xref: /openbmc/linux/arch/ia64/mm/init.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 
11 #include <linux/dma-noncoherent.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28 
29 #include <asm/dma.h>
30 #include <asm/io.h>
31 #include <asm/numa.h>
32 #include <asm/patch.h>
33 #include <asm/pgalloc.h>
34 #include <asm/sal.h>
35 #include <asm/sections.h>
36 #include <asm/tlb.h>
37 #include <linux/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/mca.h>
40 
41 extern void ia64_tlb_init (void);
42 
43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
44 
45 #ifdef CONFIG_VIRTUAL_MEM_MAP
46 unsigned long VMALLOC_END = VMALLOC_END_INIT;
47 EXPORT_SYMBOL(VMALLOC_END);
48 struct page *vmem_map;
49 EXPORT_SYMBOL(vmem_map);
50 #endif
51 
52 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
53 EXPORT_SYMBOL(zero_page_memmap_ptr);
54 
55 void
56 __ia64_sync_icache_dcache (pte_t pte)
57 {
58 	unsigned long addr;
59 	struct page *page;
60 
61 	page = pte_page(pte);
62 	addr = (unsigned long) page_address(page);
63 
64 	if (test_bit(PG_arch_1, &page->flags))
65 		return;				/* i-cache is already coherent with d-cache */
66 
67 	flush_icache_range(addr, addr + page_size(page));
68 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
69 }
70 
71 /*
72  * Since DMA is i-cache coherent, any (complete) pages that were written via
73  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74  * flush them when they get mapped into an executable vm-area.
75  */
76 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
77 		enum dma_data_direction dir)
78 {
79 	unsigned long pfn = PHYS_PFN(paddr);
80 
81 	do {
82 		set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
83 	} while (++pfn <= PHYS_PFN(paddr + size - 1));
84 }
85 
86 inline void
87 ia64_set_rbs_bot (void)
88 {
89 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
90 
91 	if (stack_size > MAX_USER_STACK_SIZE)
92 		stack_size = MAX_USER_STACK_SIZE;
93 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
94 }
95 
96 /*
97  * This performs some platform-dependent address space initialization.
98  * On IA-64, we want to setup the VM area for the register backing
99  * store (which grows upwards) and install the gateway page which is
100  * used for signal trampolines, etc.
101  */
102 void
103 ia64_init_addr_space (void)
104 {
105 	struct vm_area_struct *vma;
106 
107 	ia64_set_rbs_bot();
108 
109 	/*
110 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
111 	 * the problem.  When the process attempts to write to the register backing store
112 	 * for the first time, it will get a SEGFAULT in this case.
113 	 */
114 	vma = vm_area_alloc(current->mm);
115 	if (vma) {
116 		vma_set_anonymous(vma);
117 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
118 		vma->vm_end = vma->vm_start + PAGE_SIZE;
119 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
120 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
121 		mmap_write_lock(current->mm);
122 		if (insert_vm_struct(current->mm, vma)) {
123 			mmap_write_unlock(current->mm);
124 			vm_area_free(vma);
125 			return;
126 		}
127 		mmap_write_unlock(current->mm);
128 	}
129 
130 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
131 	if (!(current->personality & MMAP_PAGE_ZERO)) {
132 		vma = vm_area_alloc(current->mm);
133 		if (vma) {
134 			vma_set_anonymous(vma);
135 			vma->vm_end = PAGE_SIZE;
136 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
137 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
138 					VM_DONTEXPAND | VM_DONTDUMP;
139 			mmap_write_lock(current->mm);
140 			if (insert_vm_struct(current->mm, vma)) {
141 				mmap_write_unlock(current->mm);
142 				vm_area_free(vma);
143 				return;
144 			}
145 			mmap_write_unlock(current->mm);
146 		}
147 	}
148 }
149 
150 void
151 free_initmem (void)
152 {
153 	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
154 			   -1, "unused kernel");
155 }
156 
157 void __init
158 free_initrd_mem (unsigned long start, unsigned long end)
159 {
160 	/*
161 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
162 	 * Thus EFI and the kernel may have different page sizes. It is
163 	 * therefore possible to have the initrd share the same page as
164 	 * the end of the kernel (given current setup).
165 	 *
166 	 * To avoid freeing/using the wrong page (kernel sized) we:
167 	 *	- align up the beginning of initrd
168 	 *	- align down the end of initrd
169 	 *
170 	 *  |             |
171 	 *  |=============| a000
172 	 *  |             |
173 	 *  |             |
174 	 *  |             | 9000
175 	 *  |/////////////|
176 	 *  |/////////////|
177 	 *  |=============| 8000
178 	 *  |///INITRD////|
179 	 *  |/////////////|
180 	 *  |/////////////| 7000
181 	 *  |             |
182 	 *  |KKKKKKKKKKKKK|
183 	 *  |=============| 6000
184 	 *  |KKKKKKKKKKKKK|
185 	 *  |KKKKKKKKKKKKK|
186 	 *  K=kernel using 8KB pages
187 	 *
188 	 * In this example, we must free page 8000 ONLY. So we must align up
189 	 * initrd_start and keep initrd_end as is.
190 	 */
191 	start = PAGE_ALIGN(start);
192 	end = end & PAGE_MASK;
193 
194 	if (start < end)
195 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
196 
197 	for (; start < end; start += PAGE_SIZE) {
198 		if (!virt_addr_valid(start))
199 			continue;
200 		free_reserved_page(virt_to_page(start));
201 	}
202 }
203 
204 /*
205  * This installs a clean page in the kernel's page table.
206  */
207 static struct page * __init
208 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
209 {
210 	pgd_t *pgd;
211 	p4d_t *p4d;
212 	pud_t *pud;
213 	pmd_t *pmd;
214 	pte_t *pte;
215 
216 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
217 
218 	{
219 		p4d = p4d_alloc(&init_mm, pgd, address);
220 		if (!p4d)
221 			goto out;
222 		pud = pud_alloc(&init_mm, p4d, address);
223 		if (!pud)
224 			goto out;
225 		pmd = pmd_alloc(&init_mm, pud, address);
226 		if (!pmd)
227 			goto out;
228 		pte = pte_alloc_kernel(pmd, address);
229 		if (!pte)
230 			goto out;
231 		if (!pte_none(*pte))
232 			goto out;
233 		set_pte(pte, mk_pte(page, pgprot));
234 	}
235   out:
236 	/* no need for flush_tlb */
237 	return page;
238 }
239 
240 static void __init
241 setup_gate (void)
242 {
243 	struct page *page;
244 
245 	/*
246 	 * Map the gate page twice: once read-only to export the ELF
247 	 * headers etc. and once execute-only page to enable
248 	 * privilege-promotion via "epc":
249 	 */
250 	page = virt_to_page(ia64_imva(__start_gate_section));
251 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
252 #ifdef HAVE_BUGGY_SEGREL
253 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
254 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
255 #else
256 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
257 	/* Fill in the holes (if any) with read-only zero pages: */
258 	{
259 		unsigned long addr;
260 
261 		for (addr = GATE_ADDR + PAGE_SIZE;
262 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
263 		     addr += PAGE_SIZE)
264 		{
265 			put_kernel_page(ZERO_PAGE(0), addr,
266 					PAGE_READONLY);
267 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
268 					PAGE_READONLY);
269 		}
270 	}
271 #endif
272 	ia64_patch_gate();
273 }
274 
275 static struct vm_area_struct gate_vma;
276 
277 static int __init gate_vma_init(void)
278 {
279 	vma_init(&gate_vma, NULL);
280 	gate_vma.vm_start = FIXADDR_USER_START;
281 	gate_vma.vm_end = FIXADDR_USER_END;
282 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
283 	gate_vma.vm_page_prot = __P101;
284 
285 	return 0;
286 }
287 __initcall(gate_vma_init);
288 
289 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
290 {
291 	return &gate_vma;
292 }
293 
294 int in_gate_area_no_mm(unsigned long addr)
295 {
296 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
297 		return 1;
298 	return 0;
299 }
300 
301 int in_gate_area(struct mm_struct *mm, unsigned long addr)
302 {
303 	return in_gate_area_no_mm(addr);
304 }
305 
306 void ia64_mmu_init(void *my_cpu_data)
307 {
308 	unsigned long pta, impl_va_bits;
309 	extern void tlb_init(void);
310 
311 #ifdef CONFIG_DISABLE_VHPT
312 #	define VHPT_ENABLE_BIT	0
313 #else
314 #	define VHPT_ENABLE_BIT	1
315 #endif
316 
317 	/*
318 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
319 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
320 	 * virtual address space are implemented but if we pick a large enough page size
321 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
322 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
323 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
324 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
325 	 * address space to not permit mappings that would overlap with the VMLPT.
326 	 * --davidm 00/12/06
327 	 */
328 #	define pte_bits			3
329 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
330 	/*
331 	 * The virtual page table has to cover the entire implemented address space within
332 	 * a region even though not all of this space may be mappable.  The reason for
333 	 * this is that the Access bit and Dirty bit fault handlers perform
334 	 * non-speculative accesses to the virtual page table, so the address range of the
335 	 * virtual page table itself needs to be covered by virtual page table.
336 	 */
337 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
338 #	define POW2(n)			(1ULL << (n))
339 
340 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
341 
342 	if (impl_va_bits < 51 || impl_va_bits > 61)
343 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
344 	/*
345 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
346 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
347 	 * the test makes sure that our mapped space doesn't overlap the
348 	 * unimplemented hole in the middle of the region.
349 	 */
350 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
351 	    (mapped_space_bits > impl_va_bits - 1))
352 		panic("Cannot build a big enough virtual-linear page table"
353 		      " to cover mapped address space.\n"
354 		      " Try using a smaller page size.\n");
355 
356 
357 	/* place the VMLPT at the end of each page-table mapped region: */
358 	pta = POW2(61) - POW2(vmlpt_bits);
359 
360 	/*
361 	 * Set the (virtually mapped linear) page table address.  Bit
362 	 * 8 selects between the short and long format, bits 2-7 the
363 	 * size of the table, and bit 0 whether the VHPT walker is
364 	 * enabled.
365 	 */
366 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
367 
368 	ia64_tlb_init();
369 
370 #ifdef	CONFIG_HUGETLB_PAGE
371 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
372 	ia64_srlz_d();
373 #endif
374 }
375 
376 #ifdef CONFIG_VIRTUAL_MEM_MAP
377 int vmemmap_find_next_valid_pfn(int node, int i)
378 {
379 	unsigned long end_address, hole_next_pfn;
380 	unsigned long stop_address;
381 	pg_data_t *pgdat = NODE_DATA(node);
382 
383 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
384 	end_address = PAGE_ALIGN(end_address);
385 	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
386 
387 	do {
388 		pgd_t *pgd;
389 		p4d_t *p4d;
390 		pud_t *pud;
391 		pmd_t *pmd;
392 		pte_t *pte;
393 
394 		pgd = pgd_offset_k(end_address);
395 		if (pgd_none(*pgd)) {
396 			end_address += PGDIR_SIZE;
397 			continue;
398 		}
399 
400 		p4d = p4d_offset(pgd, end_address);
401 		if (p4d_none(*p4d)) {
402 			end_address += P4D_SIZE;
403 			continue;
404 		}
405 
406 		pud = pud_offset(p4d, end_address);
407 		if (pud_none(*pud)) {
408 			end_address += PUD_SIZE;
409 			continue;
410 		}
411 
412 		pmd = pmd_offset(pud, end_address);
413 		if (pmd_none(*pmd)) {
414 			end_address += PMD_SIZE;
415 			continue;
416 		}
417 
418 		pte = pte_offset_kernel(pmd, end_address);
419 retry_pte:
420 		if (pte_none(*pte)) {
421 			end_address += PAGE_SIZE;
422 			pte++;
423 			if ((end_address < stop_address) &&
424 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
425 				goto retry_pte;
426 			continue;
427 		}
428 		/* Found next valid vmem_map page */
429 		break;
430 	} while (end_address < stop_address);
431 
432 	end_address = min(end_address, stop_address);
433 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
434 	hole_next_pfn = end_address / sizeof(struct page);
435 	return hole_next_pfn - pgdat->node_start_pfn;
436 }
437 
438 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
439 {
440 	unsigned long address, start_page, end_page;
441 	struct page *map_start, *map_end;
442 	int node;
443 	pgd_t *pgd;
444 	p4d_t *p4d;
445 	pud_t *pud;
446 	pmd_t *pmd;
447 	pte_t *pte;
448 
449 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
450 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
451 
452 	start_page = (unsigned long) map_start & PAGE_MASK;
453 	end_page = PAGE_ALIGN((unsigned long) map_end);
454 	node = paddr_to_nid(__pa(start));
455 
456 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
457 		pgd = pgd_offset_k(address);
458 		if (pgd_none(*pgd)) {
459 			p4d = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
460 			if (!p4d)
461 				goto err_alloc;
462 			pgd_populate(&init_mm, pgd, p4d);
463 		}
464 		p4d = p4d_offset(pgd, address);
465 
466 		if (p4d_none(*p4d)) {
467 			pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
468 			if (!pud)
469 				goto err_alloc;
470 			p4d_populate(&init_mm, p4d, pud);
471 		}
472 		pud = pud_offset(p4d, address);
473 
474 		if (pud_none(*pud)) {
475 			pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
476 			if (!pmd)
477 				goto err_alloc;
478 			pud_populate(&init_mm, pud, pmd);
479 		}
480 		pmd = pmd_offset(pud, address);
481 
482 		if (pmd_none(*pmd)) {
483 			pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
484 			if (!pte)
485 				goto err_alloc;
486 			pmd_populate_kernel(&init_mm, pmd, pte);
487 		}
488 		pte = pte_offset_kernel(pmd, address);
489 
490 		if (pte_none(*pte)) {
491 			void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
492 							 node);
493 			if (!page)
494 				goto err_alloc;
495 			set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
496 					     PAGE_KERNEL));
497 		}
498 	}
499 	return 0;
500 
501 err_alloc:
502 	panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
503 	      __func__, PAGE_SIZE, PAGE_SIZE, node);
504 	return -ENOMEM;
505 }
506 
507 struct memmap_init_callback_data {
508 	struct page *start;
509 	struct page *end;
510 	int nid;
511 	unsigned long zone;
512 };
513 
514 static int __meminit
515 virtual_memmap_init(u64 start, u64 end, void *arg)
516 {
517 	struct memmap_init_callback_data *args;
518 	struct page *map_start, *map_end;
519 
520 	args = (struct memmap_init_callback_data *) arg;
521 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
522 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
523 
524 	if (map_start < args->start)
525 		map_start = args->start;
526 	if (map_end > args->end)
527 		map_end = args->end;
528 
529 	/*
530 	 * We have to initialize "out of bounds" struct page elements that fit completely
531 	 * on the same pages that were allocated for the "in bounds" elements because they
532 	 * may be referenced later (and found to be "reserved").
533 	 */
534 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
535 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
536 		    / sizeof(struct page));
537 
538 	if (map_start < map_end)
539 		memmap_init_zone((unsigned long)(map_end - map_start),
540 				 args->nid, args->zone, page_to_pfn(map_start),
541 				 MEMMAP_EARLY, NULL);
542 	return 0;
543 }
544 
545 void __meminit
546 memmap_init (unsigned long size, int nid, unsigned long zone,
547 	     unsigned long start_pfn)
548 {
549 	if (!vmem_map) {
550 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
551 				NULL);
552 	} else {
553 		struct page *start;
554 		struct memmap_init_callback_data args;
555 
556 		start = pfn_to_page(start_pfn);
557 		args.start = start;
558 		args.end = start + size;
559 		args.nid = nid;
560 		args.zone = zone;
561 
562 		efi_memmap_walk(virtual_memmap_init, &args);
563 	}
564 }
565 
566 int
567 ia64_pfn_valid (unsigned long pfn)
568 {
569 	char byte;
570 	struct page *pg = pfn_to_page(pfn);
571 
572 	return     (__get_user(byte, (char __user *) pg) == 0)
573 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
574 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
575 }
576 EXPORT_SYMBOL(ia64_pfn_valid);
577 
578 int __init find_largest_hole(u64 start, u64 end, void *arg)
579 {
580 	u64 *max_gap = arg;
581 
582 	static u64 last_end = PAGE_OFFSET;
583 
584 	/* NOTE: this algorithm assumes efi memmap table is ordered */
585 
586 	if (*max_gap < (start - last_end))
587 		*max_gap = start - last_end;
588 	last_end = end;
589 	return 0;
590 }
591 
592 #endif /* CONFIG_VIRTUAL_MEM_MAP */
593 
594 int __init register_active_ranges(u64 start, u64 len, int nid)
595 {
596 	u64 end = start + len;
597 
598 #ifdef CONFIG_KEXEC
599 	if (start > crashk_res.start && start < crashk_res.end)
600 		start = crashk_res.end;
601 	if (end > crashk_res.start && end < crashk_res.end)
602 		end = crashk_res.start;
603 #endif
604 
605 	if (start < end)
606 		memblock_add_node(__pa(start), end - start, nid);
607 	return 0;
608 }
609 
610 int
611 find_max_min_low_pfn (u64 start, u64 end, void *arg)
612 {
613 	unsigned long pfn_start, pfn_end;
614 #ifdef CONFIG_FLATMEM
615 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
616 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
617 #else
618 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
619 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
620 #endif
621 	min_low_pfn = min(min_low_pfn, pfn_start);
622 	max_low_pfn = max(max_low_pfn, pfn_end);
623 	return 0;
624 }
625 
626 /*
627  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
628  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
629  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
630  * useful for performance testing, but conceivably could also come in handy for debugging
631  * purposes.
632  */
633 
634 static int nolwsys __initdata;
635 
636 static int __init
637 nolwsys_setup (char *s)
638 {
639 	nolwsys = 1;
640 	return 1;
641 }
642 
643 __setup("nolwsys", nolwsys_setup);
644 
645 void __init
646 mem_init (void)
647 {
648 	int i;
649 
650 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
651 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
652 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
653 
654 	/*
655 	 * This needs to be called _after_ the command line has been parsed but
656 	 * _before_ any drivers that may need the PCI DMA interface are
657 	 * initialized or bootmem has been freed.
658 	 */
659 #ifdef CONFIG_INTEL_IOMMU
660 	detect_intel_iommu();
661 	if (!iommu_detected)
662 #endif
663 #ifdef CONFIG_SWIOTLB
664 		swiotlb_init(1);
665 #endif
666 
667 #ifdef CONFIG_FLATMEM
668 	BUG_ON(!mem_map);
669 #endif
670 
671 	set_max_mapnr(max_low_pfn);
672 	high_memory = __va(max_low_pfn * PAGE_SIZE);
673 	memblock_free_all();
674 	mem_init_print_info(NULL);
675 
676 	/*
677 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
678 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
679 	 * code can tell them apart.
680 	 */
681 	for (i = 0; i < NR_syscalls; ++i) {
682 		extern unsigned long fsyscall_table[NR_syscalls];
683 		extern unsigned long sys_call_table[NR_syscalls];
684 
685 		if (!fsyscall_table[i] || nolwsys)
686 			fsyscall_table[i] = sys_call_table[i] | 1;
687 	}
688 	setup_gate();
689 }
690 
691 #ifdef CONFIG_MEMORY_HOTPLUG
692 int arch_add_memory(int nid, u64 start, u64 size,
693 		    struct mhp_params *params)
694 {
695 	unsigned long start_pfn = start >> PAGE_SHIFT;
696 	unsigned long nr_pages = size >> PAGE_SHIFT;
697 	int ret;
698 
699 	if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
700 		return -EINVAL;
701 
702 	ret = __add_pages(nid, start_pfn, nr_pages, params);
703 	if (ret)
704 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
705 		       __func__,  ret);
706 
707 	return ret;
708 }
709 
710 void arch_remove_memory(int nid, u64 start, u64 size,
711 			struct vmem_altmap *altmap)
712 {
713 	unsigned long start_pfn = start >> PAGE_SHIFT;
714 	unsigned long nr_pages = size >> PAGE_SHIFT;
715 
716 	__remove_pages(start_pfn, nr_pages, altmap);
717 }
718 #endif
719