xref: /openbmc/linux/arch/ia64/mm/init.c (revision 643d1f7f)
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23 
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39 
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41 
42 extern void ia64_tlb_init (void);
43 
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45 
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
52 
53 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
55 
56 void
57 __ia64_sync_icache_dcache (pte_t pte)
58 {
59 	unsigned long addr;
60 	struct page *page;
61 	unsigned long order;
62 
63 	page = pte_page(pte);
64 	addr = (unsigned long) page_address(page);
65 
66 	if (test_bit(PG_arch_1, &page->flags))
67 		return;				/* i-cache is already coherent with d-cache */
68 
69 	if (PageCompound(page)) {
70 		order = compound_order(page);
71 		flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
72 	}
73 	else
74 		flush_icache_range(addr, addr + PAGE_SIZE);
75 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
76 }
77 
78 /*
79  * Since DMA is i-cache coherent, any (complete) pages that were written via
80  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
81  * flush them when they get mapped into an executable vm-area.
82  */
83 void
84 dma_mark_clean(void *addr, size_t size)
85 {
86 	unsigned long pg_addr, end;
87 
88 	pg_addr = PAGE_ALIGN((unsigned long) addr);
89 	end = (unsigned long) addr + size;
90 	while (pg_addr + PAGE_SIZE <= end) {
91 		struct page *page = virt_to_page(pg_addr);
92 		set_bit(PG_arch_1, &page->flags);
93 		pg_addr += PAGE_SIZE;
94 	}
95 }
96 
97 inline void
98 ia64_set_rbs_bot (void)
99 {
100 	unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
101 
102 	if (stack_size > MAX_USER_STACK_SIZE)
103 		stack_size = MAX_USER_STACK_SIZE;
104 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
105 }
106 
107 /*
108  * This performs some platform-dependent address space initialization.
109  * On IA-64, we want to setup the VM area for the register backing
110  * store (which grows upwards) and install the gateway page which is
111  * used for signal trampolines, etc.
112  */
113 void
114 ia64_init_addr_space (void)
115 {
116 	struct vm_area_struct *vma;
117 
118 	ia64_set_rbs_bot();
119 
120 	/*
121 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
122 	 * the problem.  When the process attempts to write to the register backing store
123 	 * for the first time, it will get a SEGFAULT in this case.
124 	 */
125 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
126 	if (vma) {
127 		vma->vm_mm = current->mm;
128 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
129 		vma->vm_end = vma->vm_start + PAGE_SIZE;
130 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
131 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
132 		down_write(&current->mm->mmap_sem);
133 		if (insert_vm_struct(current->mm, vma)) {
134 			up_write(&current->mm->mmap_sem);
135 			kmem_cache_free(vm_area_cachep, vma);
136 			return;
137 		}
138 		up_write(&current->mm->mmap_sem);
139 	}
140 
141 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
142 	if (!(current->personality & MMAP_PAGE_ZERO)) {
143 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
144 		if (vma) {
145 			vma->vm_mm = current->mm;
146 			vma->vm_end = PAGE_SIZE;
147 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
148 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
149 			down_write(&current->mm->mmap_sem);
150 			if (insert_vm_struct(current->mm, vma)) {
151 				up_write(&current->mm->mmap_sem);
152 				kmem_cache_free(vm_area_cachep, vma);
153 				return;
154 			}
155 			up_write(&current->mm->mmap_sem);
156 		}
157 	}
158 }
159 
160 void
161 free_initmem (void)
162 {
163 	unsigned long addr, eaddr;
164 
165 	addr = (unsigned long) ia64_imva(__init_begin);
166 	eaddr = (unsigned long) ia64_imva(__init_end);
167 	while (addr < eaddr) {
168 		ClearPageReserved(virt_to_page(addr));
169 		init_page_count(virt_to_page(addr));
170 		free_page(addr);
171 		++totalram_pages;
172 		addr += PAGE_SIZE;
173 	}
174 	printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
175 	       (__init_end - __init_begin) >> 10);
176 }
177 
178 void __init
179 free_initrd_mem (unsigned long start, unsigned long end)
180 {
181 	struct page *page;
182 	/*
183 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
184 	 * Thus EFI and the kernel may have different page sizes. It is
185 	 * therefore possible to have the initrd share the same page as
186 	 * the end of the kernel (given current setup).
187 	 *
188 	 * To avoid freeing/using the wrong page (kernel sized) we:
189 	 *	- align up the beginning of initrd
190 	 *	- align down the end of initrd
191 	 *
192 	 *  |             |
193 	 *  |=============| a000
194 	 *  |             |
195 	 *  |             |
196 	 *  |             | 9000
197 	 *  |/////////////|
198 	 *  |/////////////|
199 	 *  |=============| 8000
200 	 *  |///INITRD////|
201 	 *  |/////////////|
202 	 *  |/////////////| 7000
203 	 *  |             |
204 	 *  |KKKKKKKKKKKKK|
205 	 *  |=============| 6000
206 	 *  |KKKKKKKKKKKKK|
207 	 *  |KKKKKKKKKKKKK|
208 	 *  K=kernel using 8KB pages
209 	 *
210 	 * In this example, we must free page 8000 ONLY. So we must align up
211 	 * initrd_start and keep initrd_end as is.
212 	 */
213 	start = PAGE_ALIGN(start);
214 	end = end & PAGE_MASK;
215 
216 	if (start < end)
217 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
218 
219 	for (; start < end; start += PAGE_SIZE) {
220 		if (!virt_addr_valid(start))
221 			continue;
222 		page = virt_to_page(start);
223 		ClearPageReserved(page);
224 		init_page_count(page);
225 		free_page(start);
226 		++totalram_pages;
227 	}
228 }
229 
230 /*
231  * This installs a clean page in the kernel's page table.
232  */
233 static struct page * __init
234 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
235 {
236 	pgd_t *pgd;
237 	pud_t *pud;
238 	pmd_t *pmd;
239 	pte_t *pte;
240 
241 	if (!PageReserved(page))
242 		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
243 		       page_address(page));
244 
245 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
246 
247 	{
248 		pud = pud_alloc(&init_mm, pgd, address);
249 		if (!pud)
250 			goto out;
251 		pmd = pmd_alloc(&init_mm, pud, address);
252 		if (!pmd)
253 			goto out;
254 		pte = pte_alloc_kernel(pmd, address);
255 		if (!pte)
256 			goto out;
257 		if (!pte_none(*pte))
258 			goto out;
259 		set_pte(pte, mk_pte(page, pgprot));
260 	}
261   out:
262 	/* no need for flush_tlb */
263 	return page;
264 }
265 
266 static void __init
267 setup_gate (void)
268 {
269 	struct page *page;
270 
271 	/*
272 	 * Map the gate page twice: once read-only to export the ELF
273 	 * headers etc. and once execute-only page to enable
274 	 * privilege-promotion via "epc":
275 	 */
276 	page = virt_to_page(ia64_imva(__start_gate_section));
277 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
278 #ifdef HAVE_BUGGY_SEGREL
279 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
280 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
281 #else
282 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
283 	/* Fill in the holes (if any) with read-only zero pages: */
284 	{
285 		unsigned long addr;
286 
287 		for (addr = GATE_ADDR + PAGE_SIZE;
288 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
289 		     addr += PAGE_SIZE)
290 		{
291 			put_kernel_page(ZERO_PAGE(0), addr,
292 					PAGE_READONLY);
293 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
294 					PAGE_READONLY);
295 		}
296 	}
297 #endif
298 	ia64_patch_gate();
299 }
300 
301 void __devinit
302 ia64_mmu_init (void *my_cpu_data)
303 {
304 	unsigned long pta, impl_va_bits;
305 	extern void __devinit tlb_init (void);
306 
307 #ifdef CONFIG_DISABLE_VHPT
308 #	define VHPT_ENABLE_BIT	0
309 #else
310 #	define VHPT_ENABLE_BIT	1
311 #endif
312 
313 	/*
314 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
315 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
316 	 * virtual address space are implemented but if we pick a large enough page size
317 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
318 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
319 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
320 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
321 	 * address space to not permit mappings that would overlap with the VMLPT.
322 	 * --davidm 00/12/06
323 	 */
324 #	define pte_bits			3
325 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
326 	/*
327 	 * The virtual page table has to cover the entire implemented address space within
328 	 * a region even though not all of this space may be mappable.  The reason for
329 	 * this is that the Access bit and Dirty bit fault handlers perform
330 	 * non-speculative accesses to the virtual page table, so the address range of the
331 	 * virtual page table itself needs to be covered by virtual page table.
332 	 */
333 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
334 #	define POW2(n)			(1ULL << (n))
335 
336 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
337 
338 	if (impl_va_bits < 51 || impl_va_bits > 61)
339 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
340 	/*
341 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
342 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
343 	 * the test makes sure that our mapped space doesn't overlap the
344 	 * unimplemented hole in the middle of the region.
345 	 */
346 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
347 	    (mapped_space_bits > impl_va_bits - 1))
348 		panic("Cannot build a big enough virtual-linear page table"
349 		      " to cover mapped address space.\n"
350 		      " Try using a smaller page size.\n");
351 
352 
353 	/* place the VMLPT at the end of each page-table mapped region: */
354 	pta = POW2(61) - POW2(vmlpt_bits);
355 
356 	/*
357 	 * Set the (virtually mapped linear) page table address.  Bit
358 	 * 8 selects between the short and long format, bits 2-7 the
359 	 * size of the table, and bit 0 whether the VHPT walker is
360 	 * enabled.
361 	 */
362 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
363 
364 	ia64_tlb_init();
365 
366 #ifdef	CONFIG_HUGETLB_PAGE
367 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
368 	ia64_srlz_d();
369 #endif
370 }
371 
372 #ifdef CONFIG_VIRTUAL_MEM_MAP
373 int vmemmap_find_next_valid_pfn(int node, int i)
374 {
375 	unsigned long end_address, hole_next_pfn;
376 	unsigned long stop_address;
377 	pg_data_t *pgdat = NODE_DATA(node);
378 
379 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
380 	end_address = PAGE_ALIGN(end_address);
381 
382 	stop_address = (unsigned long) &vmem_map[
383 		pgdat->node_start_pfn + pgdat->node_spanned_pages];
384 
385 	do {
386 		pgd_t *pgd;
387 		pud_t *pud;
388 		pmd_t *pmd;
389 		pte_t *pte;
390 
391 		pgd = pgd_offset_k(end_address);
392 		if (pgd_none(*pgd)) {
393 			end_address += PGDIR_SIZE;
394 			continue;
395 		}
396 
397 		pud = pud_offset(pgd, end_address);
398 		if (pud_none(*pud)) {
399 			end_address += PUD_SIZE;
400 			continue;
401 		}
402 
403 		pmd = pmd_offset(pud, end_address);
404 		if (pmd_none(*pmd)) {
405 			end_address += PMD_SIZE;
406 			continue;
407 		}
408 
409 		pte = pte_offset_kernel(pmd, end_address);
410 retry_pte:
411 		if (pte_none(*pte)) {
412 			end_address += PAGE_SIZE;
413 			pte++;
414 			if ((end_address < stop_address) &&
415 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
416 				goto retry_pte;
417 			continue;
418 		}
419 		/* Found next valid vmem_map page */
420 		break;
421 	} while (end_address < stop_address);
422 
423 	end_address = min(end_address, stop_address);
424 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
425 	hole_next_pfn = end_address / sizeof(struct page);
426 	return hole_next_pfn - pgdat->node_start_pfn;
427 }
428 
429 int __init
430 create_mem_map_page_table (u64 start, u64 end, void *arg)
431 {
432 	unsigned long address, start_page, end_page;
433 	struct page *map_start, *map_end;
434 	int node;
435 	pgd_t *pgd;
436 	pud_t *pud;
437 	pmd_t *pmd;
438 	pte_t *pte;
439 
440 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
441 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
442 
443 	start_page = (unsigned long) map_start & PAGE_MASK;
444 	end_page = PAGE_ALIGN((unsigned long) map_end);
445 	node = paddr_to_nid(__pa(start));
446 
447 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
448 		pgd = pgd_offset_k(address);
449 		if (pgd_none(*pgd))
450 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451 		pud = pud_offset(pgd, address);
452 
453 		if (pud_none(*pud))
454 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455 		pmd = pmd_offset(pud, address);
456 
457 		if (pmd_none(*pmd))
458 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
459 		pte = pte_offset_kernel(pmd, address);
460 
461 		if (pte_none(*pte))
462 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
463 					     PAGE_KERNEL));
464 	}
465 	return 0;
466 }
467 
468 struct memmap_init_callback_data {
469 	struct page *start;
470 	struct page *end;
471 	int nid;
472 	unsigned long zone;
473 };
474 
475 static int __meminit
476 virtual_memmap_init (u64 start, u64 end, void *arg)
477 {
478 	struct memmap_init_callback_data *args;
479 	struct page *map_start, *map_end;
480 
481 	args = (struct memmap_init_callback_data *) arg;
482 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
483 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
484 
485 	if (map_start < args->start)
486 		map_start = args->start;
487 	if (map_end > args->end)
488 		map_end = args->end;
489 
490 	/*
491 	 * We have to initialize "out of bounds" struct page elements that fit completely
492 	 * on the same pages that were allocated for the "in bounds" elements because they
493 	 * may be referenced later (and found to be "reserved").
494 	 */
495 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
496 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
497 		    / sizeof(struct page));
498 
499 	if (map_start < map_end)
500 		memmap_init_zone((unsigned long)(map_end - map_start),
501 				 args->nid, args->zone, page_to_pfn(map_start),
502 				 MEMMAP_EARLY);
503 	return 0;
504 }
505 
506 void __meminit
507 memmap_init (unsigned long size, int nid, unsigned long zone,
508 	     unsigned long start_pfn)
509 {
510 	if (!vmem_map)
511 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
512 	else {
513 		struct page *start;
514 		struct memmap_init_callback_data args;
515 
516 		start = pfn_to_page(start_pfn);
517 		args.start = start;
518 		args.end = start + size;
519 		args.nid = nid;
520 		args.zone = zone;
521 
522 		efi_memmap_walk(virtual_memmap_init, &args);
523 	}
524 }
525 
526 int
527 ia64_pfn_valid (unsigned long pfn)
528 {
529 	char byte;
530 	struct page *pg = pfn_to_page(pfn);
531 
532 	return     (__get_user(byte, (char __user *) pg) == 0)
533 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
534 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
535 }
536 EXPORT_SYMBOL(ia64_pfn_valid);
537 
538 int __init
539 find_largest_hole (u64 start, u64 end, void *arg)
540 {
541 	u64 *max_gap = arg;
542 
543 	static u64 last_end = PAGE_OFFSET;
544 
545 	/* NOTE: this algorithm assumes efi memmap table is ordered */
546 
547 	if (*max_gap < (start - last_end))
548 		*max_gap = start - last_end;
549 	last_end = end;
550 	return 0;
551 }
552 
553 #endif /* CONFIG_VIRTUAL_MEM_MAP */
554 
555 int __init
556 register_active_ranges(u64 start, u64 end, void *arg)
557 {
558 	int nid = paddr_to_nid(__pa(start));
559 
560 	if (nid < 0)
561 		nid = 0;
562 #ifdef CONFIG_KEXEC
563 	if (start > crashk_res.start && start < crashk_res.end)
564 		start = crashk_res.end;
565 	if (end > crashk_res.start && end < crashk_res.end)
566 		end = crashk_res.start;
567 #endif
568 
569 	if (start < end)
570 		add_active_range(nid, __pa(start) >> PAGE_SHIFT,
571 			__pa(end) >> PAGE_SHIFT);
572 	return 0;
573 }
574 
575 static int __init
576 count_reserved_pages (u64 start, u64 end, void *arg)
577 {
578 	unsigned long num_reserved = 0;
579 	unsigned long *count = arg;
580 
581 	for (; start < end; start += PAGE_SIZE)
582 		if (PageReserved(virt_to_page(start)))
583 			++num_reserved;
584 	*count += num_reserved;
585 	return 0;
586 }
587 
588 int
589 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
590 {
591 	unsigned long pfn_start, pfn_end;
592 #ifdef CONFIG_FLATMEM
593 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
594 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
595 #else
596 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
597 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
598 #endif
599 	min_low_pfn = min(min_low_pfn, pfn_start);
600 	max_low_pfn = max(max_low_pfn, pfn_end);
601 	return 0;
602 }
603 
604 /*
605  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
606  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
607  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
608  * useful for performance testing, but conceivably could also come in handy for debugging
609  * purposes.
610  */
611 
612 static int nolwsys __initdata;
613 
614 static int __init
615 nolwsys_setup (char *s)
616 {
617 	nolwsys = 1;
618 	return 1;
619 }
620 
621 __setup("nolwsys", nolwsys_setup);
622 
623 void __init
624 mem_init (void)
625 {
626 	long reserved_pages, codesize, datasize, initsize;
627 	pg_data_t *pgdat;
628 	int i;
629 	static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
630 
631 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
632 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
633 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
634 
635 #ifdef CONFIG_PCI
636 	/*
637 	 * This needs to be called _after_ the command line has been parsed but _before_
638 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
639 	 * been freed.
640 	 */
641 	platform_dma_init();
642 #endif
643 
644 #ifdef CONFIG_FLATMEM
645 	if (!mem_map)
646 		BUG();
647 	max_mapnr = max_low_pfn;
648 #endif
649 
650 	high_memory = __va(max_low_pfn * PAGE_SIZE);
651 
652 	kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
653 	kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
654 	kclist_add(&kcore_kernel, _stext, _end - _stext);
655 
656 	for_each_online_pgdat(pgdat)
657 		if (pgdat->bdata->node_bootmem_map)
658 			totalram_pages += free_all_bootmem_node(pgdat);
659 
660 	reserved_pages = 0;
661 	efi_memmap_walk(count_reserved_pages, &reserved_pages);
662 
663 	codesize =  (unsigned long) _etext - (unsigned long) _stext;
664 	datasize =  (unsigned long) _edata - (unsigned long) _etext;
665 	initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
666 
667 	printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
668 	       "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
669 	       num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
670 	       reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
671 
672 
673 	/*
674 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
675 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
676 	 * code can tell them apart.
677 	 */
678 	for (i = 0; i < NR_syscalls; ++i) {
679 		extern unsigned long fsyscall_table[NR_syscalls];
680 		extern unsigned long sys_call_table[NR_syscalls];
681 
682 		if (!fsyscall_table[i] || nolwsys)
683 			fsyscall_table[i] = sys_call_table[i] | 1;
684 	}
685 	setup_gate();
686 
687 #ifdef CONFIG_IA32_SUPPORT
688 	ia32_mem_init();
689 #endif
690 }
691 
692 #ifdef CONFIG_MEMORY_HOTPLUG
693 void online_page(struct page *page)
694 {
695 	ClearPageReserved(page);
696 	init_page_count(page);
697 	__free_page(page);
698 	totalram_pages++;
699 	num_physpages++;
700 }
701 
702 int arch_add_memory(int nid, u64 start, u64 size)
703 {
704 	pg_data_t *pgdat;
705 	struct zone *zone;
706 	unsigned long start_pfn = start >> PAGE_SHIFT;
707 	unsigned long nr_pages = size >> PAGE_SHIFT;
708 	int ret;
709 
710 	pgdat = NODE_DATA(nid);
711 
712 	zone = pgdat->node_zones + ZONE_NORMAL;
713 	ret = __add_pages(zone, start_pfn, nr_pages);
714 
715 	if (ret)
716 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
717 		       __FUNCTION__,  ret);
718 
719 	return ret;
720 }
721 #ifdef CONFIG_MEMORY_HOTREMOVE
722 int remove_memory(u64 start, u64 size)
723 {
724 	unsigned long start_pfn, end_pfn;
725 	unsigned long timeout = 120 * HZ;
726 	int ret;
727 	start_pfn = start >> PAGE_SHIFT;
728 	end_pfn = start_pfn + (size >> PAGE_SHIFT);
729 	ret = offline_pages(start_pfn, end_pfn, timeout);
730 	if (ret)
731 		goto out;
732 	/* we can free mem_map at this point */
733 out:
734 	return ret;
735 }
736 EXPORT_SYMBOL_GPL(remove_memory);
737 #endif /* CONFIG_MEMORY_HOTREMOVE */
738 #endif
739