xref: /openbmc/linux/arch/ia64/mm/init.c (revision 565d76cb)
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23 
24 #include <asm/dma.h>
25 #include <asm/io.h>
26 #include <asm/machvec.h>
27 #include <asm/numa.h>
28 #include <asm/patch.h>
29 #include <asm/pgalloc.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38 
39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
40 
41 extern void ia64_tlb_init (void);
42 
43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
44 
45 #ifdef CONFIG_VIRTUAL_MEM_MAP
46 unsigned long VMALLOC_END = VMALLOC_END_INIT;
47 EXPORT_SYMBOL(VMALLOC_END);
48 struct page *vmem_map;
49 EXPORT_SYMBOL(vmem_map);
50 #endif
51 
52 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
53 EXPORT_SYMBOL(zero_page_memmap_ptr);
54 
55 void
56 __ia64_sync_icache_dcache (pte_t pte)
57 {
58 	unsigned long addr;
59 	struct page *page;
60 
61 	page = pte_page(pte);
62 	addr = (unsigned long) page_address(page);
63 
64 	if (test_bit(PG_arch_1, &page->flags))
65 		return;				/* i-cache is already coherent with d-cache */
66 
67 	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
68 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
69 }
70 
71 /*
72  * Since DMA is i-cache coherent, any (complete) pages that were written via
73  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74  * flush them when they get mapped into an executable vm-area.
75  */
76 void
77 dma_mark_clean(void *addr, size_t size)
78 {
79 	unsigned long pg_addr, end;
80 
81 	pg_addr = PAGE_ALIGN((unsigned long) addr);
82 	end = (unsigned long) addr + size;
83 	while (pg_addr + PAGE_SIZE <= end) {
84 		struct page *page = virt_to_page(pg_addr);
85 		set_bit(PG_arch_1, &page->flags);
86 		pg_addr += PAGE_SIZE;
87 	}
88 }
89 
90 inline void
91 ia64_set_rbs_bot (void)
92 {
93 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
94 
95 	if (stack_size > MAX_USER_STACK_SIZE)
96 		stack_size = MAX_USER_STACK_SIZE;
97 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
98 }
99 
100 /*
101  * This performs some platform-dependent address space initialization.
102  * On IA-64, we want to setup the VM area for the register backing
103  * store (which grows upwards) and install the gateway page which is
104  * used for signal trampolines, etc.
105  */
106 void
107 ia64_init_addr_space (void)
108 {
109 	struct vm_area_struct *vma;
110 
111 	ia64_set_rbs_bot();
112 
113 	/*
114 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
115 	 * the problem.  When the process attempts to write to the register backing store
116 	 * for the first time, it will get a SEGFAULT in this case.
117 	 */
118 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
119 	if (vma) {
120 		INIT_LIST_HEAD(&vma->anon_vma_chain);
121 		vma->vm_mm = current->mm;
122 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
123 		vma->vm_end = vma->vm_start + PAGE_SIZE;
124 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
125 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
126 		down_write(&current->mm->mmap_sem);
127 		if (insert_vm_struct(current->mm, vma)) {
128 			up_write(&current->mm->mmap_sem);
129 			kmem_cache_free(vm_area_cachep, vma);
130 			return;
131 		}
132 		up_write(&current->mm->mmap_sem);
133 	}
134 
135 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
136 	if (!(current->personality & MMAP_PAGE_ZERO)) {
137 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
138 		if (vma) {
139 			INIT_LIST_HEAD(&vma->anon_vma_chain);
140 			vma->vm_mm = current->mm;
141 			vma->vm_end = PAGE_SIZE;
142 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
143 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
144 			down_write(&current->mm->mmap_sem);
145 			if (insert_vm_struct(current->mm, vma)) {
146 				up_write(&current->mm->mmap_sem);
147 				kmem_cache_free(vm_area_cachep, vma);
148 				return;
149 			}
150 			up_write(&current->mm->mmap_sem);
151 		}
152 	}
153 }
154 
155 void
156 free_initmem (void)
157 {
158 	unsigned long addr, eaddr;
159 
160 	addr = (unsigned long) ia64_imva(__init_begin);
161 	eaddr = (unsigned long) ia64_imva(__init_end);
162 	while (addr < eaddr) {
163 		ClearPageReserved(virt_to_page(addr));
164 		init_page_count(virt_to_page(addr));
165 		free_page(addr);
166 		++totalram_pages;
167 		addr += PAGE_SIZE;
168 	}
169 	printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
170 	       (__init_end - __init_begin) >> 10);
171 }
172 
173 void __init
174 free_initrd_mem (unsigned long start, unsigned long end)
175 {
176 	struct page *page;
177 	/*
178 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
179 	 * Thus EFI and the kernel may have different page sizes. It is
180 	 * therefore possible to have the initrd share the same page as
181 	 * the end of the kernel (given current setup).
182 	 *
183 	 * To avoid freeing/using the wrong page (kernel sized) we:
184 	 *	- align up the beginning of initrd
185 	 *	- align down the end of initrd
186 	 *
187 	 *  |             |
188 	 *  |=============| a000
189 	 *  |             |
190 	 *  |             |
191 	 *  |             | 9000
192 	 *  |/////////////|
193 	 *  |/////////////|
194 	 *  |=============| 8000
195 	 *  |///INITRD////|
196 	 *  |/////////////|
197 	 *  |/////////////| 7000
198 	 *  |             |
199 	 *  |KKKKKKKKKKKKK|
200 	 *  |=============| 6000
201 	 *  |KKKKKKKKKKKKK|
202 	 *  |KKKKKKKKKKKKK|
203 	 *  K=kernel using 8KB pages
204 	 *
205 	 * In this example, we must free page 8000 ONLY. So we must align up
206 	 * initrd_start and keep initrd_end as is.
207 	 */
208 	start = PAGE_ALIGN(start);
209 	end = end & PAGE_MASK;
210 
211 	if (start < end)
212 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
213 
214 	for (; start < end; start += PAGE_SIZE) {
215 		if (!virt_addr_valid(start))
216 			continue;
217 		page = virt_to_page(start);
218 		ClearPageReserved(page);
219 		init_page_count(page);
220 		free_page(start);
221 		++totalram_pages;
222 	}
223 }
224 
225 /*
226  * This installs a clean page in the kernel's page table.
227  */
228 static struct page * __init
229 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
230 {
231 	pgd_t *pgd;
232 	pud_t *pud;
233 	pmd_t *pmd;
234 	pte_t *pte;
235 
236 	if (!PageReserved(page))
237 		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
238 		       page_address(page));
239 
240 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
241 
242 	{
243 		pud = pud_alloc(&init_mm, pgd, address);
244 		if (!pud)
245 			goto out;
246 		pmd = pmd_alloc(&init_mm, pud, address);
247 		if (!pmd)
248 			goto out;
249 		pte = pte_alloc_kernel(pmd, address);
250 		if (!pte)
251 			goto out;
252 		if (!pte_none(*pte))
253 			goto out;
254 		set_pte(pte, mk_pte(page, pgprot));
255 	}
256   out:
257 	/* no need for flush_tlb */
258 	return page;
259 }
260 
261 static void __init
262 setup_gate (void)
263 {
264 	void *gate_section;
265 	struct page *page;
266 
267 	/*
268 	 * Map the gate page twice: once read-only to export the ELF
269 	 * headers etc. and once execute-only page to enable
270 	 * privilege-promotion via "epc":
271 	 */
272 	gate_section = paravirt_get_gate_section();
273 	page = virt_to_page(ia64_imva(gate_section));
274 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
275 #ifdef HAVE_BUGGY_SEGREL
276 	page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
277 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
278 #else
279 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
280 	/* Fill in the holes (if any) with read-only zero pages: */
281 	{
282 		unsigned long addr;
283 
284 		for (addr = GATE_ADDR + PAGE_SIZE;
285 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
286 		     addr += PAGE_SIZE)
287 		{
288 			put_kernel_page(ZERO_PAGE(0), addr,
289 					PAGE_READONLY);
290 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
291 					PAGE_READONLY);
292 		}
293 	}
294 #endif
295 	ia64_patch_gate();
296 }
297 
298 void __devinit
299 ia64_mmu_init (void *my_cpu_data)
300 {
301 	unsigned long pta, impl_va_bits;
302 	extern void __devinit tlb_init (void);
303 
304 #ifdef CONFIG_DISABLE_VHPT
305 #	define VHPT_ENABLE_BIT	0
306 #else
307 #	define VHPT_ENABLE_BIT	1
308 #endif
309 
310 	/*
311 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
312 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
313 	 * virtual address space are implemented but if we pick a large enough page size
314 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
315 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
316 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
317 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
318 	 * address space to not permit mappings that would overlap with the VMLPT.
319 	 * --davidm 00/12/06
320 	 */
321 #	define pte_bits			3
322 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
323 	/*
324 	 * The virtual page table has to cover the entire implemented address space within
325 	 * a region even though not all of this space may be mappable.  The reason for
326 	 * this is that the Access bit and Dirty bit fault handlers perform
327 	 * non-speculative accesses to the virtual page table, so the address range of the
328 	 * virtual page table itself needs to be covered by virtual page table.
329 	 */
330 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
331 #	define POW2(n)			(1ULL << (n))
332 
333 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
334 
335 	if (impl_va_bits < 51 || impl_va_bits > 61)
336 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
337 	/*
338 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
339 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
340 	 * the test makes sure that our mapped space doesn't overlap the
341 	 * unimplemented hole in the middle of the region.
342 	 */
343 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
344 	    (mapped_space_bits > impl_va_bits - 1))
345 		panic("Cannot build a big enough virtual-linear page table"
346 		      " to cover mapped address space.\n"
347 		      " Try using a smaller page size.\n");
348 
349 
350 	/* place the VMLPT at the end of each page-table mapped region: */
351 	pta = POW2(61) - POW2(vmlpt_bits);
352 
353 	/*
354 	 * Set the (virtually mapped linear) page table address.  Bit
355 	 * 8 selects between the short and long format, bits 2-7 the
356 	 * size of the table, and bit 0 whether the VHPT walker is
357 	 * enabled.
358 	 */
359 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
360 
361 	ia64_tlb_init();
362 
363 #ifdef	CONFIG_HUGETLB_PAGE
364 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
365 	ia64_srlz_d();
366 #endif
367 }
368 
369 #ifdef CONFIG_VIRTUAL_MEM_MAP
370 int vmemmap_find_next_valid_pfn(int node, int i)
371 {
372 	unsigned long end_address, hole_next_pfn;
373 	unsigned long stop_address;
374 	pg_data_t *pgdat = NODE_DATA(node);
375 
376 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
377 	end_address = PAGE_ALIGN(end_address);
378 
379 	stop_address = (unsigned long) &vmem_map[
380 		pgdat->node_start_pfn + pgdat->node_spanned_pages];
381 
382 	do {
383 		pgd_t *pgd;
384 		pud_t *pud;
385 		pmd_t *pmd;
386 		pte_t *pte;
387 
388 		pgd = pgd_offset_k(end_address);
389 		if (pgd_none(*pgd)) {
390 			end_address += PGDIR_SIZE;
391 			continue;
392 		}
393 
394 		pud = pud_offset(pgd, end_address);
395 		if (pud_none(*pud)) {
396 			end_address += PUD_SIZE;
397 			continue;
398 		}
399 
400 		pmd = pmd_offset(pud, end_address);
401 		if (pmd_none(*pmd)) {
402 			end_address += PMD_SIZE;
403 			continue;
404 		}
405 
406 		pte = pte_offset_kernel(pmd, end_address);
407 retry_pte:
408 		if (pte_none(*pte)) {
409 			end_address += PAGE_SIZE;
410 			pte++;
411 			if ((end_address < stop_address) &&
412 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
413 				goto retry_pte;
414 			continue;
415 		}
416 		/* Found next valid vmem_map page */
417 		break;
418 	} while (end_address < stop_address);
419 
420 	end_address = min(end_address, stop_address);
421 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
422 	hole_next_pfn = end_address / sizeof(struct page);
423 	return hole_next_pfn - pgdat->node_start_pfn;
424 }
425 
426 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
427 {
428 	unsigned long address, start_page, end_page;
429 	struct page *map_start, *map_end;
430 	int node;
431 	pgd_t *pgd;
432 	pud_t *pud;
433 	pmd_t *pmd;
434 	pte_t *pte;
435 
436 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
437 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
438 
439 	start_page = (unsigned long) map_start & PAGE_MASK;
440 	end_page = PAGE_ALIGN((unsigned long) map_end);
441 	node = paddr_to_nid(__pa(start));
442 
443 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
444 		pgd = pgd_offset_k(address);
445 		if (pgd_none(*pgd))
446 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
447 		pud = pud_offset(pgd, address);
448 
449 		if (pud_none(*pud))
450 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451 		pmd = pmd_offset(pud, address);
452 
453 		if (pmd_none(*pmd))
454 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455 		pte = pte_offset_kernel(pmd, address);
456 
457 		if (pte_none(*pte))
458 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
459 					     PAGE_KERNEL));
460 	}
461 	return 0;
462 }
463 
464 struct memmap_init_callback_data {
465 	struct page *start;
466 	struct page *end;
467 	int nid;
468 	unsigned long zone;
469 };
470 
471 static int __meminit
472 virtual_memmap_init(u64 start, u64 end, void *arg)
473 {
474 	struct memmap_init_callback_data *args;
475 	struct page *map_start, *map_end;
476 
477 	args = (struct memmap_init_callback_data *) arg;
478 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
479 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
480 
481 	if (map_start < args->start)
482 		map_start = args->start;
483 	if (map_end > args->end)
484 		map_end = args->end;
485 
486 	/*
487 	 * We have to initialize "out of bounds" struct page elements that fit completely
488 	 * on the same pages that were allocated for the "in bounds" elements because they
489 	 * may be referenced later (and found to be "reserved").
490 	 */
491 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
492 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
493 		    / sizeof(struct page));
494 
495 	if (map_start < map_end)
496 		memmap_init_zone((unsigned long)(map_end - map_start),
497 				 args->nid, args->zone, page_to_pfn(map_start),
498 				 MEMMAP_EARLY);
499 	return 0;
500 }
501 
502 void __meminit
503 memmap_init (unsigned long size, int nid, unsigned long zone,
504 	     unsigned long start_pfn)
505 {
506 	if (!vmem_map)
507 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
508 	else {
509 		struct page *start;
510 		struct memmap_init_callback_data args;
511 
512 		start = pfn_to_page(start_pfn);
513 		args.start = start;
514 		args.end = start + size;
515 		args.nid = nid;
516 		args.zone = zone;
517 
518 		efi_memmap_walk(virtual_memmap_init, &args);
519 	}
520 }
521 
522 int
523 ia64_pfn_valid (unsigned long pfn)
524 {
525 	char byte;
526 	struct page *pg = pfn_to_page(pfn);
527 
528 	return     (__get_user(byte, (char __user *) pg) == 0)
529 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
530 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
531 }
532 EXPORT_SYMBOL(ia64_pfn_valid);
533 
534 int __init find_largest_hole(u64 start, u64 end, void *arg)
535 {
536 	u64 *max_gap = arg;
537 
538 	static u64 last_end = PAGE_OFFSET;
539 
540 	/* NOTE: this algorithm assumes efi memmap table is ordered */
541 
542 	if (*max_gap < (start - last_end))
543 		*max_gap = start - last_end;
544 	last_end = end;
545 	return 0;
546 }
547 
548 #endif /* CONFIG_VIRTUAL_MEM_MAP */
549 
550 int __init register_active_ranges(u64 start, u64 len, int nid)
551 {
552 	u64 end = start + len;
553 
554 #ifdef CONFIG_KEXEC
555 	if (start > crashk_res.start && start < crashk_res.end)
556 		start = crashk_res.end;
557 	if (end > crashk_res.start && end < crashk_res.end)
558 		end = crashk_res.start;
559 #endif
560 
561 	if (start < end)
562 		add_active_range(nid, __pa(start) >> PAGE_SHIFT,
563 			__pa(end) >> PAGE_SHIFT);
564 	return 0;
565 }
566 
567 static int __init
568 count_reserved_pages(u64 start, u64 end, void *arg)
569 {
570 	unsigned long num_reserved = 0;
571 	unsigned long *count = arg;
572 
573 	for (; start < end; start += PAGE_SIZE)
574 		if (PageReserved(virt_to_page(start)))
575 			++num_reserved;
576 	*count += num_reserved;
577 	return 0;
578 }
579 
580 int
581 find_max_min_low_pfn (u64 start, u64 end, void *arg)
582 {
583 	unsigned long pfn_start, pfn_end;
584 #ifdef CONFIG_FLATMEM
585 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
586 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
587 #else
588 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
589 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
590 #endif
591 	min_low_pfn = min(min_low_pfn, pfn_start);
592 	max_low_pfn = max(max_low_pfn, pfn_end);
593 	return 0;
594 }
595 
596 /*
597  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
598  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
599  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
600  * useful for performance testing, but conceivably could also come in handy for debugging
601  * purposes.
602  */
603 
604 static int nolwsys __initdata;
605 
606 static int __init
607 nolwsys_setup (char *s)
608 {
609 	nolwsys = 1;
610 	return 1;
611 }
612 
613 __setup("nolwsys", nolwsys_setup);
614 
615 void __init
616 mem_init (void)
617 {
618 	long reserved_pages, codesize, datasize, initsize;
619 	pg_data_t *pgdat;
620 	int i;
621 
622 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
623 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
624 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
625 
626 #ifdef CONFIG_PCI
627 	/*
628 	 * This needs to be called _after_ the command line has been parsed but _before_
629 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
630 	 * been freed.
631 	 */
632 	platform_dma_init();
633 #endif
634 
635 #ifdef CONFIG_FLATMEM
636 	BUG_ON(!mem_map);
637 	max_mapnr = max_low_pfn;
638 #endif
639 
640 	high_memory = __va(max_low_pfn * PAGE_SIZE);
641 
642 	for_each_online_pgdat(pgdat)
643 		if (pgdat->bdata->node_bootmem_map)
644 			totalram_pages += free_all_bootmem_node(pgdat);
645 
646 	reserved_pages = 0;
647 	efi_memmap_walk(count_reserved_pages, &reserved_pages);
648 
649 	codesize =  (unsigned long) _etext - (unsigned long) _stext;
650 	datasize =  (unsigned long) _edata - (unsigned long) _etext;
651 	initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
652 
653 	printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
654 	       "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
655 	       num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
656 	       reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
657 
658 
659 	/*
660 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
661 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
662 	 * code can tell them apart.
663 	 */
664 	for (i = 0; i < NR_syscalls; ++i) {
665 		extern unsigned long sys_call_table[NR_syscalls];
666 		unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
667 
668 		if (!fsyscall_table[i] || nolwsys)
669 			fsyscall_table[i] = sys_call_table[i] | 1;
670 	}
671 	setup_gate();
672 }
673 
674 #ifdef CONFIG_MEMORY_HOTPLUG
675 int arch_add_memory(int nid, u64 start, u64 size)
676 {
677 	pg_data_t *pgdat;
678 	struct zone *zone;
679 	unsigned long start_pfn = start >> PAGE_SHIFT;
680 	unsigned long nr_pages = size >> PAGE_SHIFT;
681 	int ret;
682 
683 	pgdat = NODE_DATA(nid);
684 
685 	zone = pgdat->node_zones + ZONE_NORMAL;
686 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
687 
688 	if (ret)
689 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
690 		       __func__,  ret);
691 
692 	return ret;
693 }
694 #endif
695 
696 /*
697  * Even when CONFIG_IA32_SUPPORT is not enabled it is
698  * useful to have the Linux/x86 domain registered to
699  * avoid an attempted module load when emulators call
700  * personality(PER_LINUX32). This saves several milliseconds
701  * on each such call.
702  */
703 static struct exec_domain ia32_exec_domain;
704 
705 static int __init
706 per_linux32_init(void)
707 {
708 	ia32_exec_domain.name = "Linux/x86";
709 	ia32_exec_domain.handler = NULL;
710 	ia32_exec_domain.pers_low = PER_LINUX32;
711 	ia32_exec_domain.pers_high = PER_LINUX32;
712 	ia32_exec_domain.signal_map = default_exec_domain.signal_map;
713 	ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
714 	register_exec_domain(&ia32_exec_domain);
715 
716 	return 0;
717 }
718 
719 __initcall(per_linux32_init);
720