1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/mm.h> 14 #include <linux/mmzone.h> 15 #include <linux/module.h> 16 #include <linux/personality.h> 17 #include <linux/reboot.h> 18 #include <linux/slab.h> 19 #include <linux/swap.h> 20 #include <linux/proc_fs.h> 21 #include <linux/bitops.h> 22 #include <linux/kexec.h> 23 24 #include <asm/dma.h> 25 #include <asm/io.h> 26 #include <asm/machvec.h> 27 #include <asm/numa.h> 28 #include <asm/patch.h> 29 #include <asm/pgalloc.h> 30 #include <asm/sal.h> 31 #include <asm/sections.h> 32 #include <asm/system.h> 33 #include <asm/tlb.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include <asm/mca.h> 37 #include <asm/paravirt.h> 38 39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 40 41 extern void ia64_tlb_init (void); 42 43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 44 45 #ifdef CONFIG_VIRTUAL_MEM_MAP 46 unsigned long VMALLOC_END = VMALLOC_END_INIT; 47 EXPORT_SYMBOL(VMALLOC_END); 48 struct page *vmem_map; 49 EXPORT_SYMBOL(vmem_map); 50 #endif 51 52 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 53 EXPORT_SYMBOL(zero_page_memmap_ptr); 54 55 void 56 __ia64_sync_icache_dcache (pte_t pte) 57 { 58 unsigned long addr; 59 struct page *page; 60 61 page = pte_page(pte); 62 addr = (unsigned long) page_address(page); 63 64 if (test_bit(PG_arch_1, &page->flags)) 65 return; /* i-cache is already coherent with d-cache */ 66 67 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 68 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 69 } 70 71 /* 72 * Since DMA is i-cache coherent, any (complete) pages that were written via 73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 74 * flush them when they get mapped into an executable vm-area. 75 */ 76 void 77 dma_mark_clean(void *addr, size_t size) 78 { 79 unsigned long pg_addr, end; 80 81 pg_addr = PAGE_ALIGN((unsigned long) addr); 82 end = (unsigned long) addr + size; 83 while (pg_addr + PAGE_SIZE <= end) { 84 struct page *page = virt_to_page(pg_addr); 85 set_bit(PG_arch_1, &page->flags); 86 pg_addr += PAGE_SIZE; 87 } 88 } 89 90 inline void 91 ia64_set_rbs_bot (void) 92 { 93 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; 94 95 if (stack_size > MAX_USER_STACK_SIZE) 96 stack_size = MAX_USER_STACK_SIZE; 97 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 98 } 99 100 /* 101 * This performs some platform-dependent address space initialization. 102 * On IA-64, we want to setup the VM area for the register backing 103 * store (which grows upwards) and install the gateway page which is 104 * used for signal trampolines, etc. 105 */ 106 void 107 ia64_init_addr_space (void) 108 { 109 struct vm_area_struct *vma; 110 111 ia64_set_rbs_bot(); 112 113 /* 114 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 115 * the problem. When the process attempts to write to the register backing store 116 * for the first time, it will get a SEGFAULT in this case. 117 */ 118 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 119 if (vma) { 120 INIT_LIST_HEAD(&vma->anon_vma_chain); 121 vma->vm_mm = current->mm; 122 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 123 vma->vm_end = vma->vm_start + PAGE_SIZE; 124 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 126 down_write(¤t->mm->mmap_sem); 127 if (insert_vm_struct(current->mm, vma)) { 128 up_write(¤t->mm->mmap_sem); 129 kmem_cache_free(vm_area_cachep, vma); 130 return; 131 } 132 up_write(¤t->mm->mmap_sem); 133 } 134 135 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 136 if (!(current->personality & MMAP_PAGE_ZERO)) { 137 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 138 if (vma) { 139 INIT_LIST_HEAD(&vma->anon_vma_chain); 140 vma->vm_mm = current->mm; 141 vma->vm_end = PAGE_SIZE; 142 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 143 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; 144 down_write(¤t->mm->mmap_sem); 145 if (insert_vm_struct(current->mm, vma)) { 146 up_write(¤t->mm->mmap_sem); 147 kmem_cache_free(vm_area_cachep, vma); 148 return; 149 } 150 up_write(¤t->mm->mmap_sem); 151 } 152 } 153 } 154 155 void 156 free_initmem (void) 157 { 158 unsigned long addr, eaddr; 159 160 addr = (unsigned long) ia64_imva(__init_begin); 161 eaddr = (unsigned long) ia64_imva(__init_end); 162 while (addr < eaddr) { 163 ClearPageReserved(virt_to_page(addr)); 164 init_page_count(virt_to_page(addr)); 165 free_page(addr); 166 ++totalram_pages; 167 addr += PAGE_SIZE; 168 } 169 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", 170 (__init_end - __init_begin) >> 10); 171 } 172 173 void __init 174 free_initrd_mem (unsigned long start, unsigned long end) 175 { 176 struct page *page; 177 /* 178 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 179 * Thus EFI and the kernel may have different page sizes. It is 180 * therefore possible to have the initrd share the same page as 181 * the end of the kernel (given current setup). 182 * 183 * To avoid freeing/using the wrong page (kernel sized) we: 184 * - align up the beginning of initrd 185 * - align down the end of initrd 186 * 187 * | | 188 * |=============| a000 189 * | | 190 * | | 191 * | | 9000 192 * |/////////////| 193 * |/////////////| 194 * |=============| 8000 195 * |///INITRD////| 196 * |/////////////| 197 * |/////////////| 7000 198 * | | 199 * |KKKKKKKKKKKKK| 200 * |=============| 6000 201 * |KKKKKKKKKKKKK| 202 * |KKKKKKKKKKKKK| 203 * K=kernel using 8KB pages 204 * 205 * In this example, we must free page 8000 ONLY. So we must align up 206 * initrd_start and keep initrd_end as is. 207 */ 208 start = PAGE_ALIGN(start); 209 end = end & PAGE_MASK; 210 211 if (start < end) 212 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 213 214 for (; start < end; start += PAGE_SIZE) { 215 if (!virt_addr_valid(start)) 216 continue; 217 page = virt_to_page(start); 218 ClearPageReserved(page); 219 init_page_count(page); 220 free_page(start); 221 ++totalram_pages; 222 } 223 } 224 225 /* 226 * This installs a clean page in the kernel's page table. 227 */ 228 static struct page * __init 229 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 230 { 231 pgd_t *pgd; 232 pud_t *pud; 233 pmd_t *pmd; 234 pte_t *pte; 235 236 if (!PageReserved(page)) 237 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 238 page_address(page)); 239 240 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 241 242 { 243 pud = pud_alloc(&init_mm, pgd, address); 244 if (!pud) 245 goto out; 246 pmd = pmd_alloc(&init_mm, pud, address); 247 if (!pmd) 248 goto out; 249 pte = pte_alloc_kernel(pmd, address); 250 if (!pte) 251 goto out; 252 if (!pte_none(*pte)) 253 goto out; 254 set_pte(pte, mk_pte(page, pgprot)); 255 } 256 out: 257 /* no need for flush_tlb */ 258 return page; 259 } 260 261 static void __init 262 setup_gate (void) 263 { 264 void *gate_section; 265 struct page *page; 266 267 /* 268 * Map the gate page twice: once read-only to export the ELF 269 * headers etc. and once execute-only page to enable 270 * privilege-promotion via "epc": 271 */ 272 gate_section = paravirt_get_gate_section(); 273 page = virt_to_page(ia64_imva(gate_section)); 274 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 275 #ifdef HAVE_BUGGY_SEGREL 276 page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); 277 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 278 #else 279 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 280 /* Fill in the holes (if any) with read-only zero pages: */ 281 { 282 unsigned long addr; 283 284 for (addr = GATE_ADDR + PAGE_SIZE; 285 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 286 addr += PAGE_SIZE) 287 { 288 put_kernel_page(ZERO_PAGE(0), addr, 289 PAGE_READONLY); 290 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 291 PAGE_READONLY); 292 } 293 } 294 #endif 295 ia64_patch_gate(); 296 } 297 298 void __devinit 299 ia64_mmu_init (void *my_cpu_data) 300 { 301 unsigned long pta, impl_va_bits; 302 extern void __devinit tlb_init (void); 303 304 #ifdef CONFIG_DISABLE_VHPT 305 # define VHPT_ENABLE_BIT 0 306 #else 307 # define VHPT_ENABLE_BIT 1 308 #endif 309 310 /* 311 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 312 * address space. The IA-64 architecture guarantees that at least 50 bits of 313 * virtual address space are implemented but if we pick a large enough page size 314 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 315 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 316 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 317 * problem in practice. Alternatively, we could truncate the top of the mapped 318 * address space to not permit mappings that would overlap with the VMLPT. 319 * --davidm 00/12/06 320 */ 321 # define pte_bits 3 322 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 323 /* 324 * The virtual page table has to cover the entire implemented address space within 325 * a region even though not all of this space may be mappable. The reason for 326 * this is that the Access bit and Dirty bit fault handlers perform 327 * non-speculative accesses to the virtual page table, so the address range of the 328 * virtual page table itself needs to be covered by virtual page table. 329 */ 330 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 331 # define POW2(n) (1ULL << (n)) 332 333 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 334 335 if (impl_va_bits < 51 || impl_va_bits > 61) 336 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 337 /* 338 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 339 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 340 * the test makes sure that our mapped space doesn't overlap the 341 * unimplemented hole in the middle of the region. 342 */ 343 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 344 (mapped_space_bits > impl_va_bits - 1)) 345 panic("Cannot build a big enough virtual-linear page table" 346 " to cover mapped address space.\n" 347 " Try using a smaller page size.\n"); 348 349 350 /* place the VMLPT at the end of each page-table mapped region: */ 351 pta = POW2(61) - POW2(vmlpt_bits); 352 353 /* 354 * Set the (virtually mapped linear) page table address. Bit 355 * 8 selects between the short and long format, bits 2-7 the 356 * size of the table, and bit 0 whether the VHPT walker is 357 * enabled. 358 */ 359 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 360 361 ia64_tlb_init(); 362 363 #ifdef CONFIG_HUGETLB_PAGE 364 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 365 ia64_srlz_d(); 366 #endif 367 } 368 369 #ifdef CONFIG_VIRTUAL_MEM_MAP 370 int vmemmap_find_next_valid_pfn(int node, int i) 371 { 372 unsigned long end_address, hole_next_pfn; 373 unsigned long stop_address; 374 pg_data_t *pgdat = NODE_DATA(node); 375 376 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 377 end_address = PAGE_ALIGN(end_address); 378 379 stop_address = (unsigned long) &vmem_map[ 380 pgdat->node_start_pfn + pgdat->node_spanned_pages]; 381 382 do { 383 pgd_t *pgd; 384 pud_t *pud; 385 pmd_t *pmd; 386 pte_t *pte; 387 388 pgd = pgd_offset_k(end_address); 389 if (pgd_none(*pgd)) { 390 end_address += PGDIR_SIZE; 391 continue; 392 } 393 394 pud = pud_offset(pgd, end_address); 395 if (pud_none(*pud)) { 396 end_address += PUD_SIZE; 397 continue; 398 } 399 400 pmd = pmd_offset(pud, end_address); 401 if (pmd_none(*pmd)) { 402 end_address += PMD_SIZE; 403 continue; 404 } 405 406 pte = pte_offset_kernel(pmd, end_address); 407 retry_pte: 408 if (pte_none(*pte)) { 409 end_address += PAGE_SIZE; 410 pte++; 411 if ((end_address < stop_address) && 412 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 413 goto retry_pte; 414 continue; 415 } 416 /* Found next valid vmem_map page */ 417 break; 418 } while (end_address < stop_address); 419 420 end_address = min(end_address, stop_address); 421 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 422 hole_next_pfn = end_address / sizeof(struct page); 423 return hole_next_pfn - pgdat->node_start_pfn; 424 } 425 426 int __init create_mem_map_page_table(u64 start, u64 end, void *arg) 427 { 428 unsigned long address, start_page, end_page; 429 struct page *map_start, *map_end; 430 int node; 431 pgd_t *pgd; 432 pud_t *pud; 433 pmd_t *pmd; 434 pte_t *pte; 435 436 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 437 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 438 439 start_page = (unsigned long) map_start & PAGE_MASK; 440 end_page = PAGE_ALIGN((unsigned long) map_end); 441 node = paddr_to_nid(__pa(start)); 442 443 for (address = start_page; address < end_page; address += PAGE_SIZE) { 444 pgd = pgd_offset_k(address); 445 if (pgd_none(*pgd)) 446 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 447 pud = pud_offset(pgd, address); 448 449 if (pud_none(*pud)) 450 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 451 pmd = pmd_offset(pud, address); 452 453 if (pmd_none(*pmd)) 454 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 455 pte = pte_offset_kernel(pmd, address); 456 457 if (pte_none(*pte)) 458 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 459 PAGE_KERNEL)); 460 } 461 return 0; 462 } 463 464 struct memmap_init_callback_data { 465 struct page *start; 466 struct page *end; 467 int nid; 468 unsigned long zone; 469 }; 470 471 static int __meminit 472 virtual_memmap_init(u64 start, u64 end, void *arg) 473 { 474 struct memmap_init_callback_data *args; 475 struct page *map_start, *map_end; 476 477 args = (struct memmap_init_callback_data *) arg; 478 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 479 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 480 481 if (map_start < args->start) 482 map_start = args->start; 483 if (map_end > args->end) 484 map_end = args->end; 485 486 /* 487 * We have to initialize "out of bounds" struct page elements that fit completely 488 * on the same pages that were allocated for the "in bounds" elements because they 489 * may be referenced later (and found to be "reserved"). 490 */ 491 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 492 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 493 / sizeof(struct page)); 494 495 if (map_start < map_end) 496 memmap_init_zone((unsigned long)(map_end - map_start), 497 args->nid, args->zone, page_to_pfn(map_start), 498 MEMMAP_EARLY); 499 return 0; 500 } 501 502 void __meminit 503 memmap_init (unsigned long size, int nid, unsigned long zone, 504 unsigned long start_pfn) 505 { 506 if (!vmem_map) 507 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 508 else { 509 struct page *start; 510 struct memmap_init_callback_data args; 511 512 start = pfn_to_page(start_pfn); 513 args.start = start; 514 args.end = start + size; 515 args.nid = nid; 516 args.zone = zone; 517 518 efi_memmap_walk(virtual_memmap_init, &args); 519 } 520 } 521 522 int 523 ia64_pfn_valid (unsigned long pfn) 524 { 525 char byte; 526 struct page *pg = pfn_to_page(pfn); 527 528 return (__get_user(byte, (char __user *) pg) == 0) 529 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 530 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 531 } 532 EXPORT_SYMBOL(ia64_pfn_valid); 533 534 int __init find_largest_hole(u64 start, u64 end, void *arg) 535 { 536 u64 *max_gap = arg; 537 538 static u64 last_end = PAGE_OFFSET; 539 540 /* NOTE: this algorithm assumes efi memmap table is ordered */ 541 542 if (*max_gap < (start - last_end)) 543 *max_gap = start - last_end; 544 last_end = end; 545 return 0; 546 } 547 548 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 549 550 int __init register_active_ranges(u64 start, u64 len, int nid) 551 { 552 u64 end = start + len; 553 554 #ifdef CONFIG_KEXEC 555 if (start > crashk_res.start && start < crashk_res.end) 556 start = crashk_res.end; 557 if (end > crashk_res.start && end < crashk_res.end) 558 end = crashk_res.start; 559 #endif 560 561 if (start < end) 562 add_active_range(nid, __pa(start) >> PAGE_SHIFT, 563 __pa(end) >> PAGE_SHIFT); 564 return 0; 565 } 566 567 static int __init 568 count_reserved_pages(u64 start, u64 end, void *arg) 569 { 570 unsigned long num_reserved = 0; 571 unsigned long *count = arg; 572 573 for (; start < end; start += PAGE_SIZE) 574 if (PageReserved(virt_to_page(start))) 575 ++num_reserved; 576 *count += num_reserved; 577 return 0; 578 } 579 580 int 581 find_max_min_low_pfn (u64 start, u64 end, void *arg) 582 { 583 unsigned long pfn_start, pfn_end; 584 #ifdef CONFIG_FLATMEM 585 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 586 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 587 #else 588 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 589 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 590 #endif 591 min_low_pfn = min(min_low_pfn, pfn_start); 592 max_low_pfn = max(max_low_pfn, pfn_end); 593 return 0; 594 } 595 596 /* 597 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 598 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 599 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 600 * useful for performance testing, but conceivably could also come in handy for debugging 601 * purposes. 602 */ 603 604 static int nolwsys __initdata; 605 606 static int __init 607 nolwsys_setup (char *s) 608 { 609 nolwsys = 1; 610 return 1; 611 } 612 613 __setup("nolwsys", nolwsys_setup); 614 615 void __init 616 mem_init (void) 617 { 618 long reserved_pages, codesize, datasize, initsize; 619 pg_data_t *pgdat; 620 int i; 621 622 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 623 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 624 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 625 626 #ifdef CONFIG_PCI 627 /* 628 * This needs to be called _after_ the command line has been parsed but _before_ 629 * any drivers that may need the PCI DMA interface are initialized or bootmem has 630 * been freed. 631 */ 632 platform_dma_init(); 633 #endif 634 635 #ifdef CONFIG_FLATMEM 636 BUG_ON(!mem_map); 637 max_mapnr = max_low_pfn; 638 #endif 639 640 high_memory = __va(max_low_pfn * PAGE_SIZE); 641 642 for_each_online_pgdat(pgdat) 643 if (pgdat->bdata->node_bootmem_map) 644 totalram_pages += free_all_bootmem_node(pgdat); 645 646 reserved_pages = 0; 647 efi_memmap_walk(count_reserved_pages, &reserved_pages); 648 649 codesize = (unsigned long) _etext - (unsigned long) _stext; 650 datasize = (unsigned long) _edata - (unsigned long) _etext; 651 initsize = (unsigned long) __init_end - (unsigned long) __init_begin; 652 653 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " 654 "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10), 655 num_physpages << (PAGE_SHIFT - 10), codesize >> 10, 656 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); 657 658 659 /* 660 * For fsyscall entrpoints with no light-weight handler, use the ordinary 661 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 662 * code can tell them apart. 663 */ 664 for (i = 0; i < NR_syscalls; ++i) { 665 extern unsigned long sys_call_table[NR_syscalls]; 666 unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); 667 668 if (!fsyscall_table[i] || nolwsys) 669 fsyscall_table[i] = sys_call_table[i] | 1; 670 } 671 setup_gate(); 672 } 673 674 #ifdef CONFIG_MEMORY_HOTPLUG 675 int arch_add_memory(int nid, u64 start, u64 size) 676 { 677 pg_data_t *pgdat; 678 struct zone *zone; 679 unsigned long start_pfn = start >> PAGE_SHIFT; 680 unsigned long nr_pages = size >> PAGE_SHIFT; 681 int ret; 682 683 pgdat = NODE_DATA(nid); 684 685 zone = pgdat->node_zones + ZONE_NORMAL; 686 ret = __add_pages(nid, zone, start_pfn, nr_pages); 687 688 if (ret) 689 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 690 __func__, ret); 691 692 return ret; 693 } 694 #endif 695 696 /* 697 * Even when CONFIG_IA32_SUPPORT is not enabled it is 698 * useful to have the Linux/x86 domain registered to 699 * avoid an attempted module load when emulators call 700 * personality(PER_LINUX32). This saves several milliseconds 701 * on each such call. 702 */ 703 static struct exec_domain ia32_exec_domain; 704 705 static int __init 706 per_linux32_init(void) 707 { 708 ia32_exec_domain.name = "Linux/x86"; 709 ia32_exec_domain.handler = NULL; 710 ia32_exec_domain.pers_low = PER_LINUX32; 711 ia32_exec_domain.pers_high = PER_LINUX32; 712 ia32_exec_domain.signal_map = default_exec_domain.signal_map; 713 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; 714 register_exec_domain(&ia32_exec_domain); 715 716 return 0; 717 } 718 719 __initcall(per_linux32_init); 720