1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Initialize MMU support. 4 * 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/memblock.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/mmzone.h> 17 #include <linux/module.h> 18 #include <linux/personality.h> 19 #include <linux/reboot.h> 20 #include <linux/slab.h> 21 #include <linux/swap.h> 22 #include <linux/proc_fs.h> 23 #include <linux/bitops.h> 24 #include <linux/kexec.h> 25 26 #include <asm/dma.h> 27 #include <asm/io.h> 28 #include <asm/machvec.h> 29 #include <asm/numa.h> 30 #include <asm/patch.h> 31 #include <asm/pgalloc.h> 32 #include <asm/sal.h> 33 #include <asm/sections.h> 34 #include <asm/tlb.h> 35 #include <linux/uaccess.h> 36 #include <asm/unistd.h> 37 #include <asm/mca.h> 38 39 extern void ia64_tlb_init (void); 40 41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 42 43 #ifdef CONFIG_VIRTUAL_MEM_MAP 44 unsigned long VMALLOC_END = VMALLOC_END_INIT; 45 EXPORT_SYMBOL(VMALLOC_END); 46 struct page *vmem_map; 47 EXPORT_SYMBOL(vmem_map); 48 #endif 49 50 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 51 EXPORT_SYMBOL(zero_page_memmap_ptr); 52 53 void 54 __ia64_sync_icache_dcache (pte_t pte) 55 { 56 unsigned long addr; 57 struct page *page; 58 59 page = pte_page(pte); 60 addr = (unsigned long) page_address(page); 61 62 if (test_bit(PG_arch_1, &page->flags)) 63 return; /* i-cache is already coherent with d-cache */ 64 65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 67 } 68 69 /* 70 * Since DMA is i-cache coherent, any (complete) pages that were written via 71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 72 * flush them when they get mapped into an executable vm-area. 73 */ 74 void 75 dma_mark_clean(void *addr, size_t size) 76 { 77 unsigned long pg_addr, end; 78 79 pg_addr = PAGE_ALIGN((unsigned long) addr); 80 end = (unsigned long) addr + size; 81 while (pg_addr + PAGE_SIZE <= end) { 82 struct page *page = virt_to_page(pg_addr); 83 set_bit(PG_arch_1, &page->flags); 84 pg_addr += PAGE_SIZE; 85 } 86 } 87 88 inline void 89 ia64_set_rbs_bot (void) 90 { 91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; 92 93 if (stack_size > MAX_USER_STACK_SIZE) 94 stack_size = MAX_USER_STACK_SIZE; 95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 96 } 97 98 /* 99 * This performs some platform-dependent address space initialization. 100 * On IA-64, we want to setup the VM area for the register backing 101 * store (which grows upwards) and install the gateway page which is 102 * used for signal trampolines, etc. 103 */ 104 void 105 ia64_init_addr_space (void) 106 { 107 struct vm_area_struct *vma; 108 109 ia64_set_rbs_bot(); 110 111 /* 112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 113 * the problem. When the process attempts to write to the register backing store 114 * for the first time, it will get a SEGFAULT in this case. 115 */ 116 vma = vm_area_alloc(current->mm); 117 if (vma) { 118 vma_set_anonymous(vma); 119 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 120 vma->vm_end = vma->vm_start + PAGE_SIZE; 121 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 122 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 123 down_write(¤t->mm->mmap_sem); 124 if (insert_vm_struct(current->mm, vma)) { 125 up_write(¤t->mm->mmap_sem); 126 vm_area_free(vma); 127 return; 128 } 129 up_write(¤t->mm->mmap_sem); 130 } 131 132 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 133 if (!(current->personality & MMAP_PAGE_ZERO)) { 134 vma = vm_area_alloc(current->mm); 135 if (vma) { 136 vma_set_anonymous(vma); 137 vma->vm_end = PAGE_SIZE; 138 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 139 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | 140 VM_DONTEXPAND | VM_DONTDUMP; 141 down_write(¤t->mm->mmap_sem); 142 if (insert_vm_struct(current->mm, vma)) { 143 up_write(¤t->mm->mmap_sem); 144 vm_area_free(vma); 145 return; 146 } 147 up_write(¤t->mm->mmap_sem); 148 } 149 } 150 } 151 152 void 153 free_initmem (void) 154 { 155 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end), 156 -1, "unused kernel"); 157 } 158 159 void __init 160 free_initrd_mem (unsigned long start, unsigned long end) 161 { 162 /* 163 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 164 * Thus EFI and the kernel may have different page sizes. It is 165 * therefore possible to have the initrd share the same page as 166 * the end of the kernel (given current setup). 167 * 168 * To avoid freeing/using the wrong page (kernel sized) we: 169 * - align up the beginning of initrd 170 * - align down the end of initrd 171 * 172 * | | 173 * |=============| a000 174 * | | 175 * | | 176 * | | 9000 177 * |/////////////| 178 * |/////////////| 179 * |=============| 8000 180 * |///INITRD////| 181 * |/////////////| 182 * |/////////////| 7000 183 * | | 184 * |KKKKKKKKKKKKK| 185 * |=============| 6000 186 * |KKKKKKKKKKKKK| 187 * |KKKKKKKKKKKKK| 188 * K=kernel using 8KB pages 189 * 190 * In this example, we must free page 8000 ONLY. So we must align up 191 * initrd_start and keep initrd_end as is. 192 */ 193 start = PAGE_ALIGN(start); 194 end = end & PAGE_MASK; 195 196 if (start < end) 197 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 198 199 for (; start < end; start += PAGE_SIZE) { 200 if (!virt_addr_valid(start)) 201 continue; 202 free_reserved_page(virt_to_page(start)); 203 } 204 } 205 206 /* 207 * This installs a clean page in the kernel's page table. 208 */ 209 static struct page * __init 210 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 211 { 212 pgd_t *pgd; 213 pud_t *pud; 214 pmd_t *pmd; 215 pte_t *pte; 216 217 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 218 219 { 220 pud = pud_alloc(&init_mm, pgd, address); 221 if (!pud) 222 goto out; 223 pmd = pmd_alloc(&init_mm, pud, address); 224 if (!pmd) 225 goto out; 226 pte = pte_alloc_kernel(pmd, address); 227 if (!pte) 228 goto out; 229 if (!pte_none(*pte)) 230 goto out; 231 set_pte(pte, mk_pte(page, pgprot)); 232 } 233 out: 234 /* no need for flush_tlb */ 235 return page; 236 } 237 238 static void __init 239 setup_gate (void) 240 { 241 struct page *page; 242 243 /* 244 * Map the gate page twice: once read-only to export the ELF 245 * headers etc. and once execute-only page to enable 246 * privilege-promotion via "epc": 247 */ 248 page = virt_to_page(ia64_imva(__start_gate_section)); 249 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 250 #ifdef HAVE_BUGGY_SEGREL 251 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); 252 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 253 #else 254 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 255 /* Fill in the holes (if any) with read-only zero pages: */ 256 { 257 unsigned long addr; 258 259 for (addr = GATE_ADDR + PAGE_SIZE; 260 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 261 addr += PAGE_SIZE) 262 { 263 put_kernel_page(ZERO_PAGE(0), addr, 264 PAGE_READONLY); 265 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 266 PAGE_READONLY); 267 } 268 } 269 #endif 270 ia64_patch_gate(); 271 } 272 273 static struct vm_area_struct gate_vma; 274 275 static int __init gate_vma_init(void) 276 { 277 vma_init(&gate_vma, NULL); 278 gate_vma.vm_start = FIXADDR_USER_START; 279 gate_vma.vm_end = FIXADDR_USER_END; 280 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 281 gate_vma.vm_page_prot = __P101; 282 283 return 0; 284 } 285 __initcall(gate_vma_init); 286 287 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 288 { 289 return &gate_vma; 290 } 291 292 int in_gate_area_no_mm(unsigned long addr) 293 { 294 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 295 return 1; 296 return 0; 297 } 298 299 int in_gate_area(struct mm_struct *mm, unsigned long addr) 300 { 301 return in_gate_area_no_mm(addr); 302 } 303 304 void ia64_mmu_init(void *my_cpu_data) 305 { 306 unsigned long pta, impl_va_bits; 307 extern void tlb_init(void); 308 309 #ifdef CONFIG_DISABLE_VHPT 310 # define VHPT_ENABLE_BIT 0 311 #else 312 # define VHPT_ENABLE_BIT 1 313 #endif 314 315 /* 316 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 317 * address space. The IA-64 architecture guarantees that at least 50 bits of 318 * virtual address space are implemented but if we pick a large enough page size 319 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 320 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 321 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 322 * problem in practice. Alternatively, we could truncate the top of the mapped 323 * address space to not permit mappings that would overlap with the VMLPT. 324 * --davidm 00/12/06 325 */ 326 # define pte_bits 3 327 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 328 /* 329 * The virtual page table has to cover the entire implemented address space within 330 * a region even though not all of this space may be mappable. The reason for 331 * this is that the Access bit and Dirty bit fault handlers perform 332 * non-speculative accesses to the virtual page table, so the address range of the 333 * virtual page table itself needs to be covered by virtual page table. 334 */ 335 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 336 # define POW2(n) (1ULL << (n)) 337 338 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 339 340 if (impl_va_bits < 51 || impl_va_bits > 61) 341 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 342 /* 343 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 344 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 345 * the test makes sure that our mapped space doesn't overlap the 346 * unimplemented hole in the middle of the region. 347 */ 348 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 349 (mapped_space_bits > impl_va_bits - 1)) 350 panic("Cannot build a big enough virtual-linear page table" 351 " to cover mapped address space.\n" 352 " Try using a smaller page size.\n"); 353 354 355 /* place the VMLPT at the end of each page-table mapped region: */ 356 pta = POW2(61) - POW2(vmlpt_bits); 357 358 /* 359 * Set the (virtually mapped linear) page table address. Bit 360 * 8 selects between the short and long format, bits 2-7 the 361 * size of the table, and bit 0 whether the VHPT walker is 362 * enabled. 363 */ 364 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 365 366 ia64_tlb_init(); 367 368 #ifdef CONFIG_HUGETLB_PAGE 369 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 370 ia64_srlz_d(); 371 #endif 372 } 373 374 #ifdef CONFIG_VIRTUAL_MEM_MAP 375 int vmemmap_find_next_valid_pfn(int node, int i) 376 { 377 unsigned long end_address, hole_next_pfn; 378 unsigned long stop_address; 379 pg_data_t *pgdat = NODE_DATA(node); 380 381 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 382 end_address = PAGE_ALIGN(end_address); 383 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)]; 384 385 do { 386 pgd_t *pgd; 387 pud_t *pud; 388 pmd_t *pmd; 389 pte_t *pte; 390 391 pgd = pgd_offset_k(end_address); 392 if (pgd_none(*pgd)) { 393 end_address += PGDIR_SIZE; 394 continue; 395 } 396 397 pud = pud_offset(pgd, end_address); 398 if (pud_none(*pud)) { 399 end_address += PUD_SIZE; 400 continue; 401 } 402 403 pmd = pmd_offset(pud, end_address); 404 if (pmd_none(*pmd)) { 405 end_address += PMD_SIZE; 406 continue; 407 } 408 409 pte = pte_offset_kernel(pmd, end_address); 410 retry_pte: 411 if (pte_none(*pte)) { 412 end_address += PAGE_SIZE; 413 pte++; 414 if ((end_address < stop_address) && 415 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 416 goto retry_pte; 417 continue; 418 } 419 /* Found next valid vmem_map page */ 420 break; 421 } while (end_address < stop_address); 422 423 end_address = min(end_address, stop_address); 424 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 425 hole_next_pfn = end_address / sizeof(struct page); 426 return hole_next_pfn - pgdat->node_start_pfn; 427 } 428 429 int __init create_mem_map_page_table(u64 start, u64 end, void *arg) 430 { 431 unsigned long address, start_page, end_page; 432 struct page *map_start, *map_end; 433 int node; 434 pgd_t *pgd; 435 pud_t *pud; 436 pmd_t *pmd; 437 pte_t *pte; 438 439 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 440 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 441 442 start_page = (unsigned long) map_start & PAGE_MASK; 443 end_page = PAGE_ALIGN((unsigned long) map_end); 444 node = paddr_to_nid(__pa(start)); 445 446 for (address = start_page; address < end_page; address += PAGE_SIZE) { 447 pgd = pgd_offset_k(address); 448 if (pgd_none(*pgd)) 449 pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)); 450 pud = pud_offset(pgd, address); 451 452 if (pud_none(*pud)) 453 pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)); 454 pmd = pmd_offset(pud, address); 455 456 if (pmd_none(*pmd)) 457 pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)); 458 pte = pte_offset_kernel(pmd, address); 459 460 if (pte_none(*pte)) 461 set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT, 462 PAGE_KERNEL)); 463 } 464 return 0; 465 } 466 467 struct memmap_init_callback_data { 468 struct page *start; 469 struct page *end; 470 int nid; 471 unsigned long zone; 472 }; 473 474 static int __meminit 475 virtual_memmap_init(u64 start, u64 end, void *arg) 476 { 477 struct memmap_init_callback_data *args; 478 struct page *map_start, *map_end; 479 480 args = (struct memmap_init_callback_data *) arg; 481 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 482 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 483 484 if (map_start < args->start) 485 map_start = args->start; 486 if (map_end > args->end) 487 map_end = args->end; 488 489 /* 490 * We have to initialize "out of bounds" struct page elements that fit completely 491 * on the same pages that were allocated for the "in bounds" elements because they 492 * may be referenced later (and found to be "reserved"). 493 */ 494 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 495 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 496 / sizeof(struct page)); 497 498 if (map_start < map_end) 499 memmap_init_zone((unsigned long)(map_end - map_start), 500 args->nid, args->zone, page_to_pfn(map_start), 501 MEMMAP_EARLY, NULL); 502 return 0; 503 } 504 505 void __meminit 506 memmap_init (unsigned long size, int nid, unsigned long zone, 507 unsigned long start_pfn) 508 { 509 if (!vmem_map) { 510 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, 511 NULL); 512 } else { 513 struct page *start; 514 struct memmap_init_callback_data args; 515 516 start = pfn_to_page(start_pfn); 517 args.start = start; 518 args.end = start + size; 519 args.nid = nid; 520 args.zone = zone; 521 522 efi_memmap_walk(virtual_memmap_init, &args); 523 } 524 } 525 526 int 527 ia64_pfn_valid (unsigned long pfn) 528 { 529 char byte; 530 struct page *pg = pfn_to_page(pfn); 531 532 return (__get_user(byte, (char __user *) pg) == 0) 533 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 534 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 535 } 536 EXPORT_SYMBOL(ia64_pfn_valid); 537 538 int __init find_largest_hole(u64 start, u64 end, void *arg) 539 { 540 u64 *max_gap = arg; 541 542 static u64 last_end = PAGE_OFFSET; 543 544 /* NOTE: this algorithm assumes efi memmap table is ordered */ 545 546 if (*max_gap < (start - last_end)) 547 *max_gap = start - last_end; 548 last_end = end; 549 return 0; 550 } 551 552 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 553 554 int __init register_active_ranges(u64 start, u64 len, int nid) 555 { 556 u64 end = start + len; 557 558 #ifdef CONFIG_KEXEC 559 if (start > crashk_res.start && start < crashk_res.end) 560 start = crashk_res.end; 561 if (end > crashk_res.start && end < crashk_res.end) 562 end = crashk_res.start; 563 #endif 564 565 if (start < end) 566 memblock_add_node(__pa(start), end - start, nid); 567 return 0; 568 } 569 570 int 571 find_max_min_low_pfn (u64 start, u64 end, void *arg) 572 { 573 unsigned long pfn_start, pfn_end; 574 #ifdef CONFIG_FLATMEM 575 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 576 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 577 #else 578 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 579 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 580 #endif 581 min_low_pfn = min(min_low_pfn, pfn_start); 582 max_low_pfn = max(max_low_pfn, pfn_end); 583 return 0; 584 } 585 586 /* 587 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 588 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 589 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 590 * useful for performance testing, but conceivably could also come in handy for debugging 591 * purposes. 592 */ 593 594 static int nolwsys __initdata; 595 596 static int __init 597 nolwsys_setup (char *s) 598 { 599 nolwsys = 1; 600 return 1; 601 } 602 603 __setup("nolwsys", nolwsys_setup); 604 605 void __init 606 mem_init (void) 607 { 608 int i; 609 610 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 611 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 612 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 613 614 #ifdef CONFIG_PCI 615 /* 616 * This needs to be called _after_ the command line has been parsed but _before_ 617 * any drivers that may need the PCI DMA interface are initialized or bootmem has 618 * been freed. 619 */ 620 platform_dma_init(); 621 #endif 622 623 #ifdef CONFIG_FLATMEM 624 BUG_ON(!mem_map); 625 #endif 626 627 set_max_mapnr(max_low_pfn); 628 high_memory = __va(max_low_pfn * PAGE_SIZE); 629 memblock_free_all(); 630 mem_init_print_info(NULL); 631 632 /* 633 * For fsyscall entrpoints with no light-weight handler, use the ordinary 634 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 635 * code can tell them apart. 636 */ 637 for (i = 0; i < NR_syscalls; ++i) { 638 extern unsigned long fsyscall_table[NR_syscalls]; 639 extern unsigned long sys_call_table[NR_syscalls]; 640 641 if (!fsyscall_table[i] || nolwsys) 642 fsyscall_table[i] = sys_call_table[i] | 1; 643 } 644 setup_gate(); 645 } 646 647 #ifdef CONFIG_MEMORY_HOTPLUG 648 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap, 649 bool want_memblock) 650 { 651 unsigned long start_pfn = start >> PAGE_SHIFT; 652 unsigned long nr_pages = size >> PAGE_SHIFT; 653 int ret; 654 655 ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock); 656 if (ret) 657 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 658 __func__, ret); 659 660 return ret; 661 } 662 663 #ifdef CONFIG_MEMORY_HOTREMOVE 664 int arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 665 { 666 unsigned long start_pfn = start >> PAGE_SHIFT; 667 unsigned long nr_pages = size >> PAGE_SHIFT; 668 struct zone *zone; 669 int ret; 670 671 zone = page_zone(pfn_to_page(start_pfn)); 672 ret = __remove_pages(zone, start_pfn, nr_pages, altmap); 673 if (ret) 674 pr_warn("%s: Problem encountered in __remove_pages() as" 675 " ret=%d\n", __func__, ret); 676 677 return ret; 678 } 679 #endif 680 #endif 681