xref: /openbmc/linux/arch/ia64/mm/init.c (revision a17627ef)
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23 
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39 
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41 
42 extern void ia64_tlb_init (void);
43 
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45 
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
52 
53 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
55 
56 void
57 lazy_mmu_prot_update (pte_t pte)
58 {
59 	unsigned long addr;
60 	struct page *page;
61 	unsigned long order;
62 
63 	if (!pte_exec(pte))
64 		return;				/* not an executable page... */
65 
66 	page = pte_page(pte);
67 	addr = (unsigned long) page_address(page);
68 
69 	if (test_bit(PG_arch_1, &page->flags))
70 		return;				/* i-cache is already coherent with d-cache */
71 
72 	if (PageCompound(page)) {
73 		order = compound_order(page);
74 		flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
75 	}
76 	else
77 		flush_icache_range(addr, addr + PAGE_SIZE);
78 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
79 }
80 
81 /*
82  * Since DMA is i-cache coherent, any (complete) pages that were written via
83  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
84  * flush them when they get mapped into an executable vm-area.
85  */
86 void
87 dma_mark_clean(void *addr, size_t size)
88 {
89 	unsigned long pg_addr, end;
90 
91 	pg_addr = PAGE_ALIGN((unsigned long) addr);
92 	end = (unsigned long) addr + size;
93 	while (pg_addr + PAGE_SIZE <= end) {
94 		struct page *page = virt_to_page(pg_addr);
95 		set_bit(PG_arch_1, &page->flags);
96 		pg_addr += PAGE_SIZE;
97 	}
98 }
99 
100 inline void
101 ia64_set_rbs_bot (void)
102 {
103 	unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
104 
105 	if (stack_size > MAX_USER_STACK_SIZE)
106 		stack_size = MAX_USER_STACK_SIZE;
107 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
108 }
109 
110 /*
111  * This performs some platform-dependent address space initialization.
112  * On IA-64, we want to setup the VM area for the register backing
113  * store (which grows upwards) and install the gateway page which is
114  * used for signal trampolines, etc.
115  */
116 void
117 ia64_init_addr_space (void)
118 {
119 	struct vm_area_struct *vma;
120 
121 	ia64_set_rbs_bot();
122 
123 	/*
124 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
125 	 * the problem.  When the process attempts to write to the register backing store
126 	 * for the first time, it will get a SEGFAULT in this case.
127 	 */
128 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
129 	if (vma) {
130 		vma->vm_mm = current->mm;
131 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
132 		vma->vm_end = vma->vm_start + PAGE_SIZE;
133 		vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
134 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
135 		down_write(&current->mm->mmap_sem);
136 		if (insert_vm_struct(current->mm, vma)) {
137 			up_write(&current->mm->mmap_sem);
138 			kmem_cache_free(vm_area_cachep, vma);
139 			return;
140 		}
141 		up_write(&current->mm->mmap_sem);
142 	}
143 
144 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
145 	if (!(current->personality & MMAP_PAGE_ZERO)) {
146 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
147 		if (vma) {
148 			vma->vm_mm = current->mm;
149 			vma->vm_end = PAGE_SIZE;
150 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
151 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
152 			down_write(&current->mm->mmap_sem);
153 			if (insert_vm_struct(current->mm, vma)) {
154 				up_write(&current->mm->mmap_sem);
155 				kmem_cache_free(vm_area_cachep, vma);
156 				return;
157 			}
158 			up_write(&current->mm->mmap_sem);
159 		}
160 	}
161 }
162 
163 void
164 free_initmem (void)
165 {
166 	unsigned long addr, eaddr;
167 
168 	addr = (unsigned long) ia64_imva(__init_begin);
169 	eaddr = (unsigned long) ia64_imva(__init_end);
170 	while (addr < eaddr) {
171 		ClearPageReserved(virt_to_page(addr));
172 		init_page_count(virt_to_page(addr));
173 		free_page(addr);
174 		++totalram_pages;
175 		addr += PAGE_SIZE;
176 	}
177 	printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
178 	       (__init_end - __init_begin) >> 10);
179 }
180 
181 void __init
182 free_initrd_mem (unsigned long start, unsigned long end)
183 {
184 	struct page *page;
185 	/*
186 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
187 	 * Thus EFI and the kernel may have different page sizes. It is
188 	 * therefore possible to have the initrd share the same page as
189 	 * the end of the kernel (given current setup).
190 	 *
191 	 * To avoid freeing/using the wrong page (kernel sized) we:
192 	 *	- align up the beginning of initrd
193 	 *	- align down the end of initrd
194 	 *
195 	 *  |             |
196 	 *  |=============| a000
197 	 *  |             |
198 	 *  |             |
199 	 *  |             | 9000
200 	 *  |/////////////|
201 	 *  |/////////////|
202 	 *  |=============| 8000
203 	 *  |///INITRD////|
204 	 *  |/////////////|
205 	 *  |/////////////| 7000
206 	 *  |             |
207 	 *  |KKKKKKKKKKKKK|
208 	 *  |=============| 6000
209 	 *  |KKKKKKKKKKKKK|
210 	 *  |KKKKKKKKKKKKK|
211 	 *  K=kernel using 8KB pages
212 	 *
213 	 * In this example, we must free page 8000 ONLY. So we must align up
214 	 * initrd_start and keep initrd_end as is.
215 	 */
216 	start = PAGE_ALIGN(start);
217 	end = end & PAGE_MASK;
218 
219 	if (start < end)
220 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
221 
222 	for (; start < end; start += PAGE_SIZE) {
223 		if (!virt_addr_valid(start))
224 			continue;
225 		page = virt_to_page(start);
226 		ClearPageReserved(page);
227 		init_page_count(page);
228 		free_page(start);
229 		++totalram_pages;
230 	}
231 }
232 
233 /*
234  * This installs a clean page in the kernel's page table.
235  */
236 static struct page * __init
237 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
238 {
239 	pgd_t *pgd;
240 	pud_t *pud;
241 	pmd_t *pmd;
242 	pte_t *pte;
243 
244 	if (!PageReserved(page))
245 		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
246 		       page_address(page));
247 
248 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
249 
250 	{
251 		pud = pud_alloc(&init_mm, pgd, address);
252 		if (!pud)
253 			goto out;
254 		pmd = pmd_alloc(&init_mm, pud, address);
255 		if (!pmd)
256 			goto out;
257 		pte = pte_alloc_kernel(pmd, address);
258 		if (!pte)
259 			goto out;
260 		if (!pte_none(*pte))
261 			goto out;
262 		set_pte(pte, mk_pte(page, pgprot));
263 	}
264   out:
265 	/* no need for flush_tlb */
266 	return page;
267 }
268 
269 static void __init
270 setup_gate (void)
271 {
272 	struct page *page;
273 
274 	/*
275 	 * Map the gate page twice: once read-only to export the ELF
276 	 * headers etc. and once execute-only page to enable
277 	 * privilege-promotion via "epc":
278 	 */
279 	page = virt_to_page(ia64_imva(__start_gate_section));
280 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
281 #ifdef HAVE_BUGGY_SEGREL
282 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
283 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
284 #else
285 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
286 	/* Fill in the holes (if any) with read-only zero pages: */
287 	{
288 		unsigned long addr;
289 
290 		for (addr = GATE_ADDR + PAGE_SIZE;
291 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
292 		     addr += PAGE_SIZE)
293 		{
294 			put_kernel_page(ZERO_PAGE(0), addr,
295 					PAGE_READONLY);
296 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
297 					PAGE_READONLY);
298 		}
299 	}
300 #endif
301 	ia64_patch_gate();
302 }
303 
304 void __devinit
305 ia64_mmu_init (void *my_cpu_data)
306 {
307 	unsigned long pta, impl_va_bits;
308 	extern void __devinit tlb_init (void);
309 
310 #ifdef CONFIG_DISABLE_VHPT
311 #	define VHPT_ENABLE_BIT	0
312 #else
313 #	define VHPT_ENABLE_BIT	1
314 #endif
315 
316 	/*
317 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
319 	 * virtual address space are implemented but if we pick a large enough page size
320 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
322 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
324 	 * address space to not permit mappings that would overlap with the VMLPT.
325 	 * --davidm 00/12/06
326 	 */
327 #	define pte_bits			3
328 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
329 	/*
330 	 * The virtual page table has to cover the entire implemented address space within
331 	 * a region even though not all of this space may be mappable.  The reason for
332 	 * this is that the Access bit and Dirty bit fault handlers perform
333 	 * non-speculative accesses to the virtual page table, so the address range of the
334 	 * virtual page table itself needs to be covered by virtual page table.
335 	 */
336 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
337 #	define POW2(n)			(1ULL << (n))
338 
339 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
340 
341 	if (impl_va_bits < 51 || impl_va_bits > 61)
342 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
343 	/*
344 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346 	 * the test makes sure that our mapped space doesn't overlap the
347 	 * unimplemented hole in the middle of the region.
348 	 */
349 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
350 	    (mapped_space_bits > impl_va_bits - 1))
351 		panic("Cannot build a big enough virtual-linear page table"
352 		      " to cover mapped address space.\n"
353 		      " Try using a smaller page size.\n");
354 
355 
356 	/* place the VMLPT at the end of each page-table mapped region: */
357 	pta = POW2(61) - POW2(vmlpt_bits);
358 
359 	/*
360 	 * Set the (virtually mapped linear) page table address.  Bit
361 	 * 8 selects between the short and long format, bits 2-7 the
362 	 * size of the table, and bit 0 whether the VHPT walker is
363 	 * enabled.
364 	 */
365 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
366 
367 	ia64_tlb_init();
368 
369 #ifdef	CONFIG_HUGETLB_PAGE
370 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
371 	ia64_srlz_d();
372 #endif
373 }
374 
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
376 int vmemmap_find_next_valid_pfn(int node, int i)
377 {
378 	unsigned long end_address, hole_next_pfn;
379 	unsigned long stop_address;
380 	pg_data_t *pgdat = NODE_DATA(node);
381 
382 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
383 	end_address = PAGE_ALIGN(end_address);
384 
385 	stop_address = (unsigned long) &vmem_map[
386 		pgdat->node_start_pfn + pgdat->node_spanned_pages];
387 
388 	do {
389 		pgd_t *pgd;
390 		pud_t *pud;
391 		pmd_t *pmd;
392 		pte_t *pte;
393 
394 		pgd = pgd_offset_k(end_address);
395 		if (pgd_none(*pgd)) {
396 			end_address += PGDIR_SIZE;
397 			continue;
398 		}
399 
400 		pud = pud_offset(pgd, end_address);
401 		if (pud_none(*pud)) {
402 			end_address += PUD_SIZE;
403 			continue;
404 		}
405 
406 		pmd = pmd_offset(pud, end_address);
407 		if (pmd_none(*pmd)) {
408 			end_address += PMD_SIZE;
409 			continue;
410 		}
411 
412 		pte = pte_offset_kernel(pmd, end_address);
413 retry_pte:
414 		if (pte_none(*pte)) {
415 			end_address += PAGE_SIZE;
416 			pte++;
417 			if ((end_address < stop_address) &&
418 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
419 				goto retry_pte;
420 			continue;
421 		}
422 		/* Found next valid vmem_map page */
423 		break;
424 	} while (end_address < stop_address);
425 
426 	end_address = min(end_address, stop_address);
427 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
428 	hole_next_pfn = end_address / sizeof(struct page);
429 	return hole_next_pfn - pgdat->node_start_pfn;
430 }
431 
432 int __init
433 create_mem_map_page_table (u64 start, u64 end, void *arg)
434 {
435 	unsigned long address, start_page, end_page;
436 	struct page *map_start, *map_end;
437 	int node;
438 	pgd_t *pgd;
439 	pud_t *pud;
440 	pmd_t *pmd;
441 	pte_t *pte;
442 
443 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
444 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
445 
446 	start_page = (unsigned long) map_start & PAGE_MASK;
447 	end_page = PAGE_ALIGN((unsigned long) map_end);
448 	node = paddr_to_nid(__pa(start));
449 
450 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
451 		pgd = pgd_offset_k(address);
452 		if (pgd_none(*pgd))
453 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
454 		pud = pud_offset(pgd, address);
455 
456 		if (pud_none(*pud))
457 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
458 		pmd = pmd_offset(pud, address);
459 
460 		if (pmd_none(*pmd))
461 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
462 		pte = pte_offset_kernel(pmd, address);
463 
464 		if (pte_none(*pte))
465 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
466 					     PAGE_KERNEL));
467 	}
468 	return 0;
469 }
470 
471 struct memmap_init_callback_data {
472 	struct page *start;
473 	struct page *end;
474 	int nid;
475 	unsigned long zone;
476 };
477 
478 static int
479 virtual_memmap_init (u64 start, u64 end, void *arg)
480 {
481 	struct memmap_init_callback_data *args;
482 	struct page *map_start, *map_end;
483 
484 	args = (struct memmap_init_callback_data *) arg;
485 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
486 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
487 
488 	if (map_start < args->start)
489 		map_start = args->start;
490 	if (map_end > args->end)
491 		map_end = args->end;
492 
493 	/*
494 	 * We have to initialize "out of bounds" struct page elements that fit completely
495 	 * on the same pages that were allocated for the "in bounds" elements because they
496 	 * may be referenced later (and found to be "reserved").
497 	 */
498 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
499 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
500 		    / sizeof(struct page));
501 
502 	if (map_start < map_end)
503 		memmap_init_zone((unsigned long)(map_end - map_start),
504 				 args->nid, args->zone, page_to_pfn(map_start),
505 				 MEMMAP_EARLY);
506 	return 0;
507 }
508 
509 void
510 memmap_init (unsigned long size, int nid, unsigned long zone,
511 	     unsigned long start_pfn)
512 {
513 	if (!vmem_map)
514 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
515 	else {
516 		struct page *start;
517 		struct memmap_init_callback_data args;
518 
519 		start = pfn_to_page(start_pfn);
520 		args.start = start;
521 		args.end = start + size;
522 		args.nid = nid;
523 		args.zone = zone;
524 
525 		efi_memmap_walk(virtual_memmap_init, &args);
526 	}
527 }
528 
529 int
530 ia64_pfn_valid (unsigned long pfn)
531 {
532 	char byte;
533 	struct page *pg = pfn_to_page(pfn);
534 
535 	return     (__get_user(byte, (char __user *) pg) == 0)
536 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
537 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
538 }
539 EXPORT_SYMBOL(ia64_pfn_valid);
540 
541 int __init
542 find_largest_hole (u64 start, u64 end, void *arg)
543 {
544 	u64 *max_gap = arg;
545 
546 	static u64 last_end = PAGE_OFFSET;
547 
548 	/* NOTE: this algorithm assumes efi memmap table is ordered */
549 
550 	if (*max_gap < (start - last_end))
551 		*max_gap = start - last_end;
552 	last_end = end;
553 	return 0;
554 }
555 
556 #endif /* CONFIG_VIRTUAL_MEM_MAP */
557 
558 int __init
559 register_active_ranges(u64 start, u64 end, void *arg)
560 {
561 	int nid = paddr_to_nid(__pa(start));
562 
563 	if (nid < 0)
564 		nid = 0;
565 #ifdef CONFIG_KEXEC
566 	if (start > crashk_res.start && start < crashk_res.end)
567 		start = crashk_res.end;
568 	if (end > crashk_res.start && end < crashk_res.end)
569 		end = crashk_res.start;
570 #endif
571 
572 	if (start < end)
573 		add_active_range(nid, __pa(start) >> PAGE_SHIFT,
574 			__pa(end) >> PAGE_SHIFT);
575 	return 0;
576 }
577 
578 static int __init
579 count_reserved_pages (u64 start, u64 end, void *arg)
580 {
581 	unsigned long num_reserved = 0;
582 	unsigned long *count = arg;
583 
584 	for (; start < end; start += PAGE_SIZE)
585 		if (PageReserved(virt_to_page(start)))
586 			++num_reserved;
587 	*count += num_reserved;
588 	return 0;
589 }
590 
591 int
592 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
593 {
594 	unsigned long pfn_start, pfn_end;
595 #ifdef CONFIG_FLATMEM
596 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
597 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
598 #else
599 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
600 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
601 #endif
602 	min_low_pfn = min(min_low_pfn, pfn_start);
603 	max_low_pfn = max(max_low_pfn, pfn_end);
604 	return 0;
605 }
606 
607 /*
608  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
609  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
610  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
611  * useful for performance testing, but conceivably could also come in handy for debugging
612  * purposes.
613  */
614 
615 static int nolwsys __initdata;
616 
617 static int __init
618 nolwsys_setup (char *s)
619 {
620 	nolwsys = 1;
621 	return 1;
622 }
623 
624 __setup("nolwsys", nolwsys_setup);
625 
626 void __init
627 mem_init (void)
628 {
629 	long reserved_pages, codesize, datasize, initsize;
630 	pg_data_t *pgdat;
631 	int i;
632 	static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
633 
634 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
635 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
636 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
637 
638 #ifdef CONFIG_PCI
639 	/*
640 	 * This needs to be called _after_ the command line has been parsed but _before_
641 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
642 	 * been freed.
643 	 */
644 	platform_dma_init();
645 #endif
646 
647 #ifdef CONFIG_FLATMEM
648 	if (!mem_map)
649 		BUG();
650 	max_mapnr = max_low_pfn;
651 #endif
652 
653 	high_memory = __va(max_low_pfn * PAGE_SIZE);
654 
655 	kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
656 	kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
657 	kclist_add(&kcore_kernel, _stext, _end - _stext);
658 
659 	for_each_online_pgdat(pgdat)
660 		if (pgdat->bdata->node_bootmem_map)
661 			totalram_pages += free_all_bootmem_node(pgdat);
662 
663 	reserved_pages = 0;
664 	efi_memmap_walk(count_reserved_pages, &reserved_pages);
665 
666 	codesize =  (unsigned long) _etext - (unsigned long) _stext;
667 	datasize =  (unsigned long) _edata - (unsigned long) _etext;
668 	initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
669 
670 	printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
671 	       "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
672 	       num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
673 	       reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
674 
675 
676 	/*
677 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
678 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
679 	 * code can tell them apart.
680 	 */
681 	for (i = 0; i < NR_syscalls; ++i) {
682 		extern unsigned long fsyscall_table[NR_syscalls];
683 		extern unsigned long sys_call_table[NR_syscalls];
684 
685 		if (!fsyscall_table[i] || nolwsys)
686 			fsyscall_table[i] = sys_call_table[i] | 1;
687 	}
688 	setup_gate();
689 
690 #ifdef CONFIG_IA32_SUPPORT
691 	ia32_mem_init();
692 #endif
693 }
694 
695 #ifdef CONFIG_MEMORY_HOTPLUG
696 void online_page(struct page *page)
697 {
698 	ClearPageReserved(page);
699 	init_page_count(page);
700 	__free_page(page);
701 	totalram_pages++;
702 	num_physpages++;
703 }
704 
705 int arch_add_memory(int nid, u64 start, u64 size)
706 {
707 	pg_data_t *pgdat;
708 	struct zone *zone;
709 	unsigned long start_pfn = start >> PAGE_SHIFT;
710 	unsigned long nr_pages = size >> PAGE_SHIFT;
711 	int ret;
712 
713 	pgdat = NODE_DATA(nid);
714 
715 	zone = pgdat->node_zones + ZONE_NORMAL;
716 	ret = __add_pages(zone, start_pfn, nr_pages);
717 
718 	if (ret)
719 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
720 		       __FUNCTION__,  ret);
721 
722 	return ret;
723 }
724 
725 int remove_memory(u64 start, u64 size)
726 {
727 	return -EINVAL;
728 }
729 EXPORT_SYMBOL_GPL(remove_memory);
730 #endif
731