pud = pud_alloc(&init_mm, pgd, address);
224 		if (!pud)
225 			goto out;
226 		pmd = pmd_alloc(&init_mm, pud, address);
227 		if (!pmd)
228 			goto out;
229 		pte = pte_alloc_kernel(pmd, address);
230 		if (!pte)
231 			goto out;
232 		if (!pte_none(*pte))
233 			goto out;
234 		set_pte(pte, mk_pte(page, pgprot));
235 	}
236   out:
237 	/* no need for flush_tlb */
238 	return page;
239 }
240 
241 static void __init
242 setup_gate (void)
243 {
244 	struct page *page;
245 
246 	/*
247 	 * Map the gate page twice: once read-only to export the ELF
248 	 * headers etc. and once execute-only page to enable
249 	 * privilege-promotion via "epc":
250 	 */
251 	page = virt_to_page(ia64_imva(__start_gate_section));
252 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
253 #ifdef HAVE_BUGGY_SEGREL
254 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
255 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
256 #else
257 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
258 	/* Fill in the holes (if any) with read-only zero pages: */
259 	{
260 		unsigned long addr;
261 
262 		for (addr = GATE_ADDR + PAGE_SIZE;
263 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
264 		     addr += PAGE_SIZE)
265 		{
266 			put_kernel_page(ZERO_PAGE(0), addr,
267 					PAGE_READONLY);
268 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
269 					PAGE_READONLY);
270 		}
271 	}
272 #endif
273 	ia64_patch_gate();
274 }
275 
276 static struct vm_area_struct gate_vma;
277 
278 static int __init gate_vma_init(void)
279 {
280 	gate_vma.vm_mm = NULL;
281 	gate_vma.vm_start = FIXADDR_USER_START;
282 	gate_vma.vm_end = FIXADDR_USER_END;
283 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
284 	gate_vma.vm_page_prot = __P101;
285 
286 	return 0;
287 }
288 __initcall(gate_vma_init);
289 
290 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
291 {
292 	return &gate_vma;
293 }
294 
295 int in_gate_area_no_mm(unsigned long addr)
296 {
297 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
298 		return 1;
299 	return 0;
300 }
301 
302 int in_gate_area(struct mm_struct *mm, unsigned long addr)
303 {
304 	return in_gate_area_no_mm(addr);
305 }
306 
307 void ia64_mmu_init(void *my_cpu_data)
308 {
309 	unsigned long pta, impl_va_bits;
310 	extern void tlb_init(void);
311 
312 #ifdef CONFIG_DISABLE_VHPT
313 #	define VHPT_ENABLE_BIT	0
314 #else
315 #	define VHPT_ENABLE_BIT	1
316 #endif
317 
318 	/*
319 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
320 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
321 	 * virtual address space are implemented but if we pick a large enough page size
322 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
323 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
324 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
325 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
326 	 * address space to not permit mappings that would overlap with the VMLPT.
327 	 * --davidm 00/12/06
328 	 */
329 #	define pte_bits			3
330 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
331 	/*
332 	 * The virtual page table has to cover the entire implemented address space within
333 	 * a region even though not all of this space may be mappable.  The reason for
334 	 * this is that the Access bit and Dirty bit fault handlers perform
335 	 * non-speculative accesses to the virtual page table, so the address range of the
336 	 * virtual page table itself needs to be covered by virtual page table.
337 	 */
338 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
339 #	define POW2(n)			(1ULL << (n))
340 
341 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
342 
343 	if (impl_va_bits < 51 || impl_va_bits > 61)
344 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
345 	/*
346 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
347 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
348 	 * the test makes sure that our mapped space doesn't overlap the
349 	 * unimplemented hole in the middle of the region.
350 	 */
351 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
352 	    (mapped_space_bits > impl_va_bits - 1))
353 		panic("Cannot build a big enough virtual-linear page table"
354 		      " to cover mapped address space.\n"
355 		      " Try using a smaller page size.\n");
356 
357 
358 	/* place the VMLPT at the end of each page-table mapped region: */
359 	pta = POW2(61) - POW2(vmlpt_bits);
360 
361 	/*
362 	 * Set the (virtually mapped linear) page table address.  Bit
363 	 * 8 selects between the short and long format, bits 2-7 the
364 	 * size of the table, and bit 0 whether the VHPT walker is
365 	 * enabled.
366 	 */
367 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
368 
369 	ia64_tlb_init();
370 
371 #ifdef	CONFIG_HUGETLB_PAGE
372 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
373 	ia64_srlz_d();
374 #endif
375 }
376 
377 #ifdef CONFIG_VIRTUAL_MEM_MAP
378 int vmemmap_find_next_valid_pfn(int node, int i)
379 {
380 	unsigned long end_address, hole_next_pfn;
381 	unsigned long stop_address;
382 	pg_data_t *pgdat = NODE_DATA(node);
383 
384 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
385 	end_address = PAGE_ALIGN(end_address);
386 	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
387 
388 	do {
389 		pgd_t *pgd;
390 		pud_t *pud;
391 		pmd_t *pmd;
392 		pte_t *pte;
393 
394 		pgd = pgd_offset_k(end_address);
395 		if (pgd_none(*pgd)) {
396 			end_address += PGDIR_SIZE;
397 			continue;
398 		}
399 
400 		pud = pud_offset(pgd, end_address);
401 		if (pud_none(*pud)) {
402 			end_address += PUD_SIZE;
403 			continue;
404 		}
405 
406 		pmd = pmd_offset(pud, end_address);
407 		if (pmd_none(*pmd)) {
408 			end_address += PMD_SIZE;
409 			continue;
410 		}
411 
412 		pte = pte_offset_kernel(pmd, end_address);
413 retry_pte:
414 		if (pte_none(*pte)) {
415 			end_address += PAGE_SIZE;
416 			pte++;
417 			if ((end_address < stop_address) &&
418 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
419 				goto retry_pte;
420 			continue;
421 		}
422 		/* Found next valid vmem_map page */
423 		break;
424 	} while (end_address < stop_address);
425 
426 	end_address = min(end_address, stop_address);
427 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
428 	hole_next_pfn = end_address / sizeof(struct page);
429 	return hole_next_pfn - pgdat->node_start_pfn;
430 }
431 
432 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
433 {
434 	unsigned long address, start_page, end_page;
435 	struct page *map_start, *map_end;
436 	int node;
437 	pgd_t *pgd;
438 	pud_t *pud;
439 	pmd_t *pmd;
440 	pte_t *pte;
441 
442 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
443 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
444 
445 	start_page = (unsigned long) map_start & PAGE_MASK;
446 	end_page = PAGE_ALIGN((unsigned long) map_end);
447 	node = paddr_to_nid(__pa(start));
448 
449 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
450 		pgd = pgd_offset_k(address);
451 		if (pgd_none(*pgd))
452 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
453 		pud = pud_offset(pgd, address);
454 
455 		if (pud_none(*pud))
456 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
457 		pmd = pmd_offset(pud, address);
458 
459 		if (pmd_none(*pmd))
460 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
461 		pte = pte_offset_kernel(pmd, address);
462 
463 		if (pte_none(*pte))
464 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
465 					     PAGE_KERNEL));
466 	}
467 	return 0;
468 }
469 
470 struct memmap_init_callback_data {
471 	struct page *start;
472 	struct page *end;
473 	int nid;
474 	unsigned long zone;
475 };
476 
477 static int __meminit
478 virtual_memmap_init(u64 start, u64 end, void *arg)
479 {
480 	struct memmap_init_callback_data *args;
481 	struct page *map_start, *map_end;
482 
483 	args = (struct memmap_init_callback_data *) arg;
484 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
485 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
486 
487 	if (map_start < args->start)
488 		map_start = args->start;
489 	if (map_end > args->end)
490 		map_end = args->end;
491 
492 	/*
493 	 * We have to initialize "out of bounds" struct page elements that fit completely
494 	 * on the same pages that were allocated for the "in bounds" elements because they
495 	 * may be referenced later (and found to be "reserved").
496 	 */
497 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
498 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
499 		    / sizeof(struct page));
500 
501 	if (map_start < map_end)
502 		memmap_init_zone((unsigned long)(map_end - map_start),
503 				 args->nid, args->zone, page_to_pfn(map_start),
504 				 MEMMAP_EARLY, NULL);
505 	return 0;
506 }
507 
508 void __meminit
509 memmap_init (unsigned long size, int nid, unsigned long zone,
510 	     unsigned long start_pfn)
511 {
512 	if (!vmem_map) {
513 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
514 				NULL);
515 	} else {
516 		struct page *start;
517 		struct memmap_init_callback_data args;
518 
519 		start = pfn_to_page(start_pfn);
520 		args.start = start;
521 		args.end = start + size;
522 		args.nid = nid;
523 		args.zone = zone;
524 
525 		efi_memmap_walk(virtual_memmap_init, &args);
526 	}
527 }
528 
529 int
530 ia64_pfn_valid (unsigned long pfn)
531 {
532 	char byte;
533 	struct page *pg = pfn_to_page(pfn);
534 
535 	return     (__get_user(byte, (char __user *) pg) == 0)
536 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
537 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
538 }
539 EXPORT_SYMBOL(ia64_pfn_valid);
540 
541 int __init find_largest_hole(u64 start, u64 end, void *arg)
542 {
543 	u64 *max_gap = arg;
544 
545 	static u64 last_end = PAGE_OFFSET;
546 
547 	/* NOTE: this algorithm assumes efi memmap table is ordered */
548 
549 	if (*max_gap < (start - last_end))
550 		*max_gap = start - last_end;
551 	last_end = end;
552 	return 0;
553 }
554 
555 #endif /* CONFIG_VIRTUAL_MEM_MAP */
556 
557 int __init register_active_ranges(u64 start, u64 len, int nid)
558 {
559 	u64 end = start + len;
560 
561 #ifdef CONFIG_KEXEC
562 	if (start > crashk_res.start && start < crashk_res.end)
563 		start = crashk_res.end;
564 	if (end > crashk_res.start && end < crashk_res.end)
565 		end = crashk_res.start;
566 #endif
567 
568 	if (start < end)
569 		memblock_add_node(__pa(start), end - start, nid);
570 	return 0;
571 }
572 
573 int
574 find_max_min_low_pfn (u64 start, u64 end, void *arg)
575 {
576 	unsigned long pfn_start, pfn_end;
577 #ifdef CONFIG_FLATMEM
578 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
579 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
580 #else
581 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
582 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
583 #endif
584 	min_low_pfn = min(min_low_pfn, pfn_start);
585 	max_low_pfn = max(max_low_pfn, pfn_end);
586 	return 0;
587 }
588 
589 /*
590  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
591  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
592  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
593  * useful for performance testing, but conceivably could also come in handy for debugging
594  * purposes.
595  */
596 
597 static int nolwsys __initdata;
598 
599 static int __init
600 nolwsys_setup (char *s)
601 {
602 	nolwsys = 1;
603 	return 1;
604 }
605 
606 __setup("nolwsys", nolwsys_setup);
607 
608 void __init
609 mem_init (void)
610 {
611 	int i;
612 
613 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
614 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
615 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
616 
617 #ifdef CONFIG_PCI
618 	/*
619 	 * This needs to be called _after_ the command line has been parsed but _before_
620 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
621 	 * been freed.
622 	 */
623 	platform_dma_init();
624 #endif
625 
626 #ifdef CONFIG_FLATMEM
627 	BUG_ON(!mem_map);
628 #endif
629 
630 	set_max_mapnr(max_low_pfn);
631 	high_memory = __va(max_low_pfn * PAGE_SIZE);
632 	free_all_bootmem();
633 	mem_init_print_info(NULL);
634 
635 	/*
636 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
637 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
638 	 * code can tell them apart.
639 	 */
640 	for (i = 0; i < NR_syscalls; ++i) {
641 		extern unsigned long fsyscall_table[NR_syscalls];
642 		extern unsigned long sys_call_table[NR_syscalls];
643 
644 		if (!fsyscall_table[i] || nolwsys)
645 			fsyscall_table[i] = sys_call_table[i] | 1;
646 	}
647 	setup_gate();
648 }
649 
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
652 		bool want_memblock)
653 {
654 	unsigned long start_pfn = start >> PAGE_SHIFT;
655 	unsigned long nr_pages = size >> PAGE_SHIFT;
656 	int ret;
657 
658 	ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
659 	if (ret)
660 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
661 		       __func__,  ret);
662 
663 	return ret;
664 }
665 
666 #ifdef CONFIG_MEMORY_HOTREMOVE
667 int arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
668 {
669 	unsigned long start_pfn = start >> PAGE_SHIFT;
670 	unsigned long nr_pages = size >> PAGE_SHIFT;
671 	struct zone *zone;
672 	int ret;
673 
674 	zone = page_zone(pfn_to_page(start_pfn));
675 	ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
676 	if (ret)
677 		pr_warn("%s: Problem encountered in __remove_pages() as"
678 			" ret=%d\n", __func__,  ret);
679 
680 	return ret;
681 }
682 #endif
683 #endif
684