1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/memblock.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/personality.h> 18 #include <linux/reboot.h> 19 #include <linux/slab.h> 20 #include <linux/swap.h> 21 #include <linux/proc_fs.h> 22 #include <linux/bitops.h> 23 #include <linux/kexec.h> 24 25 #include <asm/dma.h> 26 #include <asm/io.h> 27 #include <asm/machvec.h> 28 #include <asm/numa.h> 29 #include <asm/patch.h> 30 #include <asm/pgalloc.h> 31 #include <asm/sal.h> 32 #include <asm/sections.h> 33 #include <asm/tlb.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include <asm/mca.h> 37 #include <asm/paravirt.h> 38 39 extern void ia64_tlb_init (void); 40 41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 42 43 #ifdef CONFIG_VIRTUAL_MEM_MAP 44 unsigned long VMALLOC_END = VMALLOC_END_INIT; 45 EXPORT_SYMBOL(VMALLOC_END); 46 struct page *vmem_map; 47 EXPORT_SYMBOL(vmem_map); 48 #endif 49 50 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 51 EXPORT_SYMBOL(zero_page_memmap_ptr); 52 53 void 54 __ia64_sync_icache_dcache (pte_t pte) 55 { 56 unsigned long addr; 57 struct page *page; 58 59 page = pte_page(pte); 60 addr = (unsigned long) page_address(page); 61 62 if (test_bit(PG_arch_1, &page->flags)) 63 return; /* i-cache is already coherent with d-cache */ 64 65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 67 } 68 69 /* 70 * Since DMA is i-cache coherent, any (complete) pages that were written via 71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 72 * flush them when they get mapped into an executable vm-area. 73 */ 74 void 75 dma_mark_clean(void *addr, size_t size) 76 { 77 unsigned long pg_addr, end; 78 79 pg_addr = PAGE_ALIGN((unsigned long) addr); 80 end = (unsigned long) addr + size; 81 while (pg_addr + PAGE_SIZE <= end) { 82 struct page *page = virt_to_page(pg_addr); 83 set_bit(PG_arch_1, &page->flags); 84 pg_addr += PAGE_SIZE; 85 } 86 } 87 88 inline void 89 ia64_set_rbs_bot (void) 90 { 91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; 92 93 if (stack_size > MAX_USER_STACK_SIZE) 94 stack_size = MAX_USER_STACK_SIZE; 95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 96 } 97 98 /* 99 * This performs some platform-dependent address space initialization. 100 * On IA-64, we want to setup the VM area for the register backing 101 * store (which grows upwards) and install the gateway page which is 102 * used for signal trampolines, etc. 103 */ 104 void 105 ia64_init_addr_space (void) 106 { 107 struct vm_area_struct *vma; 108 109 ia64_set_rbs_bot(); 110 111 /* 112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 113 * the problem. When the process attempts to write to the register backing store 114 * for the first time, it will get a SEGFAULT in this case. 115 */ 116 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 117 if (vma) { 118 INIT_LIST_HEAD(&vma->anon_vma_chain); 119 vma->vm_mm = current->mm; 120 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 121 vma->vm_end = vma->vm_start + PAGE_SIZE; 122 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 123 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 124 down_write(¤t->mm->mmap_sem); 125 if (insert_vm_struct(current->mm, vma)) { 126 up_write(¤t->mm->mmap_sem); 127 kmem_cache_free(vm_area_cachep, vma); 128 return; 129 } 130 up_write(¤t->mm->mmap_sem); 131 } 132 133 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 134 if (!(current->personality & MMAP_PAGE_ZERO)) { 135 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 136 if (vma) { 137 INIT_LIST_HEAD(&vma->anon_vma_chain); 138 vma->vm_mm = current->mm; 139 vma->vm_end = PAGE_SIZE; 140 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 141 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | 142 VM_DONTEXPAND | VM_DONTDUMP; 143 down_write(¤t->mm->mmap_sem); 144 if (insert_vm_struct(current->mm, vma)) { 145 up_write(¤t->mm->mmap_sem); 146 kmem_cache_free(vm_area_cachep, vma); 147 return; 148 } 149 up_write(¤t->mm->mmap_sem); 150 } 151 } 152 } 153 154 void 155 free_initmem (void) 156 { 157 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end), 158 -1, "unused kernel"); 159 } 160 161 void __init 162 free_initrd_mem (unsigned long start, unsigned long end) 163 { 164 /* 165 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 166 * Thus EFI and the kernel may have different page sizes. It is 167 * therefore possible to have the initrd share the same page as 168 * the end of the kernel (given current setup). 169 * 170 * To avoid freeing/using the wrong page (kernel sized) we: 171 * - align up the beginning of initrd 172 * - align down the end of initrd 173 * 174 * | | 175 * |=============| a000 176 * | | 177 * | | 178 * | | 9000 179 * |/////////////| 180 * |/////////////| 181 * |=============| 8000 182 * |///INITRD////| 183 * |/////////////| 184 * |/////////////| 7000 185 * | | 186 * |KKKKKKKKKKKKK| 187 * |=============| 6000 188 * |KKKKKKKKKKKKK| 189 * |KKKKKKKKKKKKK| 190 * K=kernel using 8KB pages 191 * 192 * In this example, we must free page 8000 ONLY. So we must align up 193 * initrd_start and keep initrd_end as is. 194 */ 195 start = PAGE_ALIGN(start); 196 end = end & PAGE_MASK; 197 198 if (start < end) 199 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 200 201 for (; start < end; start += PAGE_SIZE) { 202 if (!virt_addr_valid(start)) 203 continue; 204 free_reserved_page(virt_to_page(start)); 205 } 206 } 207 208 /* 209 * This installs a clean page in the kernel's page table. 210 */ 211 static struct page * __init 212 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 213 { 214 pgd_t *pgd; 215 pud_t *pud; 216 pmd_t *pmd; 217 pte_t *pte; 218 219 if (!PageReserved(page)) 220 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 221 page_address(page)); 222 223 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 224 225 { 226 pud = pud_alloc(&init_mm, pgd, address); 227 if (!pud) 228 goto out; 229 pmd = pmd_alloc(&init_mm, pud, address); 230 if (!pmd) 231 goto out; 232 pte = pte_alloc_kernel(pmd, address); 233 if (!pte) 234 goto out; 235 if (!pte_none(*pte)) 236 goto out; 237 set_pte(pte, mk_pte(page, pgprot)); 238 } 239 out: 240 /* no need for flush_tlb */ 241 return page; 242 } 243 244 static void __init 245 setup_gate (void) 246 { 247 void *gate_section; 248 struct page *page; 249 250 /* 251 * Map the gate page twice: once read-only to export the ELF 252 * headers etc. and once execute-only page to enable 253 * privilege-promotion via "epc": 254 */ 255 gate_section = paravirt_get_gate_section(); 256 page = virt_to_page(ia64_imva(gate_section)); 257 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 258 #ifdef HAVE_BUGGY_SEGREL 259 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); 260 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 261 #else 262 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 263 /* Fill in the holes (if any) with read-only zero pages: */ 264 { 265 unsigned long addr; 266 267 for (addr = GATE_ADDR + PAGE_SIZE; 268 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 269 addr += PAGE_SIZE) 270 { 271 put_kernel_page(ZERO_PAGE(0), addr, 272 PAGE_READONLY); 273 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 274 PAGE_READONLY); 275 } 276 } 277 #endif 278 ia64_patch_gate(); 279 } 280 281 void ia64_mmu_init(void *my_cpu_data) 282 { 283 unsigned long pta, impl_va_bits; 284 extern void tlb_init(void); 285 286 #ifdef CONFIG_DISABLE_VHPT 287 # define VHPT_ENABLE_BIT 0 288 #else 289 # define VHPT_ENABLE_BIT 1 290 #endif 291 292 /* 293 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 294 * address space. The IA-64 architecture guarantees that at least 50 bits of 295 * virtual address space are implemented but if we pick a large enough page size 296 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 297 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 298 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 299 * problem in practice. Alternatively, we could truncate the top of the mapped 300 * address space to not permit mappings that would overlap with the VMLPT. 301 * --davidm 00/12/06 302 */ 303 # define pte_bits 3 304 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 305 /* 306 * The virtual page table has to cover the entire implemented address space within 307 * a region even though not all of this space may be mappable. The reason for 308 * this is that the Access bit and Dirty bit fault handlers perform 309 * non-speculative accesses to the virtual page table, so the address range of the 310 * virtual page table itself needs to be covered by virtual page table. 311 */ 312 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 313 # define POW2(n) (1ULL << (n)) 314 315 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 316 317 if (impl_va_bits < 51 || impl_va_bits > 61) 318 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 319 /* 320 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 321 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 322 * the test makes sure that our mapped space doesn't overlap the 323 * unimplemented hole in the middle of the region. 324 */ 325 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 326 (mapped_space_bits > impl_va_bits - 1)) 327 panic("Cannot build a big enough virtual-linear page table" 328 " to cover mapped address space.\n" 329 " Try using a smaller page size.\n"); 330 331 332 /* place the VMLPT at the end of each page-table mapped region: */ 333 pta = POW2(61) - POW2(vmlpt_bits); 334 335 /* 336 * Set the (virtually mapped linear) page table address. Bit 337 * 8 selects between the short and long format, bits 2-7 the 338 * size of the table, and bit 0 whether the VHPT walker is 339 * enabled. 340 */ 341 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 342 343 ia64_tlb_init(); 344 345 #ifdef CONFIG_HUGETLB_PAGE 346 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 347 ia64_srlz_d(); 348 #endif 349 } 350 351 #ifdef CONFIG_VIRTUAL_MEM_MAP 352 int vmemmap_find_next_valid_pfn(int node, int i) 353 { 354 unsigned long end_address, hole_next_pfn; 355 unsigned long stop_address; 356 pg_data_t *pgdat = NODE_DATA(node); 357 358 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 359 end_address = PAGE_ALIGN(end_address); 360 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)]; 361 362 do { 363 pgd_t *pgd; 364 pud_t *pud; 365 pmd_t *pmd; 366 pte_t *pte; 367 368 pgd = pgd_offset_k(end_address); 369 if (pgd_none(*pgd)) { 370 end_address += PGDIR_SIZE; 371 continue; 372 } 373 374 pud = pud_offset(pgd, end_address); 375 if (pud_none(*pud)) { 376 end_address += PUD_SIZE; 377 continue; 378 } 379 380 pmd = pmd_offset(pud, end_address); 381 if (pmd_none(*pmd)) { 382 end_address += PMD_SIZE; 383 continue; 384 } 385 386 pte = pte_offset_kernel(pmd, end_address); 387 retry_pte: 388 if (pte_none(*pte)) { 389 end_address += PAGE_SIZE; 390 pte++; 391 if ((end_address < stop_address) && 392 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 393 goto retry_pte; 394 continue; 395 } 396 /* Found next valid vmem_map page */ 397 break; 398 } while (end_address < stop_address); 399 400 end_address = min(end_address, stop_address); 401 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 402 hole_next_pfn = end_address / sizeof(struct page); 403 return hole_next_pfn - pgdat->node_start_pfn; 404 } 405 406 int __init create_mem_map_page_table(u64 start, u64 end, void *arg) 407 { 408 unsigned long address, start_page, end_page; 409 struct page *map_start, *map_end; 410 int node; 411 pgd_t *pgd; 412 pud_t *pud; 413 pmd_t *pmd; 414 pte_t *pte; 415 416 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 417 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 418 419 start_page = (unsigned long) map_start & PAGE_MASK; 420 end_page = PAGE_ALIGN((unsigned long) map_end); 421 node = paddr_to_nid(__pa(start)); 422 423 for (address = start_page; address < end_page; address += PAGE_SIZE) { 424 pgd = pgd_offset_k(address); 425 if (pgd_none(*pgd)) 426 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 427 pud = pud_offset(pgd, address); 428 429 if (pud_none(*pud)) 430 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 431 pmd = pmd_offset(pud, address); 432 433 if (pmd_none(*pmd)) 434 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 435 pte = pte_offset_kernel(pmd, address); 436 437 if (pte_none(*pte)) 438 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 439 PAGE_KERNEL)); 440 } 441 return 0; 442 } 443 444 struct memmap_init_callback_data { 445 struct page *start; 446 struct page *end; 447 int nid; 448 unsigned long zone; 449 }; 450 451 static int __meminit 452 virtual_memmap_init(u64 start, u64 end, void *arg) 453 { 454 struct memmap_init_callback_data *args; 455 struct page *map_start, *map_end; 456 457 args = (struct memmap_init_callback_data *) arg; 458 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 459 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 460 461 if (map_start < args->start) 462 map_start = args->start; 463 if (map_end > args->end) 464 map_end = args->end; 465 466 /* 467 * We have to initialize "out of bounds" struct page elements that fit completely 468 * on the same pages that were allocated for the "in bounds" elements because they 469 * may be referenced later (and found to be "reserved"). 470 */ 471 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 472 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 473 / sizeof(struct page)); 474 475 if (map_start < map_end) 476 memmap_init_zone((unsigned long)(map_end - map_start), 477 args->nid, args->zone, page_to_pfn(map_start), 478 MEMMAP_EARLY); 479 return 0; 480 } 481 482 void __meminit 483 memmap_init (unsigned long size, int nid, unsigned long zone, 484 unsigned long start_pfn) 485 { 486 if (!vmem_map) 487 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 488 else { 489 struct page *start; 490 struct memmap_init_callback_data args; 491 492 start = pfn_to_page(start_pfn); 493 args.start = start; 494 args.end = start + size; 495 args.nid = nid; 496 args.zone = zone; 497 498 efi_memmap_walk(virtual_memmap_init, &args); 499 } 500 } 501 502 int 503 ia64_pfn_valid (unsigned long pfn) 504 { 505 char byte; 506 struct page *pg = pfn_to_page(pfn); 507 508 return (__get_user(byte, (char __user *) pg) == 0) 509 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 510 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 511 } 512 EXPORT_SYMBOL(ia64_pfn_valid); 513 514 int __init find_largest_hole(u64 start, u64 end, void *arg) 515 { 516 u64 *max_gap = arg; 517 518 static u64 last_end = PAGE_OFFSET; 519 520 /* NOTE: this algorithm assumes efi memmap table is ordered */ 521 522 if (*max_gap < (start - last_end)) 523 *max_gap = start - last_end; 524 last_end = end; 525 return 0; 526 } 527 528 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 529 530 int __init register_active_ranges(u64 start, u64 len, int nid) 531 { 532 u64 end = start + len; 533 534 #ifdef CONFIG_KEXEC 535 if (start > crashk_res.start && start < crashk_res.end) 536 start = crashk_res.end; 537 if (end > crashk_res.start && end < crashk_res.end) 538 end = crashk_res.start; 539 #endif 540 541 if (start < end) 542 memblock_add_node(__pa(start), end - start, nid); 543 return 0; 544 } 545 546 int 547 find_max_min_low_pfn (u64 start, u64 end, void *arg) 548 { 549 unsigned long pfn_start, pfn_end; 550 #ifdef CONFIG_FLATMEM 551 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 552 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 553 #else 554 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 555 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 556 #endif 557 min_low_pfn = min(min_low_pfn, pfn_start); 558 max_low_pfn = max(max_low_pfn, pfn_end); 559 return 0; 560 } 561 562 /* 563 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 564 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 565 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 566 * useful for performance testing, but conceivably could also come in handy for debugging 567 * purposes. 568 */ 569 570 static int nolwsys __initdata; 571 572 static int __init 573 nolwsys_setup (char *s) 574 { 575 nolwsys = 1; 576 return 1; 577 } 578 579 __setup("nolwsys", nolwsys_setup); 580 581 void __init 582 mem_init (void) 583 { 584 int i; 585 586 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 587 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 588 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 589 590 #ifdef CONFIG_PCI 591 /* 592 * This needs to be called _after_ the command line has been parsed but _before_ 593 * any drivers that may need the PCI DMA interface are initialized or bootmem has 594 * been freed. 595 */ 596 platform_dma_init(); 597 #endif 598 599 #ifdef CONFIG_FLATMEM 600 BUG_ON(!mem_map); 601 #endif 602 603 set_max_mapnr(max_low_pfn); 604 high_memory = __va(max_low_pfn * PAGE_SIZE); 605 free_all_bootmem(); 606 mem_init_print_info(NULL); 607 608 /* 609 * For fsyscall entrpoints with no light-weight handler, use the ordinary 610 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 611 * code can tell them apart. 612 */ 613 for (i = 0; i < NR_syscalls; ++i) { 614 extern unsigned long sys_call_table[NR_syscalls]; 615 unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); 616 617 if (!fsyscall_table[i] || nolwsys) 618 fsyscall_table[i] = sys_call_table[i] | 1; 619 } 620 setup_gate(); 621 } 622 623 #ifdef CONFIG_MEMORY_HOTPLUG 624 int arch_add_memory(int nid, u64 start, u64 size) 625 { 626 pg_data_t *pgdat; 627 struct zone *zone; 628 unsigned long start_pfn = start >> PAGE_SHIFT; 629 unsigned long nr_pages = size >> PAGE_SHIFT; 630 int ret; 631 632 pgdat = NODE_DATA(nid); 633 634 zone = pgdat->node_zones + ZONE_NORMAL; 635 ret = __add_pages(nid, zone, start_pfn, nr_pages); 636 637 if (ret) 638 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 639 __func__, ret); 640 641 return ret; 642 } 643 644 #ifdef CONFIG_MEMORY_HOTREMOVE 645 int arch_remove_memory(u64 start, u64 size) 646 { 647 unsigned long start_pfn = start >> PAGE_SHIFT; 648 unsigned long nr_pages = size >> PAGE_SHIFT; 649 struct zone *zone; 650 int ret; 651 652 zone = page_zone(pfn_to_page(start_pfn)); 653 ret = __remove_pages(zone, start_pfn, nr_pages); 654 if (ret) 655 pr_warn("%s: Problem encountered in __remove_pages() as" 656 " ret=%d\n", __func__, ret); 657 658 return ret; 659 } 660 #endif 661 #endif 662 663 /* 664 * Even when CONFIG_IA32_SUPPORT is not enabled it is 665 * useful to have the Linux/x86 domain registered to 666 * avoid an attempted module load when emulators call 667 * personality(PER_LINUX32). This saves several milliseconds 668 * on each such call. 669 */ 670 static struct exec_domain ia32_exec_domain; 671 672 static int __init 673 per_linux32_init(void) 674 { 675 ia32_exec_domain.name = "Linux/x86"; 676 ia32_exec_domain.handler = NULL; 677 ia32_exec_domain.pers_low = PER_LINUX32; 678 ia32_exec_domain.pers_high = PER_LINUX32; 679 ia32_exec_domain.signal_map = default_exec_domain.signal_map; 680 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; 681 register_exec_domain(&ia32_exec_domain); 682 683 return 0; 684 } 685 686 __initcall(per_linux32_init); 687 688 /** 689 * show_mem - give short summary of memory stats 690 * 691 * Shows a simple page count of reserved and used pages in the system. 692 * For discontig machines, it does this on a per-pgdat basis. 693 */ 694 void show_mem(unsigned int filter) 695 { 696 int total_reserved = 0; 697 unsigned long total_present = 0; 698 pg_data_t *pgdat; 699 700 printk(KERN_INFO "Mem-info:\n"); 701 show_free_areas(filter); 702 printk(KERN_INFO "Node memory in pages:\n"); 703 for_each_online_pgdat(pgdat) { 704 unsigned long present; 705 unsigned long flags; 706 int reserved = 0; 707 int nid = pgdat->node_id; 708 int zoneid; 709 710 if (skip_free_areas_node(filter, nid)) 711 continue; 712 pgdat_resize_lock(pgdat, &flags); 713 714 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 715 struct zone *zone = &pgdat->node_zones[zoneid]; 716 if (!populated_zone(zone)) 717 continue; 718 719 reserved += zone->present_pages - zone->managed_pages; 720 } 721 present = pgdat->node_present_pages; 722 723 pgdat_resize_unlock(pgdat, &flags); 724 total_present += present; 725 total_reserved += reserved; 726 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, ", 727 nid, present, reserved); 728 } 729 printk(KERN_INFO "%ld pages of RAM\n", total_present); 730 printk(KERN_INFO "%d reserved pages\n", total_reserved); 731 printk(KERN_INFO "Total of %ld pages in page table cache\n", 732 quicklist_total_size()); 733 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages()); 734 } 735