1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Initialize MMU support. 4 * 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 11 #include <linux/dma-noncoherent.h> 12 #include <linux/efi.h> 13 #include <linux/elf.h> 14 #include <linux/memblock.h> 15 #include <linux/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/mmzone.h> 18 #include <linux/module.h> 19 #include <linux/personality.h> 20 #include <linux/reboot.h> 21 #include <linux/slab.h> 22 #include <linux/swap.h> 23 #include <linux/proc_fs.h> 24 #include <linux/bitops.h> 25 #include <linux/kexec.h> 26 27 #include <asm/dma.h> 28 #include <asm/io.h> 29 #include <asm/machvec.h> 30 #include <asm/numa.h> 31 #include <asm/patch.h> 32 #include <asm/pgalloc.h> 33 #include <asm/sal.h> 34 #include <asm/sections.h> 35 #include <asm/tlb.h> 36 #include <linux/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/mca.h> 39 40 extern void ia64_tlb_init (void); 41 42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 43 44 #ifdef CONFIG_VIRTUAL_MEM_MAP 45 unsigned long VMALLOC_END = VMALLOC_END_INIT; 46 EXPORT_SYMBOL(VMALLOC_END); 47 struct page *vmem_map; 48 EXPORT_SYMBOL(vmem_map); 49 #endif 50 51 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 52 EXPORT_SYMBOL(zero_page_memmap_ptr); 53 54 void 55 __ia64_sync_icache_dcache (pte_t pte) 56 { 57 unsigned long addr; 58 struct page *page; 59 60 page = pte_page(pte); 61 addr = (unsigned long) page_address(page); 62 63 if (test_bit(PG_arch_1, &page->flags)) 64 return; /* i-cache is already coherent with d-cache */ 65 66 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 67 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 68 } 69 70 /* 71 * Since DMA is i-cache coherent, any (complete) pages that were written via 72 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 73 * flush them when they get mapped into an executable vm-area. 74 */ 75 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 76 size_t size, enum dma_data_direction dir) 77 { 78 unsigned long pfn = PHYS_PFN(paddr); 79 80 do { 81 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags); 82 } while (++pfn <= PHYS_PFN(paddr + size - 1)); 83 } 84 85 inline void 86 ia64_set_rbs_bot (void) 87 { 88 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; 89 90 if (stack_size > MAX_USER_STACK_SIZE) 91 stack_size = MAX_USER_STACK_SIZE; 92 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 93 } 94 95 /* 96 * This performs some platform-dependent address space initialization. 97 * On IA-64, we want to setup the VM area for the register backing 98 * store (which grows upwards) and install the gateway page which is 99 * used for signal trampolines, etc. 100 */ 101 void 102 ia64_init_addr_space (void) 103 { 104 struct vm_area_struct *vma; 105 106 ia64_set_rbs_bot(); 107 108 /* 109 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 110 * the problem. When the process attempts to write to the register backing store 111 * for the first time, it will get a SEGFAULT in this case. 112 */ 113 vma = vm_area_alloc(current->mm); 114 if (vma) { 115 vma_set_anonymous(vma); 116 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 117 vma->vm_end = vma->vm_start + PAGE_SIZE; 118 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 119 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 120 down_write(¤t->mm->mmap_sem); 121 if (insert_vm_struct(current->mm, vma)) { 122 up_write(¤t->mm->mmap_sem); 123 vm_area_free(vma); 124 return; 125 } 126 up_write(¤t->mm->mmap_sem); 127 } 128 129 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 130 if (!(current->personality & MMAP_PAGE_ZERO)) { 131 vma = vm_area_alloc(current->mm); 132 if (vma) { 133 vma_set_anonymous(vma); 134 vma->vm_end = PAGE_SIZE; 135 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 136 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | 137 VM_DONTEXPAND | VM_DONTDUMP; 138 down_write(¤t->mm->mmap_sem); 139 if (insert_vm_struct(current->mm, vma)) { 140 up_write(¤t->mm->mmap_sem); 141 vm_area_free(vma); 142 return; 143 } 144 up_write(¤t->mm->mmap_sem); 145 } 146 } 147 } 148 149 void 150 free_initmem (void) 151 { 152 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end), 153 -1, "unused kernel"); 154 } 155 156 void __init 157 free_initrd_mem (unsigned long start, unsigned long end) 158 { 159 /* 160 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 161 * Thus EFI and the kernel may have different page sizes. It is 162 * therefore possible to have the initrd share the same page as 163 * the end of the kernel (given current setup). 164 * 165 * To avoid freeing/using the wrong page (kernel sized) we: 166 * - align up the beginning of initrd 167 * - align down the end of initrd 168 * 169 * | | 170 * |=============| a000 171 * | | 172 * | | 173 * | | 9000 174 * |/////////////| 175 * |/////////////| 176 * |=============| 8000 177 * |///INITRD////| 178 * |/////////////| 179 * |/////////////| 7000 180 * | | 181 * |KKKKKKKKKKKKK| 182 * |=============| 6000 183 * |KKKKKKKKKKKKK| 184 * |KKKKKKKKKKKKK| 185 * K=kernel using 8KB pages 186 * 187 * In this example, we must free page 8000 ONLY. So we must align up 188 * initrd_start and keep initrd_end as is. 189 */ 190 start = PAGE_ALIGN(start); 191 end = end & PAGE_MASK; 192 193 if (start < end) 194 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 195 196 for (; start < end; start += PAGE_SIZE) { 197 if (!virt_addr_valid(start)) 198 continue; 199 free_reserved_page(virt_to_page(start)); 200 } 201 } 202 203 /* 204 * This installs a clean page in the kernel's page table. 205 */ 206 static struct page * __init 207 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 208 { 209 pgd_t *pgd; 210 pud_t *pud; 211 pmd_t *pmd; 212 pte_t *pte; 213 214 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 215 216 { 217 pud = pud_alloc(&init_mm, pgd, address); 218 if (!pud) 219 goto out; 220 pmd = pmd_alloc(&init_mm, pud, address); 221 if (!pmd) 222 goto out; 223 pte = pte_alloc_kernel(pmd, address); 224 if (!pte) 225 goto out; 226 if (!pte_none(*pte)) 227 goto out; 228 set_pte(pte, mk_pte(page, pgprot)); 229 } 230 out: 231 /* no need for flush_tlb */ 232 return page; 233 } 234 235 static void __init 236 setup_gate (void) 237 { 238 struct page *page; 239 240 /* 241 * Map the gate page twice: once read-only to export the ELF 242 * headers etc. and once execute-only page to enable 243 * privilege-promotion via "epc": 244 */ 245 page = virt_to_page(ia64_imva(__start_gate_section)); 246 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 247 #ifdef HAVE_BUGGY_SEGREL 248 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); 249 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 250 #else 251 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 252 /* Fill in the holes (if any) with read-only zero pages: */ 253 { 254 unsigned long addr; 255 256 for (addr = GATE_ADDR + PAGE_SIZE; 257 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 258 addr += PAGE_SIZE) 259 { 260 put_kernel_page(ZERO_PAGE(0), addr, 261 PAGE_READONLY); 262 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 263 PAGE_READONLY); 264 } 265 } 266 #endif 267 ia64_patch_gate(); 268 } 269 270 static struct vm_area_struct gate_vma; 271 272 static int __init gate_vma_init(void) 273 { 274 vma_init(&gate_vma, NULL); 275 gate_vma.vm_start = FIXADDR_USER_START; 276 gate_vma.vm_end = FIXADDR_USER_END; 277 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 278 gate_vma.vm_page_prot = __P101; 279 280 return 0; 281 } 282 __initcall(gate_vma_init); 283 284 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 285 { 286 return &gate_vma; 287 } 288 289 int in_gate_area_no_mm(unsigned long addr) 290 { 291 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 292 return 1; 293 return 0; 294 } 295 296 int in_gate_area(struct mm_struct *mm, unsigned long addr) 297 { 298 return in_gate_area_no_mm(addr); 299 } 300 301 void ia64_mmu_init(void *my_cpu_data) 302 { 303 unsigned long pta, impl_va_bits; 304 extern void tlb_init(void); 305 306 #ifdef CONFIG_DISABLE_VHPT 307 # define VHPT_ENABLE_BIT 0 308 #else 309 # define VHPT_ENABLE_BIT 1 310 #endif 311 312 /* 313 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 314 * address space. The IA-64 architecture guarantees that at least 50 bits of 315 * virtual address space are implemented but if we pick a large enough page size 316 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 317 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 318 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 319 * problem in practice. Alternatively, we could truncate the top of the mapped 320 * address space to not permit mappings that would overlap with the VMLPT. 321 * --davidm 00/12/06 322 */ 323 # define pte_bits 3 324 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 325 /* 326 * The virtual page table has to cover the entire implemented address space within 327 * a region even though not all of this space may be mappable. The reason for 328 * this is that the Access bit and Dirty bit fault handlers perform 329 * non-speculative accesses to the virtual page table, so the address range of the 330 * virtual page table itself needs to be covered by virtual page table. 331 */ 332 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 333 # define POW2(n) (1ULL << (n)) 334 335 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 336 337 if (impl_va_bits < 51 || impl_va_bits > 61) 338 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 339 /* 340 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 341 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 342 * the test makes sure that our mapped space doesn't overlap the 343 * unimplemented hole in the middle of the region. 344 */ 345 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 346 (mapped_space_bits > impl_va_bits - 1)) 347 panic("Cannot build a big enough virtual-linear page table" 348 " to cover mapped address space.\n" 349 " Try using a smaller page size.\n"); 350 351 352 /* place the VMLPT at the end of each page-table mapped region: */ 353 pta = POW2(61) - POW2(vmlpt_bits); 354 355 /* 356 * Set the (virtually mapped linear) page table address. Bit 357 * 8 selects between the short and long format, bits 2-7 the 358 * size of the table, and bit 0 whether the VHPT walker is 359 * enabled. 360 */ 361 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 362 363 ia64_tlb_init(); 364 365 #ifdef CONFIG_HUGETLB_PAGE 366 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 367 ia64_srlz_d(); 368 #endif 369 } 370 371 #ifdef CONFIG_VIRTUAL_MEM_MAP 372 int vmemmap_find_next_valid_pfn(int node, int i) 373 { 374 unsigned long end_address, hole_next_pfn; 375 unsigned long stop_address; 376 pg_data_t *pgdat = NODE_DATA(node); 377 378 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 379 end_address = PAGE_ALIGN(end_address); 380 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)]; 381 382 do { 383 pgd_t *pgd; 384 pud_t *pud; 385 pmd_t *pmd; 386 pte_t *pte; 387 388 pgd = pgd_offset_k(end_address); 389 if (pgd_none(*pgd)) { 390 end_address += PGDIR_SIZE; 391 continue; 392 } 393 394 pud = pud_offset(pgd, end_address); 395 if (pud_none(*pud)) { 396 end_address += PUD_SIZE; 397 continue; 398 } 399 400 pmd = pmd_offset(pud, end_address); 401 if (pmd_none(*pmd)) { 402 end_address += PMD_SIZE; 403 continue; 404 } 405 406 pte = pte_offset_kernel(pmd, end_address); 407 retry_pte: 408 if (pte_none(*pte)) { 409 end_address += PAGE_SIZE; 410 pte++; 411 if ((end_address < stop_address) && 412 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 413 goto retry_pte; 414 continue; 415 } 416 /* Found next valid vmem_map page */ 417 break; 418 } while (end_address < stop_address); 419 420 end_address = min(end_address, stop_address); 421 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 422 hole_next_pfn = end_address / sizeof(struct page); 423 return hole_next_pfn - pgdat->node_start_pfn; 424 } 425 426 int __init create_mem_map_page_table(u64 start, u64 end, void *arg) 427 { 428 unsigned long address, start_page, end_page; 429 struct page *map_start, *map_end; 430 int node; 431 pgd_t *pgd; 432 pud_t *pud; 433 pmd_t *pmd; 434 pte_t *pte; 435 436 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 437 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 438 439 start_page = (unsigned long) map_start & PAGE_MASK; 440 end_page = PAGE_ALIGN((unsigned long) map_end); 441 node = paddr_to_nid(__pa(start)); 442 443 for (address = start_page; address < end_page; address += PAGE_SIZE) { 444 pgd = pgd_offset_k(address); 445 if (pgd_none(*pgd)) 446 pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)); 447 pud = pud_offset(pgd, address); 448 449 if (pud_none(*pud)) 450 pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)); 451 pmd = pmd_offset(pud, address); 452 453 if (pmd_none(*pmd)) 454 pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)); 455 pte = pte_offset_kernel(pmd, address); 456 457 if (pte_none(*pte)) 458 set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT, 459 PAGE_KERNEL)); 460 } 461 return 0; 462 } 463 464 struct memmap_init_callback_data { 465 struct page *start; 466 struct page *end; 467 int nid; 468 unsigned long zone; 469 }; 470 471 static int __meminit 472 virtual_memmap_init(u64 start, u64 end, void *arg) 473 { 474 struct memmap_init_callback_data *args; 475 struct page *map_start, *map_end; 476 477 args = (struct memmap_init_callback_data *) arg; 478 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 479 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 480 481 if (map_start < args->start) 482 map_start = args->start; 483 if (map_end > args->end) 484 map_end = args->end; 485 486 /* 487 * We have to initialize "out of bounds" struct page elements that fit completely 488 * on the same pages that were allocated for the "in bounds" elements because they 489 * may be referenced later (and found to be "reserved"). 490 */ 491 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 492 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 493 / sizeof(struct page)); 494 495 if (map_start < map_end) 496 memmap_init_zone((unsigned long)(map_end - map_start), 497 args->nid, args->zone, page_to_pfn(map_start), 498 MEMMAP_EARLY, NULL); 499 return 0; 500 } 501 502 void __meminit 503 memmap_init (unsigned long size, int nid, unsigned long zone, 504 unsigned long start_pfn) 505 { 506 if (!vmem_map) { 507 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, 508 NULL); 509 } else { 510 struct page *start; 511 struct memmap_init_callback_data args; 512 513 start = pfn_to_page(start_pfn); 514 args.start = start; 515 args.end = start + size; 516 args.nid = nid; 517 args.zone = zone; 518 519 efi_memmap_walk(virtual_memmap_init, &args); 520 } 521 } 522 523 int 524 ia64_pfn_valid (unsigned long pfn) 525 { 526 char byte; 527 struct page *pg = pfn_to_page(pfn); 528 529 return (__get_user(byte, (char __user *) pg) == 0) 530 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 531 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 532 } 533 EXPORT_SYMBOL(ia64_pfn_valid); 534 535 int __init find_largest_hole(u64 start, u64 end, void *arg) 536 { 537 u64 *max_gap = arg; 538 539 static u64 last_end = PAGE_OFFSET; 540 541 /* NOTE: this algorithm assumes efi memmap table is ordered */ 542 543 if (*max_gap < (start - last_end)) 544 *max_gap = start - last_end; 545 last_end = end; 546 return 0; 547 } 548 549 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 550 551 int __init register_active_ranges(u64 start, u64 len, int nid) 552 { 553 u64 end = start + len; 554 555 #ifdef CONFIG_KEXEC 556 if (start > crashk_res.start && start < crashk_res.end) 557 start = crashk_res.end; 558 if (end > crashk_res.start && end < crashk_res.end) 559 end = crashk_res.start; 560 #endif 561 562 if (start < end) 563 memblock_add_node(__pa(start), end - start, nid); 564 return 0; 565 } 566 567 int 568 find_max_min_low_pfn (u64 start, u64 end, void *arg) 569 { 570 unsigned long pfn_start, pfn_end; 571 #ifdef CONFIG_FLATMEM 572 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 573 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 574 #else 575 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 576 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 577 #endif 578 min_low_pfn = min(min_low_pfn, pfn_start); 579 max_low_pfn = max(max_low_pfn, pfn_end); 580 return 0; 581 } 582 583 /* 584 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 585 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 586 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 587 * useful for performance testing, but conceivably could also come in handy for debugging 588 * purposes. 589 */ 590 591 static int nolwsys __initdata; 592 593 static int __init 594 nolwsys_setup (char *s) 595 { 596 nolwsys = 1; 597 return 1; 598 } 599 600 __setup("nolwsys", nolwsys_setup); 601 602 void __init 603 mem_init (void) 604 { 605 int i; 606 607 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 608 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 609 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 610 611 #ifdef CONFIG_PCI 612 /* 613 * This needs to be called _after_ the command line has been parsed but _before_ 614 * any drivers that may need the PCI DMA interface are initialized or bootmem has 615 * been freed. 616 */ 617 platform_dma_init(); 618 #endif 619 620 #ifdef CONFIG_FLATMEM 621 BUG_ON(!mem_map); 622 #endif 623 624 set_max_mapnr(max_low_pfn); 625 high_memory = __va(max_low_pfn * PAGE_SIZE); 626 memblock_free_all(); 627 mem_init_print_info(NULL); 628 629 /* 630 * For fsyscall entrpoints with no light-weight handler, use the ordinary 631 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 632 * code can tell them apart. 633 */ 634 for (i = 0; i < NR_syscalls; ++i) { 635 extern unsigned long fsyscall_table[NR_syscalls]; 636 extern unsigned long sys_call_table[NR_syscalls]; 637 638 if (!fsyscall_table[i] || nolwsys) 639 fsyscall_table[i] = sys_call_table[i] | 1; 640 } 641 setup_gate(); 642 } 643 644 #ifdef CONFIG_MEMORY_HOTPLUG 645 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap, 646 bool want_memblock) 647 { 648 unsigned long start_pfn = start >> PAGE_SHIFT; 649 unsigned long nr_pages = size >> PAGE_SHIFT; 650 int ret; 651 652 ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock); 653 if (ret) 654 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 655 __func__, ret); 656 657 return ret; 658 } 659 660 #ifdef CONFIG_MEMORY_HOTREMOVE 661 int arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap) 662 { 663 unsigned long start_pfn = start >> PAGE_SHIFT; 664 unsigned long nr_pages = size >> PAGE_SHIFT; 665 struct zone *zone; 666 int ret; 667 668 zone = page_zone(pfn_to_page(start_pfn)); 669 ret = __remove_pages(zone, start_pfn, nr_pages, altmap); 670 if (ret) 671 pr_warn("%s: Problem encountered in __remove_pages() as" 672 " ret=%d\n", __func__, ret); 673 674 return ret; 675 } 676 #endif 677 #endif 678