xref: /openbmc/linux/arch/ia64/mm/init.c (revision 5b4cb650)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 
11 #include <linux/dma-noncoherent.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmzone.h>
18 #include <linux/module.h>
19 #include <linux/personality.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/swap.h>
23 #include <linux/proc_fs.h>
24 #include <linux/bitops.h>
25 #include <linux/kexec.h>
26 
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/machvec.h>
30 #include <asm/numa.h>
31 #include <asm/patch.h>
32 #include <asm/pgalloc.h>
33 #include <asm/sal.h>
34 #include <asm/sections.h>
35 #include <asm/tlb.h>
36 #include <linux/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39 
40 extern void ia64_tlb_init (void);
41 
42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
43 
44 #ifdef CONFIG_VIRTUAL_MEM_MAP
45 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 EXPORT_SYMBOL(VMALLOC_END);
47 struct page *vmem_map;
48 EXPORT_SYMBOL(vmem_map);
49 #endif
50 
51 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
52 EXPORT_SYMBOL(zero_page_memmap_ptr);
53 
54 void
55 __ia64_sync_icache_dcache (pte_t pte)
56 {
57 	unsigned long addr;
58 	struct page *page;
59 
60 	page = pte_page(pte);
61 	addr = (unsigned long) page_address(page);
62 
63 	if (test_bit(PG_arch_1, &page->flags))
64 		return;				/* i-cache is already coherent with d-cache */
65 
66 	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
67 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
68 }
69 
70 /*
71  * Since DMA is i-cache coherent, any (complete) pages that were written via
72  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
73  * flush them when they get mapped into an executable vm-area.
74  */
75 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
76 		size_t size, enum dma_data_direction dir)
77 {
78 	unsigned long pfn = PHYS_PFN(paddr);
79 
80 	do {
81 		set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
82 	} while (++pfn <= PHYS_PFN(paddr + size - 1));
83 }
84 
85 inline void
86 ia64_set_rbs_bot (void)
87 {
88 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
89 
90 	if (stack_size > MAX_USER_STACK_SIZE)
91 		stack_size = MAX_USER_STACK_SIZE;
92 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
93 }
94 
95 /*
96  * This performs some platform-dependent address space initialization.
97  * On IA-64, we want to setup the VM area for the register backing
98  * store (which grows upwards) and install the gateway page which is
99  * used for signal trampolines, etc.
100  */
101 void
102 ia64_init_addr_space (void)
103 {
104 	struct vm_area_struct *vma;
105 
106 	ia64_set_rbs_bot();
107 
108 	/*
109 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
110 	 * the problem.  When the process attempts to write to the register backing store
111 	 * for the first time, it will get a SEGFAULT in this case.
112 	 */
113 	vma = vm_area_alloc(current->mm);
114 	if (vma) {
115 		vma_set_anonymous(vma);
116 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
117 		vma->vm_end = vma->vm_start + PAGE_SIZE;
118 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
119 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
120 		down_write(&current->mm->mmap_sem);
121 		if (insert_vm_struct(current->mm, vma)) {
122 			up_write(&current->mm->mmap_sem);
123 			vm_area_free(vma);
124 			return;
125 		}
126 		up_write(&current->mm->mmap_sem);
127 	}
128 
129 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
130 	if (!(current->personality & MMAP_PAGE_ZERO)) {
131 		vma = vm_area_alloc(current->mm);
132 		if (vma) {
133 			vma_set_anonymous(vma);
134 			vma->vm_end = PAGE_SIZE;
135 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
136 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
137 					VM_DONTEXPAND | VM_DONTDUMP;
138 			down_write(&current->mm->mmap_sem);
139 			if (insert_vm_struct(current->mm, vma)) {
140 				up_write(&current->mm->mmap_sem);
141 				vm_area_free(vma);
142 				return;
143 			}
144 			up_write(&current->mm->mmap_sem);
145 		}
146 	}
147 }
148 
149 void
150 free_initmem (void)
151 {
152 	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
153 			   -1, "unused kernel");
154 }
155 
156 void __init
157 free_initrd_mem (unsigned long start, unsigned long end)
158 {
159 	/*
160 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
161 	 * Thus EFI and the kernel may have different page sizes. It is
162 	 * therefore possible to have the initrd share the same page as
163 	 * the end of the kernel (given current setup).
164 	 *
165 	 * To avoid freeing/using the wrong page (kernel sized) we:
166 	 *	- align up the beginning of initrd
167 	 *	- align down the end of initrd
168 	 *
169 	 *  |             |
170 	 *  |=============| a000
171 	 *  |             |
172 	 *  |             |
173 	 *  |             | 9000
174 	 *  |/////////////|
175 	 *  |/////////////|
176 	 *  |=============| 8000
177 	 *  |///INITRD////|
178 	 *  |/////////////|
179 	 *  |/////////////| 7000
180 	 *  |             |
181 	 *  |KKKKKKKKKKKKK|
182 	 *  |=============| 6000
183 	 *  |KKKKKKKKKKKKK|
184 	 *  |KKKKKKKKKKKKK|
185 	 *  K=kernel using 8KB pages
186 	 *
187 	 * In this example, we must free page 8000 ONLY. So we must align up
188 	 * initrd_start and keep initrd_end as is.
189 	 */
190 	start = PAGE_ALIGN(start);
191 	end = end & PAGE_MASK;
192 
193 	if (start < end)
194 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
195 
196 	for (; start < end; start += PAGE_SIZE) {
197 		if (!virt_addr_valid(start))
198 			continue;
199 		free_reserved_page(virt_to_page(start));
200 	}
201 }
202 
203 /*
204  * This installs a clean page in the kernel's page table.
205  */
206 static struct page * __init
207 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
208 {
209 	pgd_t *pgd;
210 	pud_t *pud;
211 	pmd_t *pmd;
212 	pte_t *pte;
213 
214 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
215 
216 	{
217 		pud = pud_alloc(&init_mm, pgd, address);
218 		if (!pud)
219 			goto out;
220 		pmd = pmd_alloc(&init_mm, pud, address);
221 		if (!pmd)
222 			goto out;
223 		pte = pte_alloc_kernel(pmd, address);
224 		if (!pte)
225 			goto out;
226 		if (!pte_none(*pte))
227 			goto out;
228 		set_pte(pte, mk_pte(page, pgprot));
229 	}
230   out:
231 	/* no need for flush_tlb */
232 	return page;
233 }
234 
235 static void __init
236 setup_gate (void)
237 {
238 	struct page *page;
239 
240 	/*
241 	 * Map the gate page twice: once read-only to export the ELF
242 	 * headers etc. and once execute-only page to enable
243 	 * privilege-promotion via "epc":
244 	 */
245 	page = virt_to_page(ia64_imva(__start_gate_section));
246 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
247 #ifdef HAVE_BUGGY_SEGREL
248 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
249 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
250 #else
251 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
252 	/* Fill in the holes (if any) with read-only zero pages: */
253 	{
254 		unsigned long addr;
255 
256 		for (addr = GATE_ADDR + PAGE_SIZE;
257 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
258 		     addr += PAGE_SIZE)
259 		{
260 			put_kernel_page(ZERO_PAGE(0), addr,
261 					PAGE_READONLY);
262 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
263 					PAGE_READONLY);
264 		}
265 	}
266 #endif
267 	ia64_patch_gate();
268 }
269 
270 static struct vm_area_struct gate_vma;
271 
272 static int __init gate_vma_init(void)
273 {
274 	vma_init(&gate_vma, NULL);
275 	gate_vma.vm_start = FIXADDR_USER_START;
276 	gate_vma.vm_end = FIXADDR_USER_END;
277 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
278 	gate_vma.vm_page_prot = __P101;
279 
280 	return 0;
281 }
282 __initcall(gate_vma_init);
283 
284 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
285 {
286 	return &gate_vma;
287 }
288 
289 int in_gate_area_no_mm(unsigned long addr)
290 {
291 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
292 		return 1;
293 	return 0;
294 }
295 
296 int in_gate_area(struct mm_struct *mm, unsigned long addr)
297 {
298 	return in_gate_area_no_mm(addr);
299 }
300 
301 void ia64_mmu_init(void *my_cpu_data)
302 {
303 	unsigned long pta, impl_va_bits;
304 	extern void tlb_init(void);
305 
306 #ifdef CONFIG_DISABLE_VHPT
307 #	define VHPT_ENABLE_BIT	0
308 #else
309 #	define VHPT_ENABLE_BIT	1
310 #endif
311 
312 	/*
313 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
314 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
315 	 * virtual address space are implemented but if we pick a large enough page size
316 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
317 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
318 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
319 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
320 	 * address space to not permit mappings that would overlap with the VMLPT.
321 	 * --davidm 00/12/06
322 	 */
323 #	define pte_bits			3
324 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
325 	/*
326 	 * The virtual page table has to cover the entire implemented address space within
327 	 * a region even though not all of this space may be mappable.  The reason for
328 	 * this is that the Access bit and Dirty bit fault handlers perform
329 	 * non-speculative accesses to the virtual page table, so the address range of the
330 	 * virtual page table itself needs to be covered by virtual page table.
331 	 */
332 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
333 #	define POW2(n)			(1ULL << (n))
334 
335 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
336 
337 	if (impl_va_bits < 51 || impl_va_bits > 61)
338 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
339 	/*
340 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
341 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
342 	 * the test makes sure that our mapped space doesn't overlap the
343 	 * unimplemented hole in the middle of the region.
344 	 */
345 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
346 	    (mapped_space_bits > impl_va_bits - 1))
347 		panic("Cannot build a big enough virtual-linear page table"
348 		      " to cover mapped address space.\n"
349 		      " Try using a smaller page size.\n");
350 
351 
352 	/* place the VMLPT at the end of each page-table mapped region: */
353 	pta = POW2(61) - POW2(vmlpt_bits);
354 
355 	/*
356 	 * Set the (virtually mapped linear) page table address.  Bit
357 	 * 8 selects between the short and long format, bits 2-7 the
358 	 * size of the table, and bit 0 whether the VHPT walker is
359 	 * enabled.
360 	 */
361 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
362 
363 	ia64_tlb_init();
364 
365 #ifdef	CONFIG_HUGETLB_PAGE
366 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
367 	ia64_srlz_d();
368 #endif
369 }
370 
371 #ifdef CONFIG_VIRTUAL_MEM_MAP
372 int vmemmap_find_next_valid_pfn(int node, int i)
373 {
374 	unsigned long end_address, hole_next_pfn;
375 	unsigned long stop_address;
376 	pg_data_t *pgdat = NODE_DATA(node);
377 
378 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
379 	end_address = PAGE_ALIGN(end_address);
380 	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
381 
382 	do {
383 		pgd_t *pgd;
384 		pud_t *pud;
385 		pmd_t *pmd;
386 		pte_t *pte;
387 
388 		pgd = pgd_offset_k(end_address);
389 		if (pgd_none(*pgd)) {
390 			end_address += PGDIR_SIZE;
391 			continue;
392 		}
393 
394 		pud = pud_offset(pgd, end_address);
395 		if (pud_none(*pud)) {
396 			end_address += PUD_SIZE;
397 			continue;
398 		}
399 
400 		pmd = pmd_offset(pud, end_address);
401 		if (pmd_none(*pmd)) {
402 			end_address += PMD_SIZE;
403 			continue;
404 		}
405 
406 		pte = pte_offset_kernel(pmd, end_address);
407 retry_pte:
408 		if (pte_none(*pte)) {
409 			end_address += PAGE_SIZE;
410 			pte++;
411 			if ((end_address < stop_address) &&
412 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
413 				goto retry_pte;
414 			continue;
415 		}
416 		/* Found next valid vmem_map page */
417 		break;
418 	} while (end_address < stop_address);
419 
420 	end_address = min(end_address, stop_address);
421 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
422 	hole_next_pfn = end_address / sizeof(struct page);
423 	return hole_next_pfn - pgdat->node_start_pfn;
424 }
425 
426 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
427 {
428 	unsigned long address, start_page, end_page;
429 	struct page *map_start, *map_end;
430 	int node;
431 	pgd_t *pgd;
432 	pud_t *pud;
433 	pmd_t *pmd;
434 	pte_t *pte;
435 
436 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
437 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
438 
439 	start_page = (unsigned long) map_start & PAGE_MASK;
440 	end_page = PAGE_ALIGN((unsigned long) map_end);
441 	node = paddr_to_nid(__pa(start));
442 
443 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
444 		pgd = pgd_offset_k(address);
445 		if (pgd_none(*pgd))
446 			pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
447 		pud = pud_offset(pgd, address);
448 
449 		if (pud_none(*pud))
450 			pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
451 		pmd = pmd_offset(pud, address);
452 
453 		if (pmd_none(*pmd))
454 			pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
455 		pte = pte_offset_kernel(pmd, address);
456 
457 		if (pte_none(*pte))
458 			set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
459 					     PAGE_KERNEL));
460 	}
461 	return 0;
462 }
463 
464 struct memmap_init_callback_data {
465 	struct page *start;
466 	struct page *end;
467 	int nid;
468 	unsigned long zone;
469 };
470 
471 static int __meminit
472 virtual_memmap_init(u64 start, u64 end, void *arg)
473 {
474 	struct memmap_init_callback_data *args;
475 	struct page *map_start, *map_end;
476 
477 	args = (struct memmap_init_callback_data *) arg;
478 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
479 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
480 
481 	if (map_start < args->start)
482 		map_start = args->start;
483 	if (map_end > args->end)
484 		map_end = args->end;
485 
486 	/*
487 	 * We have to initialize "out of bounds" struct page elements that fit completely
488 	 * on the same pages that were allocated for the "in bounds" elements because they
489 	 * may be referenced later (and found to be "reserved").
490 	 */
491 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
492 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
493 		    / sizeof(struct page));
494 
495 	if (map_start < map_end)
496 		memmap_init_zone((unsigned long)(map_end - map_start),
497 				 args->nid, args->zone, page_to_pfn(map_start),
498 				 MEMMAP_EARLY, NULL);
499 	return 0;
500 }
501 
502 void __meminit
503 memmap_init (unsigned long size, int nid, unsigned long zone,
504 	     unsigned long start_pfn)
505 {
506 	if (!vmem_map) {
507 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
508 				NULL);
509 	} else {
510 		struct page *start;
511 		struct memmap_init_callback_data args;
512 
513 		start = pfn_to_page(start_pfn);
514 		args.start = start;
515 		args.end = start + size;
516 		args.nid = nid;
517 		args.zone = zone;
518 
519 		efi_memmap_walk(virtual_memmap_init, &args);
520 	}
521 }
522 
523 int
524 ia64_pfn_valid (unsigned long pfn)
525 {
526 	char byte;
527 	struct page *pg = pfn_to_page(pfn);
528 
529 	return     (__get_user(byte, (char __user *) pg) == 0)
530 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
531 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
532 }
533 EXPORT_SYMBOL(ia64_pfn_valid);
534 
535 int __init find_largest_hole(u64 start, u64 end, void *arg)
536 {
537 	u64 *max_gap = arg;
538 
539 	static u64 last_end = PAGE_OFFSET;
540 
541 	/* NOTE: this algorithm assumes efi memmap table is ordered */
542 
543 	if (*max_gap < (start - last_end))
544 		*max_gap = start - last_end;
545 	last_end = end;
546 	return 0;
547 }
548 
549 #endif /* CONFIG_VIRTUAL_MEM_MAP */
550 
551 int __init register_active_ranges(u64 start, u64 len, int nid)
552 {
553 	u64 end = start + len;
554 
555 #ifdef CONFIG_KEXEC
556 	if (start > crashk_res.start && start < crashk_res.end)
557 		start = crashk_res.end;
558 	if (end > crashk_res.start && end < crashk_res.end)
559 		end = crashk_res.start;
560 #endif
561 
562 	if (start < end)
563 		memblock_add_node(__pa(start), end - start, nid);
564 	return 0;
565 }
566 
567 int
568 find_max_min_low_pfn (u64 start, u64 end, void *arg)
569 {
570 	unsigned long pfn_start, pfn_end;
571 #ifdef CONFIG_FLATMEM
572 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
573 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
574 #else
575 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
576 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
577 #endif
578 	min_low_pfn = min(min_low_pfn, pfn_start);
579 	max_low_pfn = max(max_low_pfn, pfn_end);
580 	return 0;
581 }
582 
583 /*
584  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
585  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
586  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
587  * useful for performance testing, but conceivably could also come in handy for debugging
588  * purposes.
589  */
590 
591 static int nolwsys __initdata;
592 
593 static int __init
594 nolwsys_setup (char *s)
595 {
596 	nolwsys = 1;
597 	return 1;
598 }
599 
600 __setup("nolwsys", nolwsys_setup);
601 
602 void __init
603 mem_init (void)
604 {
605 	int i;
606 
607 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
608 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
609 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
610 
611 #ifdef CONFIG_PCI
612 	/*
613 	 * This needs to be called _after_ the command line has been parsed but _before_
614 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
615 	 * been freed.
616 	 */
617 	platform_dma_init();
618 #endif
619 
620 #ifdef CONFIG_FLATMEM
621 	BUG_ON(!mem_map);
622 #endif
623 
624 	set_max_mapnr(max_low_pfn);
625 	high_memory = __va(max_low_pfn * PAGE_SIZE);
626 	memblock_free_all();
627 	mem_init_print_info(NULL);
628 
629 	/*
630 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
631 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
632 	 * code can tell them apart.
633 	 */
634 	for (i = 0; i < NR_syscalls; ++i) {
635 		extern unsigned long fsyscall_table[NR_syscalls];
636 		extern unsigned long sys_call_table[NR_syscalls];
637 
638 		if (!fsyscall_table[i] || nolwsys)
639 			fsyscall_table[i] = sys_call_table[i] | 1;
640 	}
641 	setup_gate();
642 }
643 
644 #ifdef CONFIG_MEMORY_HOTPLUG
645 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
646 		bool want_memblock)
647 {
648 	unsigned long start_pfn = start >> PAGE_SHIFT;
649 	unsigned long nr_pages = size >> PAGE_SHIFT;
650 	int ret;
651 
652 	ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
653 	if (ret)
654 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
655 		       __func__,  ret);
656 
657 	return ret;
658 }
659 
660 #ifdef CONFIG_MEMORY_HOTREMOVE
661 int arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap)
662 {
663 	unsigned long start_pfn = start >> PAGE_SHIFT;
664 	unsigned long nr_pages = size >> PAGE_SHIFT;
665 	struct zone *zone;
666 	int ret;
667 
668 	zone = page_zone(pfn_to_page(start_pfn));
669 	ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
670 	if (ret)
671 		pr_warn("%s: Problem encountered in __remove_pages() as"
672 			" ret=%d\n", __func__,  ret);
673 
674 	return ret;
675 }
676 #endif
677 #endif
678