1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/memblock.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/personality.h> 18 #include <linux/reboot.h> 19 #include <linux/slab.h> 20 #include <linux/swap.h> 21 #include <linux/proc_fs.h> 22 #include <linux/bitops.h> 23 #include <linux/kexec.h> 24 25 #include <asm/dma.h> 26 #include <asm/io.h> 27 #include <asm/machvec.h> 28 #include <asm/numa.h> 29 #include <asm/patch.h> 30 #include <asm/pgalloc.h> 31 #include <asm/sal.h> 32 #include <asm/sections.h> 33 #include <asm/tlb.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include <asm/mca.h> 37 #include <asm/paravirt.h> 38 39 extern void ia64_tlb_init (void); 40 41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 42 43 #ifdef CONFIG_VIRTUAL_MEM_MAP 44 unsigned long VMALLOC_END = VMALLOC_END_INIT; 45 EXPORT_SYMBOL(VMALLOC_END); 46 struct page *vmem_map; 47 EXPORT_SYMBOL(vmem_map); 48 #endif 49 50 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 51 EXPORT_SYMBOL(zero_page_memmap_ptr); 52 53 void 54 __ia64_sync_icache_dcache (pte_t pte) 55 { 56 unsigned long addr; 57 struct page *page; 58 59 page = pte_page(pte); 60 addr = (unsigned long) page_address(page); 61 62 if (test_bit(PG_arch_1, &page->flags)) 63 return; /* i-cache is already coherent with d-cache */ 64 65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 67 } 68 69 /* 70 * Since DMA is i-cache coherent, any (complete) pages that were written via 71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 72 * flush them when they get mapped into an executable vm-area. 73 */ 74 void 75 dma_mark_clean(void *addr, size_t size) 76 { 77 unsigned long pg_addr, end; 78 79 pg_addr = PAGE_ALIGN((unsigned long) addr); 80 end = (unsigned long) addr + size; 81 while (pg_addr + PAGE_SIZE <= end) { 82 struct page *page = virt_to_page(pg_addr); 83 set_bit(PG_arch_1, &page->flags); 84 pg_addr += PAGE_SIZE; 85 } 86 } 87 88 inline void 89 ia64_set_rbs_bot (void) 90 { 91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; 92 93 if (stack_size > MAX_USER_STACK_SIZE) 94 stack_size = MAX_USER_STACK_SIZE; 95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 96 } 97 98 /* 99 * This performs some platform-dependent address space initialization. 100 * On IA-64, we want to setup the VM area for the register backing 101 * store (which grows upwards) and install the gateway page which is 102 * used for signal trampolines, etc. 103 */ 104 void 105 ia64_init_addr_space (void) 106 { 107 struct vm_area_struct *vma; 108 109 ia64_set_rbs_bot(); 110 111 /* 112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 113 * the problem. When the process attempts to write to the register backing store 114 * for the first time, it will get a SEGFAULT in this case. 115 */ 116 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 117 if (vma) { 118 INIT_LIST_HEAD(&vma->anon_vma_chain); 119 vma->vm_mm = current->mm; 120 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 121 vma->vm_end = vma->vm_start + PAGE_SIZE; 122 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 123 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 124 down_write(¤t->mm->mmap_sem); 125 if (insert_vm_struct(current->mm, vma)) { 126 up_write(¤t->mm->mmap_sem); 127 kmem_cache_free(vm_area_cachep, vma); 128 return; 129 } 130 up_write(¤t->mm->mmap_sem); 131 } 132 133 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 134 if (!(current->personality & MMAP_PAGE_ZERO)) { 135 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 136 if (vma) { 137 INIT_LIST_HEAD(&vma->anon_vma_chain); 138 vma->vm_mm = current->mm; 139 vma->vm_end = PAGE_SIZE; 140 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 141 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | 142 VM_DONTEXPAND | VM_DONTDUMP; 143 down_write(¤t->mm->mmap_sem); 144 if (insert_vm_struct(current->mm, vma)) { 145 up_write(¤t->mm->mmap_sem); 146 kmem_cache_free(vm_area_cachep, vma); 147 return; 148 } 149 up_write(¤t->mm->mmap_sem); 150 } 151 } 152 } 153 154 void 155 free_initmem (void) 156 { 157 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end), 158 -1, "unused kernel"); 159 } 160 161 void __init 162 free_initrd_mem (unsigned long start, unsigned long end) 163 { 164 /* 165 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 166 * Thus EFI and the kernel may have different page sizes. It is 167 * therefore possible to have the initrd share the same page as 168 * the end of the kernel (given current setup). 169 * 170 * To avoid freeing/using the wrong page (kernel sized) we: 171 * - align up the beginning of initrd 172 * - align down the end of initrd 173 * 174 * | | 175 * |=============| a000 176 * | | 177 * | | 178 * | | 9000 179 * |/////////////| 180 * |/////////////| 181 * |=============| 8000 182 * |///INITRD////| 183 * |/////////////| 184 * |/////////////| 7000 185 * | | 186 * |KKKKKKKKKKKKK| 187 * |=============| 6000 188 * |KKKKKKKKKKKKK| 189 * |KKKKKKKKKKKKK| 190 * K=kernel using 8KB pages 191 * 192 * In this example, we must free page 8000 ONLY. So we must align up 193 * initrd_start and keep initrd_end as is. 194 */ 195 start = PAGE_ALIGN(start); 196 end = end & PAGE_MASK; 197 198 if (start < end) 199 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 200 201 for (; start < end; start += PAGE_SIZE) { 202 if (!virt_addr_valid(start)) 203 continue; 204 free_reserved_page(virt_to_page(start)); 205 } 206 } 207 208 /* 209 * This installs a clean page in the kernel's page table. 210 */ 211 static struct page * __init 212 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 213 { 214 pgd_t *pgd; 215 pud_t *pud; 216 pmd_t *pmd; 217 pte_t *pte; 218 219 if (!PageReserved(page)) 220 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 221 page_address(page)); 222 223 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 224 225 { 226 pud = pud_alloc(&init_mm, pgd, address); 227 if (!pud) 228 goto out; 229 pmd = pmd_alloc(&init_mm, pud, address); 230 if (!pmd) 231 goto out; 232 pte = pte_alloc_kernel(pmd, address); 233 if (!pte) 234 goto out; 235 if (!pte_none(*pte)) 236 goto out; 237 set_pte(pte, mk_pte(page, pgprot)); 238 } 239 out: 240 /* no need for flush_tlb */ 241 return page; 242 } 243 244 static void __init 245 setup_gate (void) 246 { 247 void *gate_section; 248 struct page *page; 249 250 /* 251 * Map the gate page twice: once read-only to export the ELF 252 * headers etc. and once execute-only page to enable 253 * privilege-promotion via "epc": 254 */ 255 gate_section = paravirt_get_gate_section(); 256 page = virt_to_page(ia64_imva(gate_section)); 257 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 258 #ifdef HAVE_BUGGY_SEGREL 259 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); 260 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 261 #else 262 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 263 /* Fill in the holes (if any) with read-only zero pages: */ 264 { 265 unsigned long addr; 266 267 for (addr = GATE_ADDR + PAGE_SIZE; 268 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 269 addr += PAGE_SIZE) 270 { 271 put_kernel_page(ZERO_PAGE(0), addr, 272 PAGE_READONLY); 273 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 274 PAGE_READONLY); 275 } 276 } 277 #endif 278 ia64_patch_gate(); 279 } 280 281 static struct vm_area_struct gate_vma; 282 283 static int __init gate_vma_init(void) 284 { 285 gate_vma.vm_mm = NULL; 286 gate_vma.vm_start = FIXADDR_USER_START; 287 gate_vma.vm_end = FIXADDR_USER_END; 288 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 289 gate_vma.vm_page_prot = __P101; 290 291 return 0; 292 } 293 __initcall(gate_vma_init); 294 295 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 296 { 297 return &gate_vma; 298 } 299 300 int in_gate_area_no_mm(unsigned long addr) 301 { 302 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 303 return 1; 304 return 0; 305 } 306 307 int in_gate_area(struct mm_struct *mm, unsigned long addr) 308 { 309 return in_gate_area_no_mm(addr); 310 } 311 312 void ia64_mmu_init(void *my_cpu_data) 313 { 314 unsigned long pta, impl_va_bits; 315 extern void tlb_init(void); 316 317 #ifdef CONFIG_DISABLE_VHPT 318 # define VHPT_ENABLE_BIT 0 319 #else 320 # define VHPT_ENABLE_BIT 1 321 #endif 322 323 /* 324 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 325 * address space. The IA-64 architecture guarantees that at least 50 bits of 326 * virtual address space are implemented but if we pick a large enough page size 327 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 328 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 329 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 330 * problem in practice. Alternatively, we could truncate the top of the mapped 331 * address space to not permit mappings that would overlap with the VMLPT. 332 * --davidm 00/12/06 333 */ 334 # define pte_bits 3 335 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 336 /* 337 * The virtual page table has to cover the entire implemented address space within 338 * a region even though not all of this space may be mappable. The reason for 339 * this is that the Access bit and Dirty bit fault handlers perform 340 * non-speculative accesses to the virtual page table, so the address range of the 341 * virtual page table itself needs to be covered by virtual page table. 342 */ 343 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 344 # define POW2(n) (1ULL << (n)) 345 346 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 347 348 if (impl_va_bits < 51 || impl_va_bits > 61) 349 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 350 /* 351 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 352 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 353 * the test makes sure that our mapped space doesn't overlap the 354 * unimplemented hole in the middle of the region. 355 */ 356 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 357 (mapped_space_bits > impl_va_bits - 1)) 358 panic("Cannot build a big enough virtual-linear page table" 359 " to cover mapped address space.\n" 360 " Try using a smaller page size.\n"); 361 362 363 /* place the VMLPT at the end of each page-table mapped region: */ 364 pta = POW2(61) - POW2(vmlpt_bits); 365 366 /* 367 * Set the (virtually mapped linear) page table address. Bit 368 * 8 selects between the short and long format, bits 2-7 the 369 * size of the table, and bit 0 whether the VHPT walker is 370 * enabled. 371 */ 372 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 373 374 ia64_tlb_init(); 375 376 #ifdef CONFIG_HUGETLB_PAGE 377 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 378 ia64_srlz_d(); 379 #endif 380 } 381 382 #ifdef CONFIG_VIRTUAL_MEM_MAP 383 int vmemmap_find_next_valid_pfn(int node, int i) 384 { 385 unsigned long end_address, hole_next_pfn; 386 unsigned long stop_address; 387 pg_data_t *pgdat = NODE_DATA(node); 388 389 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 390 end_address = PAGE_ALIGN(end_address); 391 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)]; 392 393 do { 394 pgd_t *pgd; 395 pud_t *pud; 396 pmd_t *pmd; 397 pte_t *pte; 398 399 pgd = pgd_offset_k(end_address); 400 if (pgd_none(*pgd)) { 401 end_address += PGDIR_SIZE; 402 continue; 403 } 404 405 pud = pud_offset(pgd, end_address); 406 if (pud_none(*pud)) { 407 end_address += PUD_SIZE; 408 continue; 409 } 410 411 pmd = pmd_offset(pud, end_address); 412 if (pmd_none(*pmd)) { 413 end_address += PMD_SIZE; 414 continue; 415 } 416 417 pte = pte_offset_kernel(pmd, end_address); 418 retry_pte: 419 if (pte_none(*pte)) { 420 end_address += PAGE_SIZE; 421 pte++; 422 if ((end_address < stop_address) && 423 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 424 goto retry_pte; 425 continue; 426 } 427 /* Found next valid vmem_map page */ 428 break; 429 } while (end_address < stop_address); 430 431 end_address = min(end_address, stop_address); 432 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 433 hole_next_pfn = end_address / sizeof(struct page); 434 return hole_next_pfn - pgdat->node_start_pfn; 435 } 436 437 int __init create_mem_map_page_table(u64 start, u64 end, void *arg) 438 { 439 unsigned long address, start_page, end_page; 440 struct page *map_start, *map_end; 441 int node; 442 pgd_t *pgd; 443 pud_t *pud; 444 pmd_t *pmd; 445 pte_t *pte; 446 447 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 448 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 449 450 start_page = (unsigned long) map_start & PAGE_MASK; 451 end_page = PAGE_ALIGN((unsigned long) map_end); 452 node = paddr_to_nid(__pa(start)); 453 454 for (address = start_page; address < end_page; address += PAGE_SIZE) { 455 pgd = pgd_offset_k(address); 456 if (pgd_none(*pgd)) 457 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 458 pud = pud_offset(pgd, address); 459 460 if (pud_none(*pud)) 461 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 462 pmd = pmd_offset(pud, address); 463 464 if (pmd_none(*pmd)) 465 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 466 pte = pte_offset_kernel(pmd, address); 467 468 if (pte_none(*pte)) 469 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 470 PAGE_KERNEL)); 471 } 472 return 0; 473 } 474 475 struct memmap_init_callback_data { 476 struct page *start; 477 struct page *end; 478 int nid; 479 unsigned long zone; 480 }; 481 482 static int __meminit 483 virtual_memmap_init(u64 start, u64 end, void *arg) 484 { 485 struct memmap_init_callback_data *args; 486 struct page *map_start, *map_end; 487 488 args = (struct memmap_init_callback_data *) arg; 489 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 490 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 491 492 if (map_start < args->start) 493 map_start = args->start; 494 if (map_end > args->end) 495 map_end = args->end; 496 497 /* 498 * We have to initialize "out of bounds" struct page elements that fit completely 499 * on the same pages that were allocated for the "in bounds" elements because they 500 * may be referenced later (and found to be "reserved"). 501 */ 502 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 503 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 504 / sizeof(struct page)); 505 506 if (map_start < map_end) 507 memmap_init_zone((unsigned long)(map_end - map_start), 508 args->nid, args->zone, page_to_pfn(map_start), 509 MEMMAP_EARLY); 510 return 0; 511 } 512 513 void __meminit 514 memmap_init (unsigned long size, int nid, unsigned long zone, 515 unsigned long start_pfn) 516 { 517 if (!vmem_map) 518 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 519 else { 520 struct page *start; 521 struct memmap_init_callback_data args; 522 523 start = pfn_to_page(start_pfn); 524 args.start = start; 525 args.end = start + size; 526 args.nid = nid; 527 args.zone = zone; 528 529 efi_memmap_walk(virtual_memmap_init, &args); 530 } 531 } 532 533 int 534 ia64_pfn_valid (unsigned long pfn) 535 { 536 char byte; 537 struct page *pg = pfn_to_page(pfn); 538 539 return (__get_user(byte, (char __user *) pg) == 0) 540 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 541 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 542 } 543 EXPORT_SYMBOL(ia64_pfn_valid); 544 545 int __init find_largest_hole(u64 start, u64 end, void *arg) 546 { 547 u64 *max_gap = arg; 548 549 static u64 last_end = PAGE_OFFSET; 550 551 /* NOTE: this algorithm assumes efi memmap table is ordered */ 552 553 if (*max_gap < (start - last_end)) 554 *max_gap = start - last_end; 555 last_end = end; 556 return 0; 557 } 558 559 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 560 561 int __init register_active_ranges(u64 start, u64 len, int nid) 562 { 563 u64 end = start + len; 564 565 #ifdef CONFIG_KEXEC 566 if (start > crashk_res.start && start < crashk_res.end) 567 start = crashk_res.end; 568 if (end > crashk_res.start && end < crashk_res.end) 569 end = crashk_res.start; 570 #endif 571 572 if (start < end) 573 memblock_add_node(__pa(start), end - start, nid); 574 return 0; 575 } 576 577 int 578 find_max_min_low_pfn (u64 start, u64 end, void *arg) 579 { 580 unsigned long pfn_start, pfn_end; 581 #ifdef CONFIG_FLATMEM 582 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 583 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 584 #else 585 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 586 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 587 #endif 588 min_low_pfn = min(min_low_pfn, pfn_start); 589 max_low_pfn = max(max_low_pfn, pfn_end); 590 return 0; 591 } 592 593 /* 594 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 595 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 596 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 597 * useful for performance testing, but conceivably could also come in handy for debugging 598 * purposes. 599 */ 600 601 static int nolwsys __initdata; 602 603 static int __init 604 nolwsys_setup (char *s) 605 { 606 nolwsys = 1; 607 return 1; 608 } 609 610 __setup("nolwsys", nolwsys_setup); 611 612 void __init 613 mem_init (void) 614 { 615 int i; 616 617 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 618 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 619 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 620 621 #ifdef CONFIG_PCI 622 /* 623 * This needs to be called _after_ the command line has been parsed but _before_ 624 * any drivers that may need the PCI DMA interface are initialized or bootmem has 625 * been freed. 626 */ 627 platform_dma_init(); 628 #endif 629 630 #ifdef CONFIG_FLATMEM 631 BUG_ON(!mem_map); 632 #endif 633 634 set_max_mapnr(max_low_pfn); 635 high_memory = __va(max_low_pfn * PAGE_SIZE); 636 free_all_bootmem(); 637 mem_init_print_info(NULL); 638 639 /* 640 * For fsyscall entrpoints with no light-weight handler, use the ordinary 641 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 642 * code can tell them apart. 643 */ 644 for (i = 0; i < NR_syscalls; ++i) { 645 extern unsigned long sys_call_table[NR_syscalls]; 646 unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); 647 648 if (!fsyscall_table[i] || nolwsys) 649 fsyscall_table[i] = sys_call_table[i] | 1; 650 } 651 setup_gate(); 652 } 653 654 #ifdef CONFIG_MEMORY_HOTPLUG 655 int arch_add_memory(int nid, u64 start, u64 size) 656 { 657 pg_data_t *pgdat; 658 struct zone *zone; 659 unsigned long start_pfn = start >> PAGE_SHIFT; 660 unsigned long nr_pages = size >> PAGE_SHIFT; 661 int ret; 662 663 pgdat = NODE_DATA(nid); 664 665 zone = pgdat->node_zones + 666 zone_for_memory(nid, start, size, ZONE_NORMAL); 667 ret = __add_pages(nid, zone, start_pfn, nr_pages); 668 669 if (ret) 670 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 671 __func__, ret); 672 673 return ret; 674 } 675 676 #ifdef CONFIG_MEMORY_HOTREMOVE 677 int arch_remove_memory(u64 start, u64 size) 678 { 679 unsigned long start_pfn = start >> PAGE_SHIFT; 680 unsigned long nr_pages = size >> PAGE_SHIFT; 681 struct zone *zone; 682 int ret; 683 684 zone = page_zone(pfn_to_page(start_pfn)); 685 ret = __remove_pages(zone, start_pfn, nr_pages); 686 if (ret) 687 pr_warn("%s: Problem encountered in __remove_pages() as" 688 " ret=%d\n", __func__, ret); 689 690 return ret; 691 } 692 #endif 693 #endif 694 695 /** 696 * show_mem - give short summary of memory stats 697 * 698 * Shows a simple page count of reserved and used pages in the system. 699 * For discontig machines, it does this on a per-pgdat basis. 700 */ 701 void show_mem(unsigned int filter) 702 { 703 int total_reserved = 0; 704 unsigned long total_present = 0; 705 pg_data_t *pgdat; 706 707 printk(KERN_INFO "Mem-info:\n"); 708 show_free_areas(filter); 709 printk(KERN_INFO "Node memory in pages:\n"); 710 for_each_online_pgdat(pgdat) { 711 unsigned long present; 712 unsigned long flags; 713 int reserved = 0; 714 int nid = pgdat->node_id; 715 int zoneid; 716 717 if (skip_free_areas_node(filter, nid)) 718 continue; 719 pgdat_resize_lock(pgdat, &flags); 720 721 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 722 struct zone *zone = &pgdat->node_zones[zoneid]; 723 if (!populated_zone(zone)) 724 continue; 725 726 reserved += zone->present_pages - zone->managed_pages; 727 } 728 present = pgdat->node_present_pages; 729 730 pgdat_resize_unlock(pgdat, &flags); 731 total_present += present; 732 total_reserved += reserved; 733 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, ", 734 nid, present, reserved); 735 } 736 printk(KERN_INFO "%ld pages of RAM\n", total_present); 737 printk(KERN_INFO "%d reserved pages\n", total_reserved); 738 printk(KERN_INFO "Total of %ld pages in page table cache\n", 739 quicklist_total_size()); 740 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages()); 741 } 742