1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/mm.h> 14 #include <linux/mmzone.h> 15 #include <linux/module.h> 16 #include <linux/personality.h> 17 #include <linux/reboot.h> 18 #include <linux/slab.h> 19 #include <linux/swap.h> 20 #include <linux/proc_fs.h> 21 #include <linux/bitops.h> 22 #include <linux/kexec.h> 23 24 #include <asm/a.out.h> 25 #include <asm/dma.h> 26 #include <asm/ia32.h> 27 #include <asm/io.h> 28 #include <asm/machvec.h> 29 #include <asm/numa.h> 30 #include <asm/patch.h> 31 #include <asm/pgalloc.h> 32 #include <asm/sal.h> 33 #include <asm/sections.h> 34 #include <asm/system.h> 35 #include <asm/tlb.h> 36 #include <asm/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/mca.h> 39 40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 41 42 extern void ia64_tlb_init (void); 43 44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 45 46 #ifdef CONFIG_VIRTUAL_MEM_MAP 47 unsigned long vmalloc_end = VMALLOC_END_INIT; 48 EXPORT_SYMBOL(vmalloc_end); 49 struct page *vmem_map; 50 EXPORT_SYMBOL(vmem_map); 51 #endif 52 53 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 54 EXPORT_SYMBOL(zero_page_memmap_ptr); 55 56 void 57 __ia64_sync_icache_dcache (pte_t pte) 58 { 59 unsigned long addr; 60 struct page *page; 61 62 page = pte_page(pte); 63 addr = (unsigned long) page_address(page); 64 65 if (test_bit(PG_arch_1, &page->flags)) 66 return; /* i-cache is already coherent with d-cache */ 67 68 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); 69 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 70 } 71 72 /* 73 * Since DMA is i-cache coherent, any (complete) pages that were written via 74 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 75 * flush them when they get mapped into an executable vm-area. 76 */ 77 void 78 dma_mark_clean(void *addr, size_t size) 79 { 80 unsigned long pg_addr, end; 81 82 pg_addr = PAGE_ALIGN((unsigned long) addr); 83 end = (unsigned long) addr + size; 84 while (pg_addr + PAGE_SIZE <= end) { 85 struct page *page = virt_to_page(pg_addr); 86 set_bit(PG_arch_1, &page->flags); 87 pg_addr += PAGE_SIZE; 88 } 89 } 90 91 inline void 92 ia64_set_rbs_bot (void) 93 { 94 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; 95 96 if (stack_size > MAX_USER_STACK_SIZE) 97 stack_size = MAX_USER_STACK_SIZE; 98 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 99 } 100 101 /* 102 * This performs some platform-dependent address space initialization. 103 * On IA-64, we want to setup the VM area for the register backing 104 * store (which grows upwards) and install the gateway page which is 105 * used for signal trampolines, etc. 106 */ 107 void 108 ia64_init_addr_space (void) 109 { 110 struct vm_area_struct *vma; 111 112 ia64_set_rbs_bot(); 113 114 /* 115 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 116 * the problem. When the process attempts to write to the register backing store 117 * for the first time, it will get a SEGFAULT in this case. 118 */ 119 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 120 if (vma) { 121 vma->vm_mm = current->mm; 122 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 123 vma->vm_end = vma->vm_start + PAGE_SIZE; 124 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 126 down_write(¤t->mm->mmap_sem); 127 if (insert_vm_struct(current->mm, vma)) { 128 up_write(¤t->mm->mmap_sem); 129 kmem_cache_free(vm_area_cachep, vma); 130 return; 131 } 132 up_write(¤t->mm->mmap_sem); 133 } 134 135 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 136 if (!(current->personality & MMAP_PAGE_ZERO)) { 137 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 138 if (vma) { 139 vma->vm_mm = current->mm; 140 vma->vm_end = PAGE_SIZE; 141 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 142 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; 143 down_write(¤t->mm->mmap_sem); 144 if (insert_vm_struct(current->mm, vma)) { 145 up_write(¤t->mm->mmap_sem); 146 kmem_cache_free(vm_area_cachep, vma); 147 return; 148 } 149 up_write(¤t->mm->mmap_sem); 150 } 151 } 152 } 153 154 void 155 free_initmem (void) 156 { 157 unsigned long addr, eaddr; 158 159 addr = (unsigned long) ia64_imva(__init_begin); 160 eaddr = (unsigned long) ia64_imva(__init_end); 161 while (addr < eaddr) { 162 ClearPageReserved(virt_to_page(addr)); 163 init_page_count(virt_to_page(addr)); 164 free_page(addr); 165 ++totalram_pages; 166 addr += PAGE_SIZE; 167 } 168 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", 169 (__init_end - __init_begin) >> 10); 170 } 171 172 void __init 173 free_initrd_mem (unsigned long start, unsigned long end) 174 { 175 struct page *page; 176 /* 177 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 178 * Thus EFI and the kernel may have different page sizes. It is 179 * therefore possible to have the initrd share the same page as 180 * the end of the kernel (given current setup). 181 * 182 * To avoid freeing/using the wrong page (kernel sized) we: 183 * - align up the beginning of initrd 184 * - align down the end of initrd 185 * 186 * | | 187 * |=============| a000 188 * | | 189 * | | 190 * | | 9000 191 * |/////////////| 192 * |/////////////| 193 * |=============| 8000 194 * |///INITRD////| 195 * |/////////////| 196 * |/////////////| 7000 197 * | | 198 * |KKKKKKKKKKKKK| 199 * |=============| 6000 200 * |KKKKKKKKKKKKK| 201 * |KKKKKKKKKKKKK| 202 * K=kernel using 8KB pages 203 * 204 * In this example, we must free page 8000 ONLY. So we must align up 205 * initrd_start and keep initrd_end as is. 206 */ 207 start = PAGE_ALIGN(start); 208 end = end & PAGE_MASK; 209 210 if (start < end) 211 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 212 213 for (; start < end; start += PAGE_SIZE) { 214 if (!virt_addr_valid(start)) 215 continue; 216 page = virt_to_page(start); 217 ClearPageReserved(page); 218 init_page_count(page); 219 free_page(start); 220 ++totalram_pages; 221 } 222 } 223 224 /* 225 * This installs a clean page in the kernel's page table. 226 */ 227 static struct page * __init 228 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 229 { 230 pgd_t *pgd; 231 pud_t *pud; 232 pmd_t *pmd; 233 pte_t *pte; 234 235 if (!PageReserved(page)) 236 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 237 page_address(page)); 238 239 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 240 241 { 242 pud = pud_alloc(&init_mm, pgd, address); 243 if (!pud) 244 goto out; 245 pmd = pmd_alloc(&init_mm, pud, address); 246 if (!pmd) 247 goto out; 248 pte = pte_alloc_kernel(pmd, address); 249 if (!pte) 250 goto out; 251 if (!pte_none(*pte)) 252 goto out; 253 set_pte(pte, mk_pte(page, pgprot)); 254 } 255 out: 256 /* no need for flush_tlb */ 257 return page; 258 } 259 260 static void __init 261 setup_gate (void) 262 { 263 struct page *page; 264 265 /* 266 * Map the gate page twice: once read-only to export the ELF 267 * headers etc. and once execute-only page to enable 268 * privilege-promotion via "epc": 269 */ 270 page = virt_to_page(ia64_imva(__start_gate_section)); 271 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 272 #ifdef HAVE_BUGGY_SEGREL 273 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); 274 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 275 #else 276 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 277 /* Fill in the holes (if any) with read-only zero pages: */ 278 { 279 unsigned long addr; 280 281 for (addr = GATE_ADDR + PAGE_SIZE; 282 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 283 addr += PAGE_SIZE) 284 { 285 put_kernel_page(ZERO_PAGE(0), addr, 286 PAGE_READONLY); 287 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 288 PAGE_READONLY); 289 } 290 } 291 #endif 292 ia64_patch_gate(); 293 } 294 295 void __devinit 296 ia64_mmu_init (void *my_cpu_data) 297 { 298 unsigned long pta, impl_va_bits; 299 extern void __devinit tlb_init (void); 300 301 #ifdef CONFIG_DISABLE_VHPT 302 # define VHPT_ENABLE_BIT 0 303 #else 304 # define VHPT_ENABLE_BIT 1 305 #endif 306 307 /* 308 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 309 * address space. The IA-64 architecture guarantees that at least 50 bits of 310 * virtual address space are implemented but if we pick a large enough page size 311 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 312 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 313 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 314 * problem in practice. Alternatively, we could truncate the top of the mapped 315 * address space to not permit mappings that would overlap with the VMLPT. 316 * --davidm 00/12/06 317 */ 318 # define pte_bits 3 319 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 320 /* 321 * The virtual page table has to cover the entire implemented address space within 322 * a region even though not all of this space may be mappable. The reason for 323 * this is that the Access bit and Dirty bit fault handlers perform 324 * non-speculative accesses to the virtual page table, so the address range of the 325 * virtual page table itself needs to be covered by virtual page table. 326 */ 327 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 328 # define POW2(n) (1ULL << (n)) 329 330 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 331 332 if (impl_va_bits < 51 || impl_va_bits > 61) 333 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 334 /* 335 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 336 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 337 * the test makes sure that our mapped space doesn't overlap the 338 * unimplemented hole in the middle of the region. 339 */ 340 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 341 (mapped_space_bits > impl_va_bits - 1)) 342 panic("Cannot build a big enough virtual-linear page table" 343 " to cover mapped address space.\n" 344 " Try using a smaller page size.\n"); 345 346 347 /* place the VMLPT at the end of each page-table mapped region: */ 348 pta = POW2(61) - POW2(vmlpt_bits); 349 350 /* 351 * Set the (virtually mapped linear) page table address. Bit 352 * 8 selects between the short and long format, bits 2-7 the 353 * size of the table, and bit 0 whether the VHPT walker is 354 * enabled. 355 */ 356 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 357 358 ia64_tlb_init(); 359 360 #ifdef CONFIG_HUGETLB_PAGE 361 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 362 ia64_srlz_d(); 363 #endif 364 } 365 366 #ifdef CONFIG_VIRTUAL_MEM_MAP 367 int vmemmap_find_next_valid_pfn(int node, int i) 368 { 369 unsigned long end_address, hole_next_pfn; 370 unsigned long stop_address; 371 pg_data_t *pgdat = NODE_DATA(node); 372 373 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 374 end_address = PAGE_ALIGN(end_address); 375 376 stop_address = (unsigned long) &vmem_map[ 377 pgdat->node_start_pfn + pgdat->node_spanned_pages]; 378 379 do { 380 pgd_t *pgd; 381 pud_t *pud; 382 pmd_t *pmd; 383 pte_t *pte; 384 385 pgd = pgd_offset_k(end_address); 386 if (pgd_none(*pgd)) { 387 end_address += PGDIR_SIZE; 388 continue; 389 } 390 391 pud = pud_offset(pgd, end_address); 392 if (pud_none(*pud)) { 393 end_address += PUD_SIZE; 394 continue; 395 } 396 397 pmd = pmd_offset(pud, end_address); 398 if (pmd_none(*pmd)) { 399 end_address += PMD_SIZE; 400 continue; 401 } 402 403 pte = pte_offset_kernel(pmd, end_address); 404 retry_pte: 405 if (pte_none(*pte)) { 406 end_address += PAGE_SIZE; 407 pte++; 408 if ((end_address < stop_address) && 409 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 410 goto retry_pte; 411 continue; 412 } 413 /* Found next valid vmem_map page */ 414 break; 415 } while (end_address < stop_address); 416 417 end_address = min(end_address, stop_address); 418 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 419 hole_next_pfn = end_address / sizeof(struct page); 420 return hole_next_pfn - pgdat->node_start_pfn; 421 } 422 423 int __init 424 create_mem_map_page_table (u64 start, u64 end, void *arg) 425 { 426 unsigned long address, start_page, end_page; 427 struct page *map_start, *map_end; 428 int node; 429 pgd_t *pgd; 430 pud_t *pud; 431 pmd_t *pmd; 432 pte_t *pte; 433 434 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 435 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 436 437 start_page = (unsigned long) map_start & PAGE_MASK; 438 end_page = PAGE_ALIGN((unsigned long) map_end); 439 node = paddr_to_nid(__pa(start)); 440 441 for (address = start_page; address < end_page; address += PAGE_SIZE) { 442 pgd = pgd_offset_k(address); 443 if (pgd_none(*pgd)) 444 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 445 pud = pud_offset(pgd, address); 446 447 if (pud_none(*pud)) 448 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 449 pmd = pmd_offset(pud, address); 450 451 if (pmd_none(*pmd)) 452 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 453 pte = pte_offset_kernel(pmd, address); 454 455 if (pte_none(*pte)) 456 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 457 PAGE_KERNEL)); 458 } 459 return 0; 460 } 461 462 struct memmap_init_callback_data { 463 struct page *start; 464 struct page *end; 465 int nid; 466 unsigned long zone; 467 }; 468 469 static int __meminit 470 virtual_memmap_init (u64 start, u64 end, void *arg) 471 { 472 struct memmap_init_callback_data *args; 473 struct page *map_start, *map_end; 474 475 args = (struct memmap_init_callback_data *) arg; 476 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 477 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 478 479 if (map_start < args->start) 480 map_start = args->start; 481 if (map_end > args->end) 482 map_end = args->end; 483 484 /* 485 * We have to initialize "out of bounds" struct page elements that fit completely 486 * on the same pages that were allocated for the "in bounds" elements because they 487 * may be referenced later (and found to be "reserved"). 488 */ 489 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 490 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 491 / sizeof(struct page)); 492 493 if (map_start < map_end) 494 memmap_init_zone((unsigned long)(map_end - map_start), 495 args->nid, args->zone, page_to_pfn(map_start), 496 MEMMAP_EARLY); 497 return 0; 498 } 499 500 void __meminit 501 memmap_init (unsigned long size, int nid, unsigned long zone, 502 unsigned long start_pfn) 503 { 504 if (!vmem_map) 505 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 506 else { 507 struct page *start; 508 struct memmap_init_callback_data args; 509 510 start = pfn_to_page(start_pfn); 511 args.start = start; 512 args.end = start + size; 513 args.nid = nid; 514 args.zone = zone; 515 516 efi_memmap_walk(virtual_memmap_init, &args); 517 } 518 } 519 520 int 521 ia64_pfn_valid (unsigned long pfn) 522 { 523 char byte; 524 struct page *pg = pfn_to_page(pfn); 525 526 return (__get_user(byte, (char __user *) pg) == 0) 527 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 528 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 529 } 530 EXPORT_SYMBOL(ia64_pfn_valid); 531 532 int __init 533 find_largest_hole (u64 start, u64 end, void *arg) 534 { 535 u64 *max_gap = arg; 536 537 static u64 last_end = PAGE_OFFSET; 538 539 /* NOTE: this algorithm assumes efi memmap table is ordered */ 540 541 if (*max_gap < (start - last_end)) 542 *max_gap = start - last_end; 543 last_end = end; 544 return 0; 545 } 546 547 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 548 549 int __init 550 register_active_ranges(u64 start, u64 len, int nid) 551 { 552 u64 end = start + len; 553 554 #ifdef CONFIG_KEXEC 555 if (start > crashk_res.start && start < crashk_res.end) 556 start = crashk_res.end; 557 if (end > crashk_res.start && end < crashk_res.end) 558 end = crashk_res.start; 559 #endif 560 561 if (start < end) 562 add_active_range(nid, __pa(start) >> PAGE_SHIFT, 563 __pa(end) >> PAGE_SHIFT); 564 return 0; 565 } 566 567 static int __init 568 count_reserved_pages (u64 start, u64 end, void *arg) 569 { 570 unsigned long num_reserved = 0; 571 unsigned long *count = arg; 572 573 for (; start < end; start += PAGE_SIZE) 574 if (PageReserved(virt_to_page(start))) 575 ++num_reserved; 576 *count += num_reserved; 577 return 0; 578 } 579 580 int 581 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg) 582 { 583 unsigned long pfn_start, pfn_end; 584 #ifdef CONFIG_FLATMEM 585 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 586 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 587 #else 588 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 589 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 590 #endif 591 min_low_pfn = min(min_low_pfn, pfn_start); 592 max_low_pfn = max(max_low_pfn, pfn_end); 593 return 0; 594 } 595 596 /* 597 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 598 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 599 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 600 * useful for performance testing, but conceivably could also come in handy for debugging 601 * purposes. 602 */ 603 604 static int nolwsys __initdata; 605 606 static int __init 607 nolwsys_setup (char *s) 608 { 609 nolwsys = 1; 610 return 1; 611 } 612 613 __setup("nolwsys", nolwsys_setup); 614 615 void __init 616 mem_init (void) 617 { 618 long reserved_pages, codesize, datasize, initsize; 619 pg_data_t *pgdat; 620 int i; 621 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; 622 623 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 624 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 625 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 626 627 #ifdef CONFIG_PCI 628 /* 629 * This needs to be called _after_ the command line has been parsed but _before_ 630 * any drivers that may need the PCI DMA interface are initialized or bootmem has 631 * been freed. 632 */ 633 platform_dma_init(); 634 #endif 635 636 #ifdef CONFIG_FLATMEM 637 if (!mem_map) 638 BUG(); 639 max_mapnr = max_low_pfn; 640 #endif 641 642 high_memory = __va(max_low_pfn * PAGE_SIZE); 643 644 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); 645 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); 646 kclist_add(&kcore_kernel, _stext, _end - _stext); 647 648 for_each_online_pgdat(pgdat) 649 if (pgdat->bdata->node_bootmem_map) 650 totalram_pages += free_all_bootmem_node(pgdat); 651 652 reserved_pages = 0; 653 efi_memmap_walk(count_reserved_pages, &reserved_pages); 654 655 codesize = (unsigned long) _etext - (unsigned long) _stext; 656 datasize = (unsigned long) _edata - (unsigned long) _etext; 657 initsize = (unsigned long) __init_end - (unsigned long) __init_begin; 658 659 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " 660 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), 661 num_physpages << (PAGE_SHIFT - 10), codesize >> 10, 662 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); 663 664 665 /* 666 * For fsyscall entrpoints with no light-weight handler, use the ordinary 667 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 668 * code can tell them apart. 669 */ 670 for (i = 0; i < NR_syscalls; ++i) { 671 extern unsigned long fsyscall_table[NR_syscalls]; 672 extern unsigned long sys_call_table[NR_syscalls]; 673 674 if (!fsyscall_table[i] || nolwsys) 675 fsyscall_table[i] = sys_call_table[i] | 1; 676 } 677 setup_gate(); 678 679 #ifdef CONFIG_IA32_SUPPORT 680 ia32_mem_init(); 681 #endif 682 } 683 684 #ifdef CONFIG_MEMORY_HOTPLUG 685 int arch_add_memory(int nid, u64 start, u64 size) 686 { 687 pg_data_t *pgdat; 688 struct zone *zone; 689 unsigned long start_pfn = start >> PAGE_SHIFT; 690 unsigned long nr_pages = size >> PAGE_SHIFT; 691 int ret; 692 693 pgdat = NODE_DATA(nid); 694 695 zone = pgdat->node_zones + ZONE_NORMAL; 696 ret = __add_pages(zone, start_pfn, nr_pages); 697 698 if (ret) 699 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 700 __func__, ret); 701 702 return ret; 703 } 704 #ifdef CONFIG_MEMORY_HOTREMOVE 705 int remove_memory(u64 start, u64 size) 706 { 707 unsigned long start_pfn, end_pfn; 708 unsigned long timeout = 120 * HZ; 709 int ret; 710 start_pfn = start >> PAGE_SHIFT; 711 end_pfn = start_pfn + (size >> PAGE_SHIFT); 712 ret = offline_pages(start_pfn, end_pfn, timeout); 713 if (ret) 714 goto out; 715 /* we can free mem_map at this point */ 716 out: 717 return ret; 718 } 719 EXPORT_SYMBOL_GPL(remove_memory); 720 #endif /* CONFIG_MEMORY_HOTREMOVE */ 721 #endif 722 723 /* 724 * Even when CONFIG_IA32_SUPPORT is not enabled it is 725 * useful to have the Linux/x86 domain registered to 726 * avoid an attempted module load when emulators call 727 * personality(PER_LINUX32). This saves several milliseconds 728 * on each such call. 729 */ 730 static struct exec_domain ia32_exec_domain; 731 732 static int __init 733 per_linux32_init(void) 734 { 735 ia32_exec_domain.name = "Linux/x86"; 736 ia32_exec_domain.handler = NULL; 737 ia32_exec_domain.pers_low = PER_LINUX32; 738 ia32_exec_domain.pers_high = PER_LINUX32; 739 ia32_exec_domain.signal_map = default_exec_domain.signal_map; 740 ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; 741 register_exec_domain(&ia32_exec_domain); 742 743 return 0; 744 } 745 746 __initcall(per_linux32_init); 747