1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/mm.h> 14 #include <linux/mmzone.h> 15 #include <linux/module.h> 16 #include <linux/personality.h> 17 #include <linux/reboot.h> 18 #include <linux/slab.h> 19 #include <linux/swap.h> 20 #include <linux/proc_fs.h> 21 #include <linux/bitops.h> 22 #include <linux/kexec.h> 23 24 #include <asm/a.out.h> 25 #include <asm/dma.h> 26 #include <asm/ia32.h> 27 #include <asm/io.h> 28 #include <asm/machvec.h> 29 #include <asm/numa.h> 30 #include <asm/patch.h> 31 #include <asm/pgalloc.h> 32 #include <asm/sal.h> 33 #include <asm/sections.h> 34 #include <asm/system.h> 35 #include <asm/tlb.h> 36 #include <asm/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/mca.h> 39 40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 41 42 extern void ia64_tlb_init (void); 43 44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 45 46 #ifdef CONFIG_VIRTUAL_MEM_MAP 47 unsigned long vmalloc_end = VMALLOC_END_INIT; 48 EXPORT_SYMBOL(vmalloc_end); 49 struct page *vmem_map; 50 EXPORT_SYMBOL(vmem_map); 51 #endif 52 53 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 54 EXPORT_SYMBOL(zero_page_memmap_ptr); 55 56 void 57 __ia64_sync_icache_dcache (pte_t pte) 58 { 59 unsigned long addr; 60 struct page *page; 61 unsigned long order; 62 63 page = pte_page(pte); 64 addr = (unsigned long) page_address(page); 65 66 if (test_bit(PG_arch_1, &page->flags)) 67 return; /* i-cache is already coherent with d-cache */ 68 69 if (PageCompound(page)) { 70 order = compound_order(page); 71 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT)); 72 } 73 else 74 flush_icache_range(addr, addr + PAGE_SIZE); 75 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 76 } 77 78 /* 79 * Since DMA is i-cache coherent, any (complete) pages that were written via 80 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 81 * flush them when they get mapped into an executable vm-area. 82 */ 83 void 84 dma_mark_clean(void *addr, size_t size) 85 { 86 unsigned long pg_addr, end; 87 88 pg_addr = PAGE_ALIGN((unsigned long) addr); 89 end = (unsigned long) addr + size; 90 while (pg_addr + PAGE_SIZE <= end) { 91 struct page *page = virt_to_page(pg_addr); 92 set_bit(PG_arch_1, &page->flags); 93 pg_addr += PAGE_SIZE; 94 } 95 } 96 97 inline void 98 ia64_set_rbs_bot (void) 99 { 100 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; 101 102 if (stack_size > MAX_USER_STACK_SIZE) 103 stack_size = MAX_USER_STACK_SIZE; 104 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 105 } 106 107 /* 108 * This performs some platform-dependent address space initialization. 109 * On IA-64, we want to setup the VM area for the register backing 110 * store (which grows upwards) and install the gateway page which is 111 * used for signal trampolines, etc. 112 */ 113 void 114 ia64_init_addr_space (void) 115 { 116 struct vm_area_struct *vma; 117 118 ia64_set_rbs_bot(); 119 120 /* 121 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 122 * the problem. When the process attempts to write to the register backing store 123 * for the first time, it will get a SEGFAULT in this case. 124 */ 125 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 126 if (vma) { 127 vma->vm_mm = current->mm; 128 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 129 vma->vm_end = vma->vm_start + PAGE_SIZE; 130 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 131 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 132 down_write(¤t->mm->mmap_sem); 133 if (insert_vm_struct(current->mm, vma)) { 134 up_write(¤t->mm->mmap_sem); 135 kmem_cache_free(vm_area_cachep, vma); 136 return; 137 } 138 up_write(¤t->mm->mmap_sem); 139 } 140 141 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 142 if (!(current->personality & MMAP_PAGE_ZERO)) { 143 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 144 if (vma) { 145 vma->vm_mm = current->mm; 146 vma->vm_end = PAGE_SIZE; 147 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 148 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; 149 down_write(¤t->mm->mmap_sem); 150 if (insert_vm_struct(current->mm, vma)) { 151 up_write(¤t->mm->mmap_sem); 152 kmem_cache_free(vm_area_cachep, vma); 153 return; 154 } 155 up_write(¤t->mm->mmap_sem); 156 } 157 } 158 } 159 160 void 161 free_initmem (void) 162 { 163 unsigned long addr, eaddr; 164 165 addr = (unsigned long) ia64_imva(__init_begin); 166 eaddr = (unsigned long) ia64_imva(__init_end); 167 while (addr < eaddr) { 168 ClearPageReserved(virt_to_page(addr)); 169 init_page_count(virt_to_page(addr)); 170 free_page(addr); 171 ++totalram_pages; 172 addr += PAGE_SIZE; 173 } 174 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", 175 (__init_end - __init_begin) >> 10); 176 } 177 178 void __init 179 free_initrd_mem (unsigned long start, unsigned long end) 180 { 181 struct page *page; 182 /* 183 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 184 * Thus EFI and the kernel may have different page sizes. It is 185 * therefore possible to have the initrd share the same page as 186 * the end of the kernel (given current setup). 187 * 188 * To avoid freeing/using the wrong page (kernel sized) we: 189 * - align up the beginning of initrd 190 * - align down the end of initrd 191 * 192 * | | 193 * |=============| a000 194 * | | 195 * | | 196 * | | 9000 197 * |/////////////| 198 * |/////////////| 199 * |=============| 8000 200 * |///INITRD////| 201 * |/////////////| 202 * |/////////////| 7000 203 * | | 204 * |KKKKKKKKKKKKK| 205 * |=============| 6000 206 * |KKKKKKKKKKKKK| 207 * |KKKKKKKKKKKKK| 208 * K=kernel using 8KB pages 209 * 210 * In this example, we must free page 8000 ONLY. So we must align up 211 * initrd_start and keep initrd_end as is. 212 */ 213 start = PAGE_ALIGN(start); 214 end = end & PAGE_MASK; 215 216 if (start < end) 217 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 218 219 for (; start < end; start += PAGE_SIZE) { 220 if (!virt_addr_valid(start)) 221 continue; 222 page = virt_to_page(start); 223 ClearPageReserved(page); 224 init_page_count(page); 225 free_page(start); 226 ++totalram_pages; 227 } 228 } 229 230 /* 231 * This installs a clean page in the kernel's page table. 232 */ 233 static struct page * __init 234 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 235 { 236 pgd_t *pgd; 237 pud_t *pud; 238 pmd_t *pmd; 239 pte_t *pte; 240 241 if (!PageReserved(page)) 242 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 243 page_address(page)); 244 245 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 246 247 { 248 pud = pud_alloc(&init_mm, pgd, address); 249 if (!pud) 250 goto out; 251 pmd = pmd_alloc(&init_mm, pud, address); 252 if (!pmd) 253 goto out; 254 pte = pte_alloc_kernel(pmd, address); 255 if (!pte) 256 goto out; 257 if (!pte_none(*pte)) 258 goto out; 259 set_pte(pte, mk_pte(page, pgprot)); 260 } 261 out: 262 /* no need for flush_tlb */ 263 return page; 264 } 265 266 static void __init 267 setup_gate (void) 268 { 269 struct page *page; 270 271 /* 272 * Map the gate page twice: once read-only to export the ELF 273 * headers etc. and once execute-only page to enable 274 * privilege-promotion via "epc": 275 */ 276 page = virt_to_page(ia64_imva(__start_gate_section)); 277 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 278 #ifdef HAVE_BUGGY_SEGREL 279 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); 280 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 281 #else 282 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 283 /* Fill in the holes (if any) with read-only zero pages: */ 284 { 285 unsigned long addr; 286 287 for (addr = GATE_ADDR + PAGE_SIZE; 288 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 289 addr += PAGE_SIZE) 290 { 291 put_kernel_page(ZERO_PAGE(0), addr, 292 PAGE_READONLY); 293 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 294 PAGE_READONLY); 295 } 296 } 297 #endif 298 ia64_patch_gate(); 299 } 300 301 void __devinit 302 ia64_mmu_init (void *my_cpu_data) 303 { 304 unsigned long pta, impl_va_bits; 305 extern void __devinit tlb_init (void); 306 307 #ifdef CONFIG_DISABLE_VHPT 308 # define VHPT_ENABLE_BIT 0 309 #else 310 # define VHPT_ENABLE_BIT 1 311 #endif 312 313 /* 314 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 315 * address space. The IA-64 architecture guarantees that at least 50 bits of 316 * virtual address space are implemented but if we pick a large enough page size 317 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 318 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 319 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 320 * problem in practice. Alternatively, we could truncate the top of the mapped 321 * address space to not permit mappings that would overlap with the VMLPT. 322 * --davidm 00/12/06 323 */ 324 # define pte_bits 3 325 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 326 /* 327 * The virtual page table has to cover the entire implemented address space within 328 * a region even though not all of this space may be mappable. The reason for 329 * this is that the Access bit and Dirty bit fault handlers perform 330 * non-speculative accesses to the virtual page table, so the address range of the 331 * virtual page table itself needs to be covered by virtual page table. 332 */ 333 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 334 # define POW2(n) (1ULL << (n)) 335 336 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 337 338 if (impl_va_bits < 51 || impl_va_bits > 61) 339 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 340 /* 341 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 342 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 343 * the test makes sure that our mapped space doesn't overlap the 344 * unimplemented hole in the middle of the region. 345 */ 346 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 347 (mapped_space_bits > impl_va_bits - 1)) 348 panic("Cannot build a big enough virtual-linear page table" 349 " to cover mapped address space.\n" 350 " Try using a smaller page size.\n"); 351 352 353 /* place the VMLPT at the end of each page-table mapped region: */ 354 pta = POW2(61) - POW2(vmlpt_bits); 355 356 /* 357 * Set the (virtually mapped linear) page table address. Bit 358 * 8 selects between the short and long format, bits 2-7 the 359 * size of the table, and bit 0 whether the VHPT walker is 360 * enabled. 361 */ 362 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 363 364 ia64_tlb_init(); 365 366 #ifdef CONFIG_HUGETLB_PAGE 367 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 368 ia64_srlz_d(); 369 #endif 370 } 371 372 #ifdef CONFIG_VIRTUAL_MEM_MAP 373 int vmemmap_find_next_valid_pfn(int node, int i) 374 { 375 unsigned long end_address, hole_next_pfn; 376 unsigned long stop_address; 377 pg_data_t *pgdat = NODE_DATA(node); 378 379 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 380 end_address = PAGE_ALIGN(end_address); 381 382 stop_address = (unsigned long) &vmem_map[ 383 pgdat->node_start_pfn + pgdat->node_spanned_pages]; 384 385 do { 386 pgd_t *pgd; 387 pud_t *pud; 388 pmd_t *pmd; 389 pte_t *pte; 390 391 pgd = pgd_offset_k(end_address); 392 if (pgd_none(*pgd)) { 393 end_address += PGDIR_SIZE; 394 continue; 395 } 396 397 pud = pud_offset(pgd, end_address); 398 if (pud_none(*pud)) { 399 end_address += PUD_SIZE; 400 continue; 401 } 402 403 pmd = pmd_offset(pud, end_address); 404 if (pmd_none(*pmd)) { 405 end_address += PMD_SIZE; 406 continue; 407 } 408 409 pte = pte_offset_kernel(pmd, end_address); 410 retry_pte: 411 if (pte_none(*pte)) { 412 end_address += PAGE_SIZE; 413 pte++; 414 if ((end_address < stop_address) && 415 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 416 goto retry_pte; 417 continue; 418 } 419 /* Found next valid vmem_map page */ 420 break; 421 } while (end_address < stop_address); 422 423 end_address = min(end_address, stop_address); 424 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 425 hole_next_pfn = end_address / sizeof(struct page); 426 return hole_next_pfn - pgdat->node_start_pfn; 427 } 428 429 int __init 430 create_mem_map_page_table (u64 start, u64 end, void *arg) 431 { 432 unsigned long address, start_page, end_page; 433 struct page *map_start, *map_end; 434 int node; 435 pgd_t *pgd; 436 pud_t *pud; 437 pmd_t *pmd; 438 pte_t *pte; 439 440 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 441 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 442 443 start_page = (unsigned long) map_start & PAGE_MASK; 444 end_page = PAGE_ALIGN((unsigned long) map_end); 445 node = paddr_to_nid(__pa(start)); 446 447 for (address = start_page; address < end_page; address += PAGE_SIZE) { 448 pgd = pgd_offset_k(address); 449 if (pgd_none(*pgd)) 450 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 451 pud = pud_offset(pgd, address); 452 453 if (pud_none(*pud)) 454 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 455 pmd = pmd_offset(pud, address); 456 457 if (pmd_none(*pmd)) 458 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 459 pte = pte_offset_kernel(pmd, address); 460 461 if (pte_none(*pte)) 462 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 463 PAGE_KERNEL)); 464 } 465 return 0; 466 } 467 468 struct memmap_init_callback_data { 469 struct page *start; 470 struct page *end; 471 int nid; 472 unsigned long zone; 473 }; 474 475 static int __meminit 476 virtual_memmap_init (u64 start, u64 end, void *arg) 477 { 478 struct memmap_init_callback_data *args; 479 struct page *map_start, *map_end; 480 481 args = (struct memmap_init_callback_data *) arg; 482 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 483 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 484 485 if (map_start < args->start) 486 map_start = args->start; 487 if (map_end > args->end) 488 map_end = args->end; 489 490 /* 491 * We have to initialize "out of bounds" struct page elements that fit completely 492 * on the same pages that were allocated for the "in bounds" elements because they 493 * may be referenced later (and found to be "reserved"). 494 */ 495 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 496 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 497 / sizeof(struct page)); 498 499 if (map_start < map_end) 500 memmap_init_zone((unsigned long)(map_end - map_start), 501 args->nid, args->zone, page_to_pfn(map_start), 502 MEMMAP_EARLY); 503 return 0; 504 } 505 506 void __meminit 507 memmap_init (unsigned long size, int nid, unsigned long zone, 508 unsigned long start_pfn) 509 { 510 if (!vmem_map) 511 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 512 else { 513 struct page *start; 514 struct memmap_init_callback_data args; 515 516 start = pfn_to_page(start_pfn); 517 args.start = start; 518 args.end = start + size; 519 args.nid = nid; 520 args.zone = zone; 521 522 efi_memmap_walk(virtual_memmap_init, &args); 523 } 524 } 525 526 int 527 ia64_pfn_valid (unsigned long pfn) 528 { 529 char byte; 530 struct page *pg = pfn_to_page(pfn); 531 532 return (__get_user(byte, (char __user *) pg) == 0) 533 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 534 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 535 } 536 EXPORT_SYMBOL(ia64_pfn_valid); 537 538 int __init 539 find_largest_hole (u64 start, u64 end, void *arg) 540 { 541 u64 *max_gap = arg; 542 543 static u64 last_end = PAGE_OFFSET; 544 545 /* NOTE: this algorithm assumes efi memmap table is ordered */ 546 547 if (*max_gap < (start - last_end)) 548 *max_gap = start - last_end; 549 last_end = end; 550 return 0; 551 } 552 553 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 554 555 int __init 556 register_active_ranges(u64 start, u64 end, void *arg) 557 { 558 int nid = paddr_to_nid(__pa(start)); 559 560 if (nid < 0) 561 nid = 0; 562 #ifdef CONFIG_KEXEC 563 if (start > crashk_res.start && start < crashk_res.end) 564 start = crashk_res.end; 565 if (end > crashk_res.start && end < crashk_res.end) 566 end = crashk_res.start; 567 #endif 568 569 if (start < end) 570 add_active_range(nid, __pa(start) >> PAGE_SHIFT, 571 __pa(end) >> PAGE_SHIFT); 572 return 0; 573 } 574 575 static int __init 576 count_reserved_pages (u64 start, u64 end, void *arg) 577 { 578 unsigned long num_reserved = 0; 579 unsigned long *count = arg; 580 581 for (; start < end; start += PAGE_SIZE) 582 if (PageReserved(virt_to_page(start))) 583 ++num_reserved; 584 *count += num_reserved; 585 return 0; 586 } 587 588 int 589 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg) 590 { 591 unsigned long pfn_start, pfn_end; 592 #ifdef CONFIG_FLATMEM 593 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 594 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 595 #else 596 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 597 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 598 #endif 599 min_low_pfn = min(min_low_pfn, pfn_start); 600 max_low_pfn = max(max_low_pfn, pfn_end); 601 return 0; 602 } 603 604 /* 605 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 606 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 607 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 608 * useful for performance testing, but conceivably could also come in handy for debugging 609 * purposes. 610 */ 611 612 static int nolwsys __initdata; 613 614 static int __init 615 nolwsys_setup (char *s) 616 { 617 nolwsys = 1; 618 return 1; 619 } 620 621 __setup("nolwsys", nolwsys_setup); 622 623 void __init 624 mem_init (void) 625 { 626 long reserved_pages, codesize, datasize, initsize; 627 pg_data_t *pgdat; 628 int i; 629 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; 630 631 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 632 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 633 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 634 635 #ifdef CONFIG_PCI 636 /* 637 * This needs to be called _after_ the command line has been parsed but _before_ 638 * any drivers that may need the PCI DMA interface are initialized or bootmem has 639 * been freed. 640 */ 641 platform_dma_init(); 642 #endif 643 644 #ifdef CONFIG_FLATMEM 645 if (!mem_map) 646 BUG(); 647 max_mapnr = max_low_pfn; 648 #endif 649 650 high_memory = __va(max_low_pfn * PAGE_SIZE); 651 652 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); 653 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); 654 kclist_add(&kcore_kernel, _stext, _end - _stext); 655 656 for_each_online_pgdat(pgdat) 657 if (pgdat->bdata->node_bootmem_map) 658 totalram_pages += free_all_bootmem_node(pgdat); 659 660 reserved_pages = 0; 661 efi_memmap_walk(count_reserved_pages, &reserved_pages); 662 663 codesize = (unsigned long) _etext - (unsigned long) _stext; 664 datasize = (unsigned long) _edata - (unsigned long) _etext; 665 initsize = (unsigned long) __init_end - (unsigned long) __init_begin; 666 667 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " 668 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), 669 num_physpages << (PAGE_SHIFT - 10), codesize >> 10, 670 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); 671 672 673 /* 674 * For fsyscall entrpoints with no light-weight handler, use the ordinary 675 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 676 * code can tell them apart. 677 */ 678 for (i = 0; i < NR_syscalls; ++i) { 679 extern unsigned long fsyscall_table[NR_syscalls]; 680 extern unsigned long sys_call_table[NR_syscalls]; 681 682 if (!fsyscall_table[i] || nolwsys) 683 fsyscall_table[i] = sys_call_table[i] | 1; 684 } 685 setup_gate(); 686 687 #ifdef CONFIG_IA32_SUPPORT 688 ia32_mem_init(); 689 #endif 690 } 691 692 #ifdef CONFIG_MEMORY_HOTPLUG 693 void online_page(struct page *page) 694 { 695 ClearPageReserved(page); 696 init_page_count(page); 697 __free_page(page); 698 totalram_pages++; 699 num_physpages++; 700 } 701 702 int arch_add_memory(int nid, u64 start, u64 size) 703 { 704 pg_data_t *pgdat; 705 struct zone *zone; 706 unsigned long start_pfn = start >> PAGE_SHIFT; 707 unsigned long nr_pages = size >> PAGE_SHIFT; 708 int ret; 709 710 pgdat = NODE_DATA(nid); 711 712 zone = pgdat->node_zones + ZONE_NORMAL; 713 ret = __add_pages(zone, start_pfn, nr_pages); 714 715 if (ret) 716 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 717 __FUNCTION__, ret); 718 719 return ret; 720 } 721 #ifdef CONFIG_MEMORY_HOTREMOVE 722 int remove_memory(u64 start, u64 size) 723 { 724 unsigned long start_pfn, end_pfn; 725 unsigned long timeout = 120 * HZ; 726 int ret; 727 start_pfn = start >> PAGE_SHIFT; 728 end_pfn = start_pfn + (size >> PAGE_SHIFT); 729 ret = offline_pages(start_pfn, end_pfn, timeout); 730 if (ret) 731 goto out; 732 /* we can free mem_map at this point */ 733 out: 734 return ret; 735 } 736 EXPORT_SYMBOL_GPL(remove_memory); 737 #endif /* CONFIG_MEMORY_HOTREMOVE */ 738 #endif 739