1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/memblock.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/personality.h> 18 #include <linux/reboot.h> 19 #include <linux/slab.h> 20 #include <linux/swap.h> 21 #include <linux/proc_fs.h> 22 #include <linux/bitops.h> 23 #include <linux/kexec.h> 24 25 #include <asm/dma.h> 26 #include <asm/io.h> 27 #include <asm/machvec.h> 28 #include <asm/numa.h> 29 #include <asm/patch.h> 30 #include <asm/pgalloc.h> 31 #include <asm/sal.h> 32 #include <asm/sections.h> 33 #include <asm/tlb.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include <asm/mca.h> 37 #include <asm/paravirt.h> 38 39 extern void ia64_tlb_init (void); 40 41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 42 43 #ifdef CONFIG_VIRTUAL_MEM_MAP 44 unsigned long VMALLOC_END = VMALLOC_END_INIT; 45 EXPORT_SYMBOL(VMALLOC_END); 46 struct page *vmem_map; 47 EXPORT_SYMBOL(vmem_map); 48 #endif 49 50 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 51 EXPORT_SYMBOL(zero_page_memmap_ptr); 52 53 void 54 __ia64_sync_icache_dcache (pte_t pte) 55 { 56 unsigned long addr; 57 struct page *page; 58 59 page = pte_page(pte); 60 addr = (unsigned long) page_address(page); 61 62 if (test_bit(PG_arch_1, &page->flags)) 63 return; /* i-cache is already coherent with d-cache */ 64 65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 67 } 68 69 /* 70 * Since DMA is i-cache coherent, any (complete) pages that were written via 71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 72 * flush them when they get mapped into an executable vm-area. 73 */ 74 void 75 dma_mark_clean(void *addr, size_t size) 76 { 77 unsigned long pg_addr, end; 78 79 pg_addr = PAGE_ALIGN((unsigned long) addr); 80 end = (unsigned long) addr + size; 81 while (pg_addr + PAGE_SIZE <= end) { 82 struct page *page = virt_to_page(pg_addr); 83 set_bit(PG_arch_1, &page->flags); 84 pg_addr += PAGE_SIZE; 85 } 86 } 87 88 inline void 89 ia64_set_rbs_bot (void) 90 { 91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; 92 93 if (stack_size > MAX_USER_STACK_SIZE) 94 stack_size = MAX_USER_STACK_SIZE; 95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 96 } 97 98 /* 99 * This performs some platform-dependent address space initialization. 100 * On IA-64, we want to setup the VM area for the register backing 101 * store (which grows upwards) and install the gateway page which is 102 * used for signal trampolines, etc. 103 */ 104 void 105 ia64_init_addr_space (void) 106 { 107 struct vm_area_struct *vma; 108 109 ia64_set_rbs_bot(); 110 111 /* 112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 113 * the problem. When the process attempts to write to the register backing store 114 * for the first time, it will get a SEGFAULT in this case. 115 */ 116 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 117 if (vma) { 118 INIT_LIST_HEAD(&vma->anon_vma_chain); 119 vma->vm_mm = current->mm; 120 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 121 vma->vm_end = vma->vm_start + PAGE_SIZE; 122 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 123 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 124 down_write(¤t->mm->mmap_sem); 125 if (insert_vm_struct(current->mm, vma)) { 126 up_write(¤t->mm->mmap_sem); 127 kmem_cache_free(vm_area_cachep, vma); 128 return; 129 } 130 up_write(¤t->mm->mmap_sem); 131 } 132 133 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 134 if (!(current->personality & MMAP_PAGE_ZERO)) { 135 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 136 if (vma) { 137 INIT_LIST_HEAD(&vma->anon_vma_chain); 138 vma->vm_mm = current->mm; 139 vma->vm_end = PAGE_SIZE; 140 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 141 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; 142 down_write(¤t->mm->mmap_sem); 143 if (insert_vm_struct(current->mm, vma)) { 144 up_write(¤t->mm->mmap_sem); 145 kmem_cache_free(vm_area_cachep, vma); 146 return; 147 } 148 up_write(¤t->mm->mmap_sem); 149 } 150 } 151 } 152 153 void 154 free_initmem (void) 155 { 156 unsigned long addr, eaddr; 157 158 addr = (unsigned long) ia64_imva(__init_begin); 159 eaddr = (unsigned long) ia64_imva(__init_end); 160 while (addr < eaddr) { 161 ClearPageReserved(virt_to_page(addr)); 162 init_page_count(virt_to_page(addr)); 163 free_page(addr); 164 ++totalram_pages; 165 addr += PAGE_SIZE; 166 } 167 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", 168 (__init_end - __init_begin) >> 10); 169 } 170 171 void __init 172 free_initrd_mem (unsigned long start, unsigned long end) 173 { 174 struct page *page; 175 /* 176 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 177 * Thus EFI and the kernel may have different page sizes. It is 178 * therefore possible to have the initrd share the same page as 179 * the end of the kernel (given current setup). 180 * 181 * To avoid freeing/using the wrong page (kernel sized) we: 182 * - align up the beginning of initrd 183 * - align down the end of initrd 184 * 185 * | | 186 * |=============| a000 187 * | | 188 * | | 189 * | | 9000 190 * |/////////////| 191 * |/////////////| 192 * |=============| 8000 193 * |///INITRD////| 194 * |/////////////| 195 * |/////////////| 7000 196 * | | 197 * |KKKKKKKKKKKKK| 198 * |=============| 6000 199 * |KKKKKKKKKKKKK| 200 * |KKKKKKKKKKKKK| 201 * K=kernel using 8KB pages 202 * 203 * In this example, we must free page 8000 ONLY. So we must align up 204 * initrd_start and keep initrd_end as is. 205 */ 206 start = PAGE_ALIGN(start); 207 end = end & PAGE_MASK; 208 209 if (start < end) 210 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 211 212 for (; start < end; start += PAGE_SIZE) { 213 if (!virt_addr_valid(start)) 214 continue; 215 page = virt_to_page(start); 216 ClearPageReserved(page); 217 init_page_count(page); 218 free_page(start); 219 ++totalram_pages; 220 } 221 } 222 223 /* 224 * This installs a clean page in the kernel's page table. 225 */ 226 static struct page * __init 227 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 228 { 229 pgd_t *pgd; 230 pud_t *pud; 231 pmd_t *pmd; 232 pte_t *pte; 233 234 if (!PageReserved(page)) 235 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 236 page_address(page)); 237 238 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 239 240 { 241 pud = pud_alloc(&init_mm, pgd, address); 242 if (!pud) 243 goto out; 244 pmd = pmd_alloc(&init_mm, pud, address); 245 if (!pmd) 246 goto out; 247 pte = pte_alloc_kernel(pmd, address); 248 if (!pte) 249 goto out; 250 if (!pte_none(*pte)) 251 goto out; 252 set_pte(pte, mk_pte(page, pgprot)); 253 } 254 out: 255 /* no need for flush_tlb */ 256 return page; 257 } 258 259 static void __init 260 setup_gate (void) 261 { 262 void *gate_section; 263 struct page *page; 264 265 /* 266 * Map the gate page twice: once read-only to export the ELF 267 * headers etc. and once execute-only page to enable 268 * privilege-promotion via "epc": 269 */ 270 gate_section = paravirt_get_gate_section(); 271 page = virt_to_page(ia64_imva(gate_section)); 272 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 273 #ifdef HAVE_BUGGY_SEGREL 274 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); 275 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 276 #else 277 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 278 /* Fill in the holes (if any) with read-only zero pages: */ 279 { 280 unsigned long addr; 281 282 for (addr = GATE_ADDR + PAGE_SIZE; 283 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 284 addr += PAGE_SIZE) 285 { 286 put_kernel_page(ZERO_PAGE(0), addr, 287 PAGE_READONLY); 288 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 289 PAGE_READONLY); 290 } 291 } 292 #endif 293 ia64_patch_gate(); 294 } 295 296 void __devinit 297 ia64_mmu_init (void *my_cpu_data) 298 { 299 unsigned long pta, impl_va_bits; 300 extern void __devinit tlb_init (void); 301 302 #ifdef CONFIG_DISABLE_VHPT 303 # define VHPT_ENABLE_BIT 0 304 #else 305 # define VHPT_ENABLE_BIT 1 306 #endif 307 308 /* 309 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 310 * address space. The IA-64 architecture guarantees that at least 50 bits of 311 * virtual address space are implemented but if we pick a large enough page size 312 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 313 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 314 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 315 * problem in practice. Alternatively, we could truncate the top of the mapped 316 * address space to not permit mappings that would overlap with the VMLPT. 317 * --davidm 00/12/06 318 */ 319 # define pte_bits 3 320 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 321 /* 322 * The virtual page table has to cover the entire implemented address space within 323 * a region even though not all of this space may be mappable. The reason for 324 * this is that the Access bit and Dirty bit fault handlers perform 325 * non-speculative accesses to the virtual page table, so the address range of the 326 * virtual page table itself needs to be covered by virtual page table. 327 */ 328 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 329 # define POW2(n) (1ULL << (n)) 330 331 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 332 333 if (impl_va_bits < 51 || impl_va_bits > 61) 334 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 335 /* 336 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 337 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 338 * the test makes sure that our mapped space doesn't overlap the 339 * unimplemented hole in the middle of the region. 340 */ 341 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 342 (mapped_space_bits > impl_va_bits - 1)) 343 panic("Cannot build a big enough virtual-linear page table" 344 " to cover mapped address space.\n" 345 " Try using a smaller page size.\n"); 346 347 348 /* place the VMLPT at the end of each page-table mapped region: */ 349 pta = POW2(61) - POW2(vmlpt_bits); 350 351 /* 352 * Set the (virtually mapped linear) page table address. Bit 353 * 8 selects between the short and long format, bits 2-7 the 354 * size of the table, and bit 0 whether the VHPT walker is 355 * enabled. 356 */ 357 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 358 359 ia64_tlb_init(); 360 361 #ifdef CONFIG_HUGETLB_PAGE 362 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 363 ia64_srlz_d(); 364 #endif 365 } 366 367 #ifdef CONFIG_VIRTUAL_MEM_MAP 368 int vmemmap_find_next_valid_pfn(int node, int i) 369 { 370 unsigned long end_address, hole_next_pfn; 371 unsigned long stop_address; 372 pg_data_t *pgdat = NODE_DATA(node); 373 374 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 375 end_address = PAGE_ALIGN(end_address); 376 377 stop_address = (unsigned long) &vmem_map[ 378 pgdat->node_start_pfn + pgdat->node_spanned_pages]; 379 380 do { 381 pgd_t *pgd; 382 pud_t *pud; 383 pmd_t *pmd; 384 pte_t *pte; 385 386 pgd = pgd_offset_k(end_address); 387 if (pgd_none(*pgd)) { 388 end_address += PGDIR_SIZE; 389 continue; 390 } 391 392 pud = pud_offset(pgd, end_address); 393 if (pud_none(*pud)) { 394 end_address += PUD_SIZE; 395 continue; 396 } 397 398 pmd = pmd_offset(pud, end_address); 399 if (pmd_none(*pmd)) { 400 end_address += PMD_SIZE; 401 continue; 402 } 403 404 pte = pte_offset_kernel(pmd, end_address); 405 retry_pte: 406 if (pte_none(*pte)) { 407 end_address += PAGE_SIZE; 408 pte++; 409 if ((end_address < stop_address) && 410 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 411 goto retry_pte; 412 continue; 413 } 414 /* Found next valid vmem_map page */ 415 break; 416 } while (end_address < stop_address); 417 418 end_address = min(end_address, stop_address); 419 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 420 hole_next_pfn = end_address / sizeof(struct page); 421 return hole_next_pfn - pgdat->node_start_pfn; 422 } 423 424 int __init create_mem_map_page_table(u64 start, u64 end, void *arg) 425 { 426 unsigned long address, start_page, end_page; 427 struct page *map_start, *map_end; 428 int node; 429 pgd_t *pgd; 430 pud_t *pud; 431 pmd_t *pmd; 432 pte_t *pte; 433 434 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 435 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 436 437 start_page = (unsigned long) map_start & PAGE_MASK; 438 end_page = PAGE_ALIGN((unsigned long) map_end); 439 node = paddr_to_nid(__pa(start)); 440 441 for (address = start_page; address < end_page; address += PAGE_SIZE) { 442 pgd = pgd_offset_k(address); 443 if (pgd_none(*pgd)) 444 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 445 pud = pud_offset(pgd, address); 446 447 if (pud_none(*pud)) 448 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 449 pmd = pmd_offset(pud, address); 450 451 if (pmd_none(*pmd)) 452 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 453 pte = pte_offset_kernel(pmd, address); 454 455 if (pte_none(*pte)) 456 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 457 PAGE_KERNEL)); 458 } 459 return 0; 460 } 461 462 struct memmap_init_callback_data { 463 struct page *start; 464 struct page *end; 465 int nid; 466 unsigned long zone; 467 }; 468 469 static int __meminit 470 virtual_memmap_init(u64 start, u64 end, void *arg) 471 { 472 struct memmap_init_callback_data *args; 473 struct page *map_start, *map_end; 474 475 args = (struct memmap_init_callback_data *) arg; 476 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 477 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 478 479 if (map_start < args->start) 480 map_start = args->start; 481 if (map_end > args->end) 482 map_end = args->end; 483 484 /* 485 * We have to initialize "out of bounds" struct page elements that fit completely 486 * on the same pages that were allocated for the "in bounds" elements because they 487 * may be referenced later (and found to be "reserved"). 488 */ 489 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 490 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 491 / sizeof(struct page)); 492 493 if (map_start < map_end) 494 memmap_init_zone((unsigned long)(map_end - map_start), 495 args->nid, args->zone, page_to_pfn(map_start), 496 MEMMAP_EARLY); 497 return 0; 498 } 499 500 void __meminit 501 memmap_init (unsigned long size, int nid, unsigned long zone, 502 unsigned long start_pfn) 503 { 504 if (!vmem_map) 505 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 506 else { 507 struct page *start; 508 struct memmap_init_callback_data args; 509 510 start = pfn_to_page(start_pfn); 511 args.start = start; 512 args.end = start + size; 513 args.nid = nid; 514 args.zone = zone; 515 516 efi_memmap_walk(virtual_memmap_init, &args); 517 } 518 } 519 520 int 521 ia64_pfn_valid (unsigned long pfn) 522 { 523 char byte; 524 struct page *pg = pfn_to_page(pfn); 525 526 return (__get_user(byte, (char __user *) pg) == 0) 527 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 528 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 529 } 530 EXPORT_SYMBOL(ia64_pfn_valid); 531 532 int __init find_largest_hole(u64 start, u64 end, void *arg) 533 { 534 u64 *max_gap = arg; 535 536 static u64 last_end = PAGE_OFFSET; 537 538 /* NOTE: this algorithm assumes efi memmap table is ordered */ 539 540 if (*max_gap < (start - last_end)) 541 *max_gap = start - last_end; 542 last_end = end; 543 return 0; 544 } 545 546 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 547 548 int __init register_active_ranges(u64 start, u64 len, int nid) 549 { 550 u64 end = start + len; 551 552 #ifdef CONFIG_KEXEC 553 if (start > crashk_res.start && start < crashk_res.end) 554 start = crashk_res.end; 555 if (end > crashk_res.start && end < crashk_res.end) 556 end = crashk_res.start; 557 #endif 558 559 if (start < end) 560 memblock_add_node(__pa(start), end - start, nid); 561 return 0; 562 } 563 564 static int __init 565 count_reserved_pages(u64 start, u64 end, void *arg) 566 { 567 unsigned long num_reserved = 0; 568 unsigned long *count = arg; 569 570 for (; start < end; start += PAGE_SIZE) 571 if (PageReserved(virt_to_page(start))) 572 ++num_reserved; 573 *count += num_reserved; 574 return 0; 575 } 576 577 int 578 find_max_min_low_pfn (u64 start, u64 end, void *arg) 579 { 580 unsigned long pfn_start, pfn_end; 581 #ifdef CONFIG_FLATMEM 582 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 583 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 584 #else 585 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 586 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 587 #endif 588 min_low_pfn = min(min_low_pfn, pfn_start); 589 max_low_pfn = max(max_low_pfn, pfn_end); 590 return 0; 591 } 592 593 /* 594 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 595 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 596 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 597 * useful for performance testing, but conceivably could also come in handy for debugging 598 * purposes. 599 */ 600 601 static int nolwsys __initdata; 602 603 static int __init 604 nolwsys_setup (char *s) 605 { 606 nolwsys = 1; 607 return 1; 608 } 609 610 __setup("nolwsys", nolwsys_setup); 611 612 void __init 613 mem_init (void) 614 { 615 long reserved_pages, codesize, datasize, initsize; 616 pg_data_t *pgdat; 617 int i; 618 619 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 620 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 621 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 622 623 #ifdef CONFIG_PCI 624 /* 625 * This needs to be called _after_ the command line has been parsed but _before_ 626 * any drivers that may need the PCI DMA interface are initialized or bootmem has 627 * been freed. 628 */ 629 platform_dma_init(); 630 #endif 631 632 #ifdef CONFIG_FLATMEM 633 BUG_ON(!mem_map); 634 max_mapnr = max_low_pfn; 635 #endif 636 637 high_memory = __va(max_low_pfn * PAGE_SIZE); 638 639 for_each_online_pgdat(pgdat) 640 if (pgdat->bdata->node_bootmem_map) 641 totalram_pages += free_all_bootmem_node(pgdat); 642 643 reserved_pages = 0; 644 efi_memmap_walk(count_reserved_pages, &reserved_pages); 645 646 codesize = (unsigned long) _etext - (unsigned long) _stext; 647 datasize = (unsigned long) _edata - (unsigned long) _etext; 648 initsize = (unsigned long) __init_end - (unsigned long) __init_begin; 649 650 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " 651 "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10), 652 num_physpages << (PAGE_SHIFT - 10), codesize >> 10, 653 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); 654 655 656 /* 657 * For fsyscall entrpoints with no light-weight handler, use the ordinary 658 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 659 * code can tell them apart. 660 */ 661 for (i = 0; i < NR_syscalls; ++i) { 662 extern unsigned long sys_call_table[NR_syscalls]; 663 unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); 664 665 if (!fsyscall_table[i] || nolwsys) 666 fsyscall_table[i] = sys_call_table[i] | 1; 667 } 668 setup_gate(); 669 } 670 671 #ifdef CONFIG_MEMORY_HOTPLUG 672 int arch_add_memory(int nid, u64 start, u64 size) 673 { 674 pg_data_t *pgdat; 675 struct zone *zone; 676 unsigned long start_pfn = start >> PAGE_SHIFT; 677 unsigned long nr_pages = size >> PAGE_SHIFT; 678 int ret; 679 680 pgdat = NODE_DATA(nid); 681 682 zone = pgdat->node_zones + ZONE_NORMAL; 683 ret = __add_pages(nid, zone, start_pfn, nr_pages); 684 685 if (ret) 686 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 687 __func__, ret); 688 689 return ret; 690 } 691 #endif 692 693 /* 694 * Even when CONFIG_IA32_SUPPORT is not enabled it is 695 * useful to have the Linux/x86 domain registered to 696 * avoid an attempted module load when emulators call 697 * personality(PER_LINUX32). This saves several milliseconds 698 * on each such call. 699 */ 700 static struct exec_domain ia32_exec_domain; 701 702 static int __init 703 per_linux32_init(void) 704 { 705 ia32_exec_domain.name = "Linux/x86"; 706 ia32_exec_domain.handler = NULL; 707 ia32_exec_domain.pers_low = PER_LINUX32; 708 ia32_exec_domain.pers_high = PER_LINUX32; 709 ia32_exec_domain.signal_map = default_exec_domain.signal_map; 710 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; 711 register_exec_domain(&ia32_exec_domain); 712 713 return 0; 714 } 715 716 __initcall(per_linux32_init); 717