xref: /openbmc/linux/arch/ia64/mm/init.c (revision 0edbfea5)
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24 
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 
38 extern void ia64_tlb_init (void);
39 
40 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
41 
42 #ifdef CONFIG_VIRTUAL_MEM_MAP
43 unsigned long VMALLOC_END = VMALLOC_END_INIT;
44 EXPORT_SYMBOL(VMALLOC_END);
45 struct page *vmem_map;
46 EXPORT_SYMBOL(vmem_map);
47 #endif
48 
49 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
50 EXPORT_SYMBOL(zero_page_memmap_ptr);
51 
52 void
53 __ia64_sync_icache_dcache (pte_t pte)
54 {
55 	unsigned long addr;
56 	struct page *page;
57 
58 	page = pte_page(pte);
59 	addr = (unsigned long) page_address(page);
60 
61 	if (test_bit(PG_arch_1, &page->flags))
62 		return;				/* i-cache is already coherent with d-cache */
63 
64 	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
65 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
66 }
67 
68 /*
69  * Since DMA is i-cache coherent, any (complete) pages that were written via
70  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
71  * flush them when they get mapped into an executable vm-area.
72  */
73 void
74 dma_mark_clean(void *addr, size_t size)
75 {
76 	unsigned long pg_addr, end;
77 
78 	pg_addr = PAGE_ALIGN((unsigned long) addr);
79 	end = (unsigned long) addr + size;
80 	while (pg_addr + PAGE_SIZE <= end) {
81 		struct page *page = virt_to_page(pg_addr);
82 		set_bit(PG_arch_1, &page->flags);
83 		pg_addr += PAGE_SIZE;
84 	}
85 }
86 
87 inline void
88 ia64_set_rbs_bot (void)
89 {
90 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
91 
92 	if (stack_size > MAX_USER_STACK_SIZE)
93 		stack_size = MAX_USER_STACK_SIZE;
94 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
95 }
96 
97 /*
98  * This performs some platform-dependent address space initialization.
99  * On IA-64, we want to setup the VM area for the register backing
100  * store (which grows upwards) and install the gateway page which is
101  * used for signal trampolines, etc.
102  */
103 void
104 ia64_init_addr_space (void)
105 {
106 	struct vm_area_struct *vma;
107 
108 	ia64_set_rbs_bot();
109 
110 	/*
111 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
112 	 * the problem.  When the process attempts to write to the register backing store
113 	 * for the first time, it will get a SEGFAULT in this case.
114 	 */
115 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
116 	if (vma) {
117 		INIT_LIST_HEAD(&vma->anon_vma_chain);
118 		vma->vm_mm = current->mm;
119 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
120 		vma->vm_end = vma->vm_start + PAGE_SIZE;
121 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
122 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
123 		down_write(&current->mm->mmap_sem);
124 		if (insert_vm_struct(current->mm, vma)) {
125 			up_write(&current->mm->mmap_sem);
126 			kmem_cache_free(vm_area_cachep, vma);
127 			return;
128 		}
129 		up_write(&current->mm->mmap_sem);
130 	}
131 
132 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
133 	if (!(current->personality & MMAP_PAGE_ZERO)) {
134 		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
135 		if (vma) {
136 			INIT_LIST_HEAD(&vma->anon_vma_chain);
137 			vma->vm_mm = current->mm;
138 			vma->vm_end = PAGE_SIZE;
139 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
140 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
141 					VM_DONTEXPAND | VM_DONTDUMP;
142 			down_write(&current->mm->mmap_sem);
143 			if (insert_vm_struct(current->mm, vma)) {
144 				up_write(&current->mm->mmap_sem);
145 				kmem_cache_free(vm_area_cachep, vma);
146 				return;
147 			}
148 			up_write(&current->mm->mmap_sem);
149 		}
150 	}
151 }
152 
153 void
154 free_initmem (void)
155 {
156 	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
157 			   -1, "unused kernel");
158 }
159 
160 void __init
161 free_initrd_mem (unsigned long start, unsigned long end)
162 {
163 	/*
164 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
165 	 * Thus EFI and the kernel may have different page sizes. It is
166 	 * therefore possible to have the initrd share the same page as
167 	 * the end of the kernel (given current setup).
168 	 *
169 	 * To avoid freeing/using the wrong page (kernel sized) we:
170 	 *	- align up the beginning of initrd
171 	 *	- align down the end of initrd
172 	 *
173 	 *  |             |
174 	 *  |=============| a000
175 	 *  |             |
176 	 *  |             |
177 	 *  |             | 9000
178 	 *  |/////////////|
179 	 *  |/////////////|
180 	 *  |=============| 8000
181 	 *  |///INITRD////|
182 	 *  |/////////////|
183 	 *  |/////////////| 7000
184 	 *  |             |
185 	 *  |KKKKKKKKKKKKK|
186 	 *  |=============| 6000
187 	 *  |KKKKKKKKKKKKK|
188 	 *  |KKKKKKKKKKKKK|
189 	 *  K=kernel using 8KB pages
190 	 *
191 	 * In this example, we must free page 8000 ONLY. So we must align up
192 	 * initrd_start and keep initrd_end as is.
193 	 */
194 	start = PAGE_ALIGN(start);
195 	end = end & PAGE_MASK;
196 
197 	if (start < end)
198 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
199 
200 	for (; start < end; start += PAGE_SIZE) {
201 		if (!virt_addr_valid(start))
202 			continue;
203 		free_reserved_page(virt_to_page(start));
204 	}
205 }
206 
207 /*
208  * This installs a clean page in the kernel's page table.
209  */
210 static struct page * __init
211 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
212 {
213 	pgd_t *pgd;
214 	pud_t *pud;
215 	pmd_t *pmd;
216 	pte_t *pte;
217 
218 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
219 
220 	{
221 		pud = pud_alloc(&init_mm, pgd, address);
222 		if (!pud)
223 			goto out;
224 		pmd = pmd_alloc(&init_mm, pud, address);
225 		if (!pmd)
226 			goto out;
227 		pte = pte_alloc_kernel(pmd, address);
228 		if (!pte)
229 			goto out;
230 		if (!pte_none(*pte))
231 			goto out;
232 		set_pte(pte, mk_pte(page, pgprot));
233 	}
234   out:
235 	/* no need for flush_tlb */
236 	return page;
237 }
238 
239 static void __init
240 setup_gate (void)
241 {
242 	struct page *page;
243 
244 	/*
245 	 * Map the gate page twice: once read-only to export the ELF
246 	 * headers etc. and once execute-only page to enable
247 	 * privilege-promotion via "epc":
248 	 */
249 	page = virt_to_page(ia64_imva(__start_gate_section));
250 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
251 #ifdef HAVE_BUGGY_SEGREL
252 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
253 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
254 #else
255 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
256 	/* Fill in the holes (if any) with read-only zero pages: */
257 	{
258 		unsigned long addr;
259 
260 		for (addr = GATE_ADDR + PAGE_SIZE;
261 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
262 		     addr += PAGE_SIZE)
263 		{
264 			put_kernel_page(ZERO_PAGE(0), addr,
265 					PAGE_READONLY);
266 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
267 					PAGE_READONLY);
268 		}
269 	}
270 #endif
271 	ia64_patch_gate();
272 }
273 
274 static struct vm_area_struct gate_vma;
275 
276 static int __init gate_vma_init(void)
277 {
278 	gate_vma.vm_mm = NULL;
279 	gate_vma.vm_start = FIXADDR_USER_START;
280 	gate_vma.vm_end = FIXADDR_USER_END;
281 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
282 	gate_vma.vm_page_prot = __P101;
283 
284 	return 0;
285 }
286 __initcall(gate_vma_init);
287 
288 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
289 {
290 	return &gate_vma;
291 }
292 
293 int in_gate_area_no_mm(unsigned long addr)
294 {
295 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
296 		return 1;
297 	return 0;
298 }
299 
300 int in_gate_area(struct mm_struct *mm, unsigned long addr)
301 {
302 	return in_gate_area_no_mm(addr);
303 }
304 
305 void ia64_mmu_init(void *my_cpu_data)
306 {
307 	unsigned long pta, impl_va_bits;
308 	extern void tlb_init(void);
309 
310 #ifdef CONFIG_DISABLE_VHPT
311 #	define VHPT_ENABLE_BIT	0
312 #else
313 #	define VHPT_ENABLE_BIT	1
314 #endif
315 
316 	/*
317 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
319 	 * virtual address space are implemented but if we pick a large enough page size
320 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
322 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
324 	 * address space to not permit mappings that would overlap with the VMLPT.
325 	 * --davidm 00/12/06
326 	 */
327 #	define pte_bits			3
328 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
329 	/*
330 	 * The virtual page table has to cover the entire implemented address space within
331 	 * a region even though not all of this space may be mappable.  The reason for
332 	 * this is that the Access bit and Dirty bit fault handlers perform
333 	 * non-speculative accesses to the virtual page table, so the address range of the
334 	 * virtual page table itself needs to be covered by virtual page table.
335 	 */
336 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
337 #	define POW2(n)			(1ULL << (n))
338 
339 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
340 
341 	if (impl_va_bits < 51 || impl_va_bits > 61)
342 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
343 	/*
344 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346 	 * the test makes sure that our mapped space doesn't overlap the
347 	 * unimplemented hole in the middle of the region.
348 	 */
349 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
350 	    (mapped_space_bits > impl_va_bits - 1))
351 		panic("Cannot build a big enough virtual-linear page table"
352 		      " to cover mapped address space.\n"
353 		      " Try using a smaller page size.\n");
354 
355 
356 	/* place the VMLPT at the end of each page-table mapped region: */
357 	pta = POW2(61) - POW2(vmlpt_bits);
358 
359 	/*
360 	 * Set the (virtually mapped linear) page table address.  Bit
361 	 * 8 selects between the short and long format, bits 2-7 the
362 	 * size of the table, and bit 0 whether the VHPT walker is
363 	 * enabled.
364 	 */
365 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
366 
367 	ia64_tlb_init();
368 
369 #ifdef	CONFIG_HUGETLB_PAGE
370 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
371 	ia64_srlz_d();
372 #endif
373 }
374 
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
376 int vmemmap_find_next_valid_pfn(int node, int i)
377 {
378 	unsigned long end_address, hole_next_pfn;
379 	unsigned long stop_address;
380 	pg_data_t *pgdat = NODE_DATA(node);
381 
382 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
383 	end_address = PAGE_ALIGN(end_address);
384 	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
385 
386 	do {
387 		pgd_t *pgd;
388 		pud_t *pud;
389 		pmd_t *pmd;
390 		pte_t *pte;
391 
392 		pgd = pgd_offset_k(end_address);
393 		if (pgd_none(*pgd)) {
394 			end_address += PGDIR_SIZE;
395 			continue;
396 		}
397 
398 		pud = pud_offset(pgd, end_address);
399 		if (pud_none(*pud)) {
400 			end_address += PUD_SIZE;
401 			continue;
402 		}
403 
404 		pmd = pmd_offset(pud, end_address);
405 		if (pmd_none(*pmd)) {
406 			end_address += PMD_SIZE;
407 			continue;
408 		}
409 
410 		pte = pte_offset_kernel(pmd, end_address);
411 retry_pte:
412 		if (pte_none(*pte)) {
413 			end_address += PAGE_SIZE;
414 			pte++;
415 			if ((end_address < stop_address) &&
416 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
417 				goto retry_pte;
418 			continue;
419 		}
420 		/* Found next valid vmem_map page */
421 		break;
422 	} while (end_address < stop_address);
423 
424 	end_address = min(end_address, stop_address);
425 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
426 	hole_next_pfn = end_address / sizeof(struct page);
427 	return hole_next_pfn - pgdat->node_start_pfn;
428 }
429 
430 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
431 {
432 	unsigned long address, start_page, end_page;
433 	struct page *map_start, *map_end;
434 	int node;
435 	pgd_t *pgd;
436 	pud_t *pud;
437 	pmd_t *pmd;
438 	pte_t *pte;
439 
440 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
441 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
442 
443 	start_page = (unsigned long) map_start & PAGE_MASK;
444 	end_page = PAGE_ALIGN((unsigned long) map_end);
445 	node = paddr_to_nid(__pa(start));
446 
447 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
448 		pgd = pgd_offset_k(address);
449 		if (pgd_none(*pgd))
450 			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451 		pud = pud_offset(pgd, address);
452 
453 		if (pud_none(*pud))
454 			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455 		pmd = pmd_offset(pud, address);
456 
457 		if (pmd_none(*pmd))
458 			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
459 		pte = pte_offset_kernel(pmd, address);
460 
461 		if (pte_none(*pte))
462 			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
463 					     PAGE_KERNEL));
464 	}
465 	return 0;
466 }
467 
468 struct memmap_init_callback_data {
469 	struct page *start;
470 	struct page *end;
471 	int nid;
472 	unsigned long zone;
473 };
474 
475 static int __meminit
476 virtual_memmap_init(u64 start, u64 end, void *arg)
477 {
478 	struct memmap_init_callback_data *args;
479 	struct page *map_start, *map_end;
480 
481 	args = (struct memmap_init_callback_data *) arg;
482 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
483 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
484 
485 	if (map_start < args->start)
486 		map_start = args->start;
487 	if (map_end > args->end)
488 		map_end = args->end;
489 
490 	/*
491 	 * We have to initialize "out of bounds" struct page elements that fit completely
492 	 * on the same pages that were allocated for the "in bounds" elements because they
493 	 * may be referenced later (and found to be "reserved").
494 	 */
495 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
496 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
497 		    / sizeof(struct page));
498 
499 	if (map_start < map_end)
500 		memmap_init_zone((unsigned long)(map_end - map_start),
501 				 args->nid, args->zone, page_to_pfn(map_start),
502 				 MEMMAP_EARLY);
503 	return 0;
504 }
505 
506 void __meminit
507 memmap_init (unsigned long size, int nid, unsigned long zone,
508 	     unsigned long start_pfn)
509 {
510 	if (!vmem_map)
511 		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
512 	else {
513 		struct page *start;
514 		struct memmap_init_callback_data args;
515 
516 		start = pfn_to_page(start_pfn);
517 		args.start = start;
518 		args.end = start + size;
519 		args.nid = nid;
520 		args.zone = zone;
521 
522 		efi_memmap_walk(virtual_memmap_init, &args);
523 	}
524 }
525 
526 int
527 ia64_pfn_valid (unsigned long pfn)
528 {
529 	char byte;
530 	struct page *pg = pfn_to_page(pfn);
531 
532 	return     (__get_user(byte, (char __user *) pg) == 0)
533 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
534 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
535 }
536 EXPORT_SYMBOL(ia64_pfn_valid);
537 
538 int __init find_largest_hole(u64 start, u64 end, void *arg)
539 {
540 	u64 *max_gap = arg;
541 
542 	static u64 last_end = PAGE_OFFSET;
543 
544 	/* NOTE: this algorithm assumes efi memmap table is ordered */
545 
546 	if (*max_gap < (start - last_end))
547 		*max_gap = start - last_end;
548 	last_end = end;
549 	return 0;
550 }
551 
552 #endif /* CONFIG_VIRTUAL_MEM_MAP */
553 
554 int __init register_active_ranges(u64 start, u64 len, int nid)
555 {
556 	u64 end = start + len;
557 
558 #ifdef CONFIG_KEXEC
559 	if (start > crashk_res.start && start < crashk_res.end)
560 		start = crashk_res.end;
561 	if (end > crashk_res.start && end < crashk_res.end)
562 		end = crashk_res.start;
563 #endif
564 
565 	if (start < end)
566 		memblock_add_node(__pa(start), end - start, nid);
567 	return 0;
568 }
569 
570 int
571 find_max_min_low_pfn (u64 start, u64 end, void *arg)
572 {
573 	unsigned long pfn_start, pfn_end;
574 #ifdef CONFIG_FLATMEM
575 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
576 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
577 #else
578 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
579 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
580 #endif
581 	min_low_pfn = min(min_low_pfn, pfn_start);
582 	max_low_pfn = max(max_low_pfn, pfn_end);
583 	return 0;
584 }
585 
586 /*
587  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
588  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
589  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
590  * useful for performance testing, but conceivably could also come in handy for debugging
591  * purposes.
592  */
593 
594 static int nolwsys __initdata;
595 
596 static int __init
597 nolwsys_setup (char *s)
598 {
599 	nolwsys = 1;
600 	return 1;
601 }
602 
603 __setup("nolwsys", nolwsys_setup);
604 
605 void __init
606 mem_init (void)
607 {
608 	int i;
609 
610 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
611 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
612 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
613 
614 #ifdef CONFIG_PCI
615 	/*
616 	 * This needs to be called _after_ the command line has been parsed but _before_
617 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
618 	 * been freed.
619 	 */
620 	platform_dma_init();
621 #endif
622 
623 #ifdef CONFIG_FLATMEM
624 	BUG_ON(!mem_map);
625 #endif
626 
627 	set_max_mapnr(max_low_pfn);
628 	high_memory = __va(max_low_pfn * PAGE_SIZE);
629 	free_all_bootmem();
630 	mem_init_print_info(NULL);
631 
632 	/*
633 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
634 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
635 	 * code can tell them apart.
636 	 */
637 	for (i = 0; i < NR_syscalls; ++i) {
638 		extern unsigned long fsyscall_table[NR_syscalls];
639 		extern unsigned long sys_call_table[NR_syscalls];
640 
641 		if (!fsyscall_table[i] || nolwsys)
642 			fsyscall_table[i] = sys_call_table[i] | 1;
643 	}
644 	setup_gate();
645 }
646 
647 #ifdef CONFIG_MEMORY_HOTPLUG
648 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
649 {
650 	pg_data_t *pgdat;
651 	struct zone *zone;
652 	unsigned long start_pfn = start >> PAGE_SHIFT;
653 	unsigned long nr_pages = size >> PAGE_SHIFT;
654 	int ret;
655 
656 	pgdat = NODE_DATA(nid);
657 
658 	zone = pgdat->node_zones +
659 		zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
660 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
661 
662 	if (ret)
663 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
664 		       __func__,  ret);
665 
666 	return ret;
667 }
668 
669 #ifdef CONFIG_MEMORY_HOTREMOVE
670 int arch_remove_memory(u64 start, u64 size)
671 {
672 	unsigned long start_pfn = start >> PAGE_SHIFT;
673 	unsigned long nr_pages = size >> PAGE_SHIFT;
674 	struct zone *zone;
675 	int ret;
676 
677 	zone = page_zone(pfn_to_page(start_pfn));
678 	ret = __remove_pages(zone, start_pfn, nr_pages);
679 	if (ret)
680 		pr_warn("%s: Problem encountered in __remove_pages() as"
681 			" ret=%d\n", __func__,  ret);
682 
683 	return ret;
684 }
685 #endif
686 #endif
687 
688 /**
689  * show_mem - give short summary of memory stats
690  *
691  * Shows a simple page count of reserved and used pages in the system.
692  * For discontig machines, it does this on a per-pgdat basis.
693  */
694 void show_mem(unsigned int filter)
695 {
696 	int total_reserved = 0;
697 	unsigned long total_present = 0;
698 	pg_data_t *pgdat;
699 
700 	printk(KERN_INFO "Mem-info:\n");
701 	show_free_areas(filter);
702 	printk(KERN_INFO "Node memory in pages:\n");
703 	for_each_online_pgdat(pgdat) {
704 		unsigned long present;
705 		unsigned long flags;
706 		int reserved = 0;
707 		int nid = pgdat->node_id;
708 		int zoneid;
709 
710 		if (skip_free_areas_node(filter, nid))
711 			continue;
712 		pgdat_resize_lock(pgdat, &flags);
713 
714 		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
715 			struct zone *zone = &pgdat->node_zones[zoneid];
716 			if (!populated_zone(zone))
717 				continue;
718 
719 			reserved += zone->present_pages - zone->managed_pages;
720 		}
721 		present = pgdat->node_present_pages;
722 
723 		pgdat_resize_unlock(pgdat, &flags);
724 		total_present += present;
725 		total_reserved += reserved;
726 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, ",
727 		       nid, present, reserved);
728 	}
729 	printk(KERN_INFO "%ld pages of RAM\n", total_present);
730 	printk(KERN_INFO "%d reserved pages\n", total_reserved);
731 	printk(KERN_INFO "Total of %ld pages in page table cache\n",
732 	       quicklist_total_size());
733 	printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
734 }
735