1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/mm.h> 14 #include <linux/mmzone.h> 15 #include <linux/module.h> 16 #include <linux/personality.h> 17 #include <linux/reboot.h> 18 #include <linux/slab.h> 19 #include <linux/swap.h> 20 #include <linux/proc_fs.h> 21 #include <linux/bitops.h> 22 #include <linux/kexec.h> 23 24 #include <asm/dma.h> 25 #include <asm/ia32.h> 26 #include <asm/io.h> 27 #include <asm/machvec.h> 28 #include <asm/numa.h> 29 #include <asm/patch.h> 30 #include <asm/pgalloc.h> 31 #include <asm/sal.h> 32 #include <asm/sections.h> 33 #include <asm/system.h> 34 #include <asm/tlb.h> 35 #include <asm/uaccess.h> 36 #include <asm/unistd.h> 37 #include <asm/mca.h> 38 39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 40 41 extern void ia64_tlb_init (void); 42 43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 44 45 #ifdef CONFIG_VIRTUAL_MEM_MAP 46 unsigned long vmalloc_end = VMALLOC_END_INIT; 47 EXPORT_SYMBOL(vmalloc_end); 48 struct page *vmem_map; 49 EXPORT_SYMBOL(vmem_map); 50 #endif 51 52 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 53 EXPORT_SYMBOL(zero_page_memmap_ptr); 54 55 void 56 __ia64_sync_icache_dcache (pte_t pte) 57 { 58 unsigned long addr; 59 struct page *page; 60 61 page = pte_page(pte); 62 addr = (unsigned long) page_address(page); 63 64 if (test_bit(PG_arch_1, &page->flags)) 65 return; /* i-cache is already coherent with d-cache */ 66 67 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 68 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 69 } 70 71 /* 72 * Since DMA is i-cache coherent, any (complete) pages that were written via 73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 74 * flush them when they get mapped into an executable vm-area. 75 */ 76 void 77 dma_mark_clean(void *addr, size_t size) 78 { 79 unsigned long pg_addr, end; 80 81 pg_addr = PAGE_ALIGN((unsigned long) addr); 82 end = (unsigned long) addr + size; 83 while (pg_addr + PAGE_SIZE <= end) { 84 struct page *page = virt_to_page(pg_addr); 85 set_bit(PG_arch_1, &page->flags); 86 pg_addr += PAGE_SIZE; 87 } 88 } 89 90 inline void 91 ia64_set_rbs_bot (void) 92 { 93 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; 94 95 if (stack_size > MAX_USER_STACK_SIZE) 96 stack_size = MAX_USER_STACK_SIZE; 97 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 98 } 99 100 /* 101 * This performs some platform-dependent address space initialization. 102 * On IA-64, we want to setup the VM area for the register backing 103 * store (which grows upwards) and install the gateway page which is 104 * used for signal trampolines, etc. 105 */ 106 void 107 ia64_init_addr_space (void) 108 { 109 struct vm_area_struct *vma; 110 111 ia64_set_rbs_bot(); 112 113 /* 114 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 115 * the problem. When the process attempts to write to the register backing store 116 * for the first time, it will get a SEGFAULT in this case. 117 */ 118 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 119 if (vma) { 120 vma->vm_mm = current->mm; 121 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 122 vma->vm_end = vma->vm_start + PAGE_SIZE; 123 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 124 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 125 down_write(¤t->mm->mmap_sem); 126 if (insert_vm_struct(current->mm, vma)) { 127 up_write(¤t->mm->mmap_sem); 128 kmem_cache_free(vm_area_cachep, vma); 129 return; 130 } 131 up_write(¤t->mm->mmap_sem); 132 } 133 134 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 135 if (!(current->personality & MMAP_PAGE_ZERO)) { 136 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 137 if (vma) { 138 vma->vm_mm = current->mm; 139 vma->vm_end = PAGE_SIZE; 140 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 141 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; 142 down_write(¤t->mm->mmap_sem); 143 if (insert_vm_struct(current->mm, vma)) { 144 up_write(¤t->mm->mmap_sem); 145 kmem_cache_free(vm_area_cachep, vma); 146 return; 147 } 148 up_write(¤t->mm->mmap_sem); 149 } 150 } 151 } 152 153 void 154 free_initmem (void) 155 { 156 unsigned long addr, eaddr; 157 158 addr = (unsigned long) ia64_imva(__init_begin); 159 eaddr = (unsigned long) ia64_imva(__init_end); 160 while (addr < eaddr) { 161 ClearPageReserved(virt_to_page(addr)); 162 init_page_count(virt_to_page(addr)); 163 free_page(addr); 164 ++totalram_pages; 165 addr += PAGE_SIZE; 166 } 167 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", 168 (__init_end - __init_begin) >> 10); 169 } 170 171 void __init 172 free_initrd_mem (unsigned long start, unsigned long end) 173 { 174 struct page *page; 175 /* 176 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 177 * Thus EFI and the kernel may have different page sizes. It is 178 * therefore possible to have the initrd share the same page as 179 * the end of the kernel (given current setup). 180 * 181 * To avoid freeing/using the wrong page (kernel sized) we: 182 * - align up the beginning of initrd 183 * - align down the end of initrd 184 * 185 * | | 186 * |=============| a000 187 * | | 188 * | | 189 * | | 9000 190 * |/////////////| 191 * |/////////////| 192 * |=============| 8000 193 * |///INITRD////| 194 * |/////////////| 195 * |/////////////| 7000 196 * | | 197 * |KKKKKKKKKKKKK| 198 * |=============| 6000 199 * |KKKKKKKKKKKKK| 200 * |KKKKKKKKKKKKK| 201 * K=kernel using 8KB pages 202 * 203 * In this example, we must free page 8000 ONLY. So we must align up 204 * initrd_start and keep initrd_end as is. 205 */ 206 start = PAGE_ALIGN(start); 207 end = end & PAGE_MASK; 208 209 if (start < end) 210 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 211 212 for (; start < end; start += PAGE_SIZE) { 213 if (!virt_addr_valid(start)) 214 continue; 215 page = virt_to_page(start); 216 ClearPageReserved(page); 217 init_page_count(page); 218 free_page(start); 219 ++totalram_pages; 220 } 221 } 222 223 /* 224 * This installs a clean page in the kernel's page table. 225 */ 226 static struct page * __init 227 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 228 { 229 pgd_t *pgd; 230 pud_t *pud; 231 pmd_t *pmd; 232 pte_t *pte; 233 234 if (!PageReserved(page)) 235 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 236 page_address(page)); 237 238 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 239 240 { 241 pud = pud_alloc(&init_mm, pgd, address); 242 if (!pud) 243 goto out; 244 pmd = pmd_alloc(&init_mm, pud, address); 245 if (!pmd) 246 goto out; 247 pte = pte_alloc_kernel(pmd, address); 248 if (!pte) 249 goto out; 250 if (!pte_none(*pte)) 251 goto out; 252 set_pte(pte, mk_pte(page, pgprot)); 253 } 254 out: 255 /* no need for flush_tlb */ 256 return page; 257 } 258 259 static void __init 260 setup_gate (void) 261 { 262 struct page *page; 263 264 /* 265 * Map the gate page twice: once read-only to export the ELF 266 * headers etc. and once execute-only page to enable 267 * privilege-promotion via "epc": 268 */ 269 page = virt_to_page(ia64_imva(__start_gate_section)); 270 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 271 #ifdef HAVE_BUGGY_SEGREL 272 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); 273 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 274 #else 275 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 276 /* Fill in the holes (if any) with read-only zero pages: */ 277 { 278 unsigned long addr; 279 280 for (addr = GATE_ADDR + PAGE_SIZE; 281 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 282 addr += PAGE_SIZE) 283 { 284 put_kernel_page(ZERO_PAGE(0), addr, 285 PAGE_READONLY); 286 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 287 PAGE_READONLY); 288 } 289 } 290 #endif 291 ia64_patch_gate(); 292 } 293 294 void __devinit 295 ia64_mmu_init (void *my_cpu_data) 296 { 297 unsigned long pta, impl_va_bits; 298 extern void __devinit tlb_init (void); 299 300 #ifdef CONFIG_DISABLE_VHPT 301 # define VHPT_ENABLE_BIT 0 302 #else 303 # define VHPT_ENABLE_BIT 1 304 #endif 305 306 /* 307 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 308 * address space. The IA-64 architecture guarantees that at least 50 bits of 309 * virtual address space are implemented but if we pick a large enough page size 310 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 311 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 312 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 313 * problem in practice. Alternatively, we could truncate the top of the mapped 314 * address space to not permit mappings that would overlap with the VMLPT. 315 * --davidm 00/12/06 316 */ 317 # define pte_bits 3 318 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 319 /* 320 * The virtual page table has to cover the entire implemented address space within 321 * a region even though not all of this space may be mappable. The reason for 322 * this is that the Access bit and Dirty bit fault handlers perform 323 * non-speculative accesses to the virtual page table, so the address range of the 324 * virtual page table itself needs to be covered by virtual page table. 325 */ 326 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 327 # define POW2(n) (1ULL << (n)) 328 329 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 330 331 if (impl_va_bits < 51 || impl_va_bits > 61) 332 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 333 /* 334 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 335 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 336 * the test makes sure that our mapped space doesn't overlap the 337 * unimplemented hole in the middle of the region. 338 */ 339 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 340 (mapped_space_bits > impl_va_bits - 1)) 341 panic("Cannot build a big enough virtual-linear page table" 342 " to cover mapped address space.\n" 343 " Try using a smaller page size.\n"); 344 345 346 /* place the VMLPT at the end of each page-table mapped region: */ 347 pta = POW2(61) - POW2(vmlpt_bits); 348 349 /* 350 * Set the (virtually mapped linear) page table address. Bit 351 * 8 selects between the short and long format, bits 2-7 the 352 * size of the table, and bit 0 whether the VHPT walker is 353 * enabled. 354 */ 355 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 356 357 ia64_tlb_init(); 358 359 #ifdef CONFIG_HUGETLB_PAGE 360 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 361 ia64_srlz_d(); 362 #endif 363 } 364 365 #ifdef CONFIG_VIRTUAL_MEM_MAP 366 int vmemmap_find_next_valid_pfn(int node, int i) 367 { 368 unsigned long end_address, hole_next_pfn; 369 unsigned long stop_address; 370 pg_data_t *pgdat = NODE_DATA(node); 371 372 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 373 end_address = PAGE_ALIGN(end_address); 374 375 stop_address = (unsigned long) &vmem_map[ 376 pgdat->node_start_pfn + pgdat->node_spanned_pages]; 377 378 do { 379 pgd_t *pgd; 380 pud_t *pud; 381 pmd_t *pmd; 382 pte_t *pte; 383 384 pgd = pgd_offset_k(end_address); 385 if (pgd_none(*pgd)) { 386 end_address += PGDIR_SIZE; 387 continue; 388 } 389 390 pud = pud_offset(pgd, end_address); 391 if (pud_none(*pud)) { 392 end_address += PUD_SIZE; 393 continue; 394 } 395 396 pmd = pmd_offset(pud, end_address); 397 if (pmd_none(*pmd)) { 398 end_address += PMD_SIZE; 399 continue; 400 } 401 402 pte = pte_offset_kernel(pmd, end_address); 403 retry_pte: 404 if (pte_none(*pte)) { 405 end_address += PAGE_SIZE; 406 pte++; 407 if ((end_address < stop_address) && 408 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 409 goto retry_pte; 410 continue; 411 } 412 /* Found next valid vmem_map page */ 413 break; 414 } while (end_address < stop_address); 415 416 end_address = min(end_address, stop_address); 417 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 418 hole_next_pfn = end_address / sizeof(struct page); 419 return hole_next_pfn - pgdat->node_start_pfn; 420 } 421 422 int __init 423 create_mem_map_page_table (u64 start, u64 end, void *arg) 424 { 425 unsigned long address, start_page, end_page; 426 struct page *map_start, *map_end; 427 int node; 428 pgd_t *pgd; 429 pud_t *pud; 430 pmd_t *pmd; 431 pte_t *pte; 432 433 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 434 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 435 436 start_page = (unsigned long) map_start & PAGE_MASK; 437 end_page = PAGE_ALIGN((unsigned long) map_end); 438 node = paddr_to_nid(__pa(start)); 439 440 for (address = start_page; address < end_page; address += PAGE_SIZE) { 441 pgd = pgd_offset_k(address); 442 if (pgd_none(*pgd)) 443 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 444 pud = pud_offset(pgd, address); 445 446 if (pud_none(*pud)) 447 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 448 pmd = pmd_offset(pud, address); 449 450 if (pmd_none(*pmd)) 451 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 452 pte = pte_offset_kernel(pmd, address); 453 454 if (pte_none(*pte)) 455 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 456 PAGE_KERNEL)); 457 } 458 return 0; 459 } 460 461 struct memmap_init_callback_data { 462 struct page *start; 463 struct page *end; 464 int nid; 465 unsigned long zone; 466 }; 467 468 static int __meminit 469 virtual_memmap_init (u64 start, u64 end, void *arg) 470 { 471 struct memmap_init_callback_data *args; 472 struct page *map_start, *map_end; 473 474 args = (struct memmap_init_callback_data *) arg; 475 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 476 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 477 478 if (map_start < args->start) 479 map_start = args->start; 480 if (map_end > args->end) 481 map_end = args->end; 482 483 /* 484 * We have to initialize "out of bounds" struct page elements that fit completely 485 * on the same pages that were allocated for the "in bounds" elements because they 486 * may be referenced later (and found to be "reserved"). 487 */ 488 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 489 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 490 / sizeof(struct page)); 491 492 if (map_start < map_end) 493 memmap_init_zone((unsigned long)(map_end - map_start), 494 args->nid, args->zone, page_to_pfn(map_start), 495 MEMMAP_EARLY); 496 return 0; 497 } 498 499 void __meminit 500 memmap_init (unsigned long size, int nid, unsigned long zone, 501 unsigned long start_pfn) 502 { 503 if (!vmem_map) 504 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 505 else { 506 struct page *start; 507 struct memmap_init_callback_data args; 508 509 start = pfn_to_page(start_pfn); 510 args.start = start; 511 args.end = start + size; 512 args.nid = nid; 513 args.zone = zone; 514 515 efi_memmap_walk(virtual_memmap_init, &args); 516 } 517 } 518 519 int 520 ia64_pfn_valid (unsigned long pfn) 521 { 522 char byte; 523 struct page *pg = pfn_to_page(pfn); 524 525 return (__get_user(byte, (char __user *) pg) == 0) 526 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 527 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 528 } 529 EXPORT_SYMBOL(ia64_pfn_valid); 530 531 int __init 532 find_largest_hole (u64 start, u64 end, void *arg) 533 { 534 u64 *max_gap = arg; 535 536 static u64 last_end = PAGE_OFFSET; 537 538 /* NOTE: this algorithm assumes efi memmap table is ordered */ 539 540 if (*max_gap < (start - last_end)) 541 *max_gap = start - last_end; 542 last_end = end; 543 return 0; 544 } 545 546 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 547 548 int __init 549 register_active_ranges(u64 start, u64 len, int nid) 550 { 551 u64 end = start + len; 552 553 #ifdef CONFIG_KEXEC 554 if (start > crashk_res.start && start < crashk_res.end) 555 start = crashk_res.end; 556 if (end > crashk_res.start && end < crashk_res.end) 557 end = crashk_res.start; 558 #endif 559 560 if (start < end) 561 add_active_range(nid, __pa(start) >> PAGE_SHIFT, 562 __pa(end) >> PAGE_SHIFT); 563 return 0; 564 } 565 566 static int __init 567 count_reserved_pages (u64 start, u64 end, void *arg) 568 { 569 unsigned long num_reserved = 0; 570 unsigned long *count = arg; 571 572 for (; start < end; start += PAGE_SIZE) 573 if (PageReserved(virt_to_page(start))) 574 ++num_reserved; 575 *count += num_reserved; 576 return 0; 577 } 578 579 int 580 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg) 581 { 582 unsigned long pfn_start, pfn_end; 583 #ifdef CONFIG_FLATMEM 584 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 585 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 586 #else 587 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 588 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 589 #endif 590 min_low_pfn = min(min_low_pfn, pfn_start); 591 max_low_pfn = max(max_low_pfn, pfn_end); 592 return 0; 593 } 594 595 /* 596 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 597 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 598 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 599 * useful for performance testing, but conceivably could also come in handy for debugging 600 * purposes. 601 */ 602 603 static int nolwsys __initdata; 604 605 static int __init 606 nolwsys_setup (char *s) 607 { 608 nolwsys = 1; 609 return 1; 610 } 611 612 __setup("nolwsys", nolwsys_setup); 613 614 void __init 615 mem_init (void) 616 { 617 long reserved_pages, codesize, datasize, initsize; 618 pg_data_t *pgdat; 619 int i; 620 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; 621 622 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 623 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 624 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 625 626 #ifdef CONFIG_PCI 627 /* 628 * This needs to be called _after_ the command line has been parsed but _before_ 629 * any drivers that may need the PCI DMA interface are initialized or bootmem has 630 * been freed. 631 */ 632 platform_dma_init(); 633 #endif 634 635 #ifdef CONFIG_FLATMEM 636 if (!mem_map) 637 BUG(); 638 max_mapnr = max_low_pfn; 639 #endif 640 641 high_memory = __va(max_low_pfn * PAGE_SIZE); 642 643 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); 644 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); 645 kclist_add(&kcore_kernel, _stext, _end - _stext); 646 647 for_each_online_pgdat(pgdat) 648 if (pgdat->bdata->node_bootmem_map) 649 totalram_pages += free_all_bootmem_node(pgdat); 650 651 reserved_pages = 0; 652 efi_memmap_walk(count_reserved_pages, &reserved_pages); 653 654 codesize = (unsigned long) _etext - (unsigned long) _stext; 655 datasize = (unsigned long) _edata - (unsigned long) _etext; 656 initsize = (unsigned long) __init_end - (unsigned long) __init_begin; 657 658 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " 659 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), 660 num_physpages << (PAGE_SHIFT - 10), codesize >> 10, 661 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); 662 663 664 /* 665 * For fsyscall entrpoints with no light-weight handler, use the ordinary 666 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 667 * code can tell them apart. 668 */ 669 for (i = 0; i < NR_syscalls; ++i) { 670 extern unsigned long fsyscall_table[NR_syscalls]; 671 extern unsigned long sys_call_table[NR_syscalls]; 672 673 if (!fsyscall_table[i] || nolwsys) 674 fsyscall_table[i] = sys_call_table[i] | 1; 675 } 676 setup_gate(); 677 678 #ifdef CONFIG_IA32_SUPPORT 679 ia32_mem_init(); 680 #endif 681 } 682 683 #ifdef CONFIG_MEMORY_HOTPLUG 684 int arch_add_memory(int nid, u64 start, u64 size) 685 { 686 pg_data_t *pgdat; 687 struct zone *zone; 688 unsigned long start_pfn = start >> PAGE_SHIFT; 689 unsigned long nr_pages = size >> PAGE_SHIFT; 690 int ret; 691 692 pgdat = NODE_DATA(nid); 693 694 zone = pgdat->node_zones + ZONE_NORMAL; 695 ret = __add_pages(zone, start_pfn, nr_pages); 696 697 if (ret) 698 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 699 __func__, ret); 700 701 return ret; 702 } 703 #endif 704 705 /* 706 * Even when CONFIG_IA32_SUPPORT is not enabled it is 707 * useful to have the Linux/x86 domain registered to 708 * avoid an attempted module load when emulators call 709 * personality(PER_LINUX32). This saves several milliseconds 710 * on each such call. 711 */ 712 static struct exec_domain ia32_exec_domain; 713 714 static int __init 715 per_linux32_init(void) 716 { 717 ia32_exec_domain.name = "Linux/x86"; 718 ia32_exec_domain.handler = NULL; 719 ia32_exec_domain.pers_low = PER_LINUX32; 720 ia32_exec_domain.pers_high = PER_LINUX32; 721 ia32_exec_domain.signal_map = default_exec_domain.signal_map; 722 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; 723 register_exec_domain(&ia32_exec_domain); 724 725 return 0; 726 } 727 728 __initcall(per_linux32_init); 729