xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision f42b3800)
1 /*
2  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
3  * Copyright (c) 2001 Intel Corp.
4  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5  * Copyright (c) 2002 NEC Corp.
6  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7  * Copyright (c) 2004 Silicon Graphics, Inc
8  *	Russ Anderson <rja@sgi.com>
9  *	Jesse Barnes <jbarnes@sgi.com>
10  *	Jack Steiner <steiner@sgi.com>
11  */
12 
13 /*
14  * Platform initialization for Discontig Memory
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/meminit.h>
28 #include <asm/numa.h>
29 #include <asm/sections.h>
30 
31 /*
32  * Track per-node information needed to setup the boot memory allocator, the
33  * per-node areas, and the real VM.
34  */
35 struct early_node_data {
36 	struct ia64_node_data *node_data;
37 	unsigned long pernode_addr;
38 	unsigned long pernode_size;
39 	struct bootmem_data bootmem_data;
40 	unsigned long num_physpages;
41 #ifdef CONFIG_ZONE_DMA
42 	unsigned long num_dma_physpages;
43 #endif
44 	unsigned long min_pfn;
45 	unsigned long max_pfn;
46 };
47 
48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
49 static nodemask_t memory_less_mask __initdata;
50 
51 pg_data_t *pgdat_list[MAX_NUMNODES];
52 
53 /*
54  * To prevent cache aliasing effects, align per-node structures so that they
55  * start at addresses that are strided by node number.
56  */
57 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
58 #define NODEDATA_ALIGN(addr, node)						\
59 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
60 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
61 
62 /**
63  * build_node_maps - callback to setup bootmem structs for each node
64  * @start: physical start of range
65  * @len: length of range
66  * @node: node where this range resides
67  *
68  * We allocate a struct bootmem_data for each piece of memory that we wish to
69  * treat as a virtually contiguous block (i.e. each node). Each such block
70  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71  * if necessary.  Any non-existent pages will simply be part of the virtual
72  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
73  * memory ranges from the caller.
74  */
75 static int __init build_node_maps(unsigned long start, unsigned long len,
76 				  int node)
77 {
78 	unsigned long cstart, epfn, end = start + len;
79 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
80 
81 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
82 	cstart = GRANULEROUNDDOWN(start);
83 
84 	if (!bdp->node_low_pfn) {
85 		bdp->node_boot_start = cstart;
86 		bdp->node_low_pfn = epfn;
87 	} else {
88 		bdp->node_boot_start = min(cstart, bdp->node_boot_start);
89 		bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
90 	}
91 
92 	return 0;
93 }
94 
95 /**
96  * early_nr_cpus_node - return number of cpus on a given node
97  * @node: node to check
98  *
99  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
100  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101  * called yet.  Note that node 0 will also count all non-existent cpus.
102  */
103 static int __meminit early_nr_cpus_node(int node)
104 {
105 	int cpu, n = 0;
106 
107 	for_each_possible_early_cpu(cpu)
108 		if (node == node_cpuid[cpu].nid)
109 			n++;
110 
111 	return n;
112 }
113 
114 /**
115  * compute_pernodesize - compute size of pernode data
116  * @node: the node id.
117  */
118 static unsigned long __meminit compute_pernodesize(int node)
119 {
120 	unsigned long pernodesize = 0, cpus;
121 
122 	cpus = early_nr_cpus_node(node);
123 	pernodesize += PERCPU_PAGE_SIZE * cpus;
124 	pernodesize += node * L1_CACHE_BYTES;
125 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128 	pernodesize = PAGE_ALIGN(pernodesize);
129 	return pernodesize;
130 }
131 
132 /**
133  * per_cpu_node_setup - setup per-cpu areas on each node
134  * @cpu_data: per-cpu area on this node
135  * @node: node to setup
136  *
137  * Copy the static per-cpu data into the region we just set aside and then
138  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
139  * the end of the area.
140  */
141 static void *per_cpu_node_setup(void *cpu_data, int node)
142 {
143 #ifdef CONFIG_SMP
144 	int cpu;
145 
146 	for_each_possible_early_cpu(cpu) {
147 		if (node == node_cpuid[cpu].nid) {
148 			memcpy(__va(cpu_data), __phys_per_cpu_start,
149 			       __per_cpu_end - __per_cpu_start);
150 			__per_cpu_offset[cpu] = (char*)__va(cpu_data) -
151 				__per_cpu_start;
152 			cpu_data += PERCPU_PAGE_SIZE;
153 		}
154 	}
155 #endif
156 	return cpu_data;
157 }
158 
159 /**
160  * fill_pernode - initialize pernode data.
161  * @node: the node id.
162  * @pernode: physical address of pernode data
163  * @pernodesize: size of the pernode data
164  */
165 static void __init fill_pernode(int node, unsigned long pernode,
166 	unsigned long pernodesize)
167 {
168 	void *cpu_data;
169 	int cpus = early_nr_cpus_node(node);
170 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
171 
172 	mem_data[node].pernode_addr = pernode;
173 	mem_data[node].pernode_size = pernodesize;
174 	memset(__va(pernode), 0, pernodesize);
175 
176 	cpu_data = (void *)pernode;
177 	pernode += PERCPU_PAGE_SIZE * cpus;
178 	pernode += node * L1_CACHE_BYTES;
179 
180 	pgdat_list[node] = __va(pernode);
181 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
182 
183 	mem_data[node].node_data = __va(pernode);
184 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
185 
186 	pgdat_list[node]->bdata = bdp;
187 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
188 
189 	cpu_data = per_cpu_node_setup(cpu_data, node);
190 
191 	return;
192 }
193 
194 /**
195  * find_pernode_space - allocate memory for memory map and per-node structures
196  * @start: physical start of range
197  * @len: length of range
198  * @node: node where this range resides
199  *
200  * This routine reserves space for the per-cpu data struct, the list of
201  * pg_data_ts and the per-node data struct.  Each node will have something like
202  * the following in the first chunk of addr. space large enough to hold it.
203  *
204  *    ________________________
205  *   |                        |
206  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
207  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
208  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
209  *   |------------------------|
210  *   |   local pg_data_t *    |
211  *   |------------------------|
212  *   |  local ia64_node_data  |
213  *   |------------------------|
214  *   |          ???           |
215  *   |________________________|
216  *
217  * Once this space has been set aside, the bootmem maps are initialized.  We
218  * could probably move the allocation of the per-cpu and ia64_node_data space
219  * outside of this function and use alloc_bootmem_node(), but doing it here
220  * is straightforward and we get the alignments we want so...
221  */
222 static int __init find_pernode_space(unsigned long start, unsigned long len,
223 				     int node)
224 {
225 	unsigned long epfn;
226 	unsigned long pernodesize = 0, pernode, pages, mapsize;
227 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
228 
229 	epfn = (start + len) >> PAGE_SHIFT;
230 
231 	pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
232 	mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
233 
234 	/*
235 	 * Make sure this memory falls within this node's usable memory
236 	 * since we may have thrown some away in build_maps().
237 	 */
238 	if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
239 		return 0;
240 
241 	/* Don't setup this node's local space twice... */
242 	if (mem_data[node].pernode_addr)
243 		return 0;
244 
245 	/*
246 	 * Calculate total size needed, incl. what's necessary
247 	 * for good alignment and alias prevention.
248 	 */
249 	pernodesize = compute_pernodesize(node);
250 	pernode = NODEDATA_ALIGN(start, node);
251 
252 	/* Is this range big enough for what we want to store here? */
253 	if (start + len > (pernode + pernodesize + mapsize))
254 		fill_pernode(node, pernode, pernodesize);
255 
256 	return 0;
257 }
258 
259 /**
260  * free_node_bootmem - free bootmem allocator memory for use
261  * @start: physical start of range
262  * @len: length of range
263  * @node: node where this range resides
264  *
265  * Simply calls the bootmem allocator to free the specified ranged from
266  * the given pg_data_t's bdata struct.  After this function has been called
267  * for all the entries in the EFI memory map, the bootmem allocator will
268  * be ready to service allocation requests.
269  */
270 static int __init free_node_bootmem(unsigned long start, unsigned long len,
271 				    int node)
272 {
273 	free_bootmem_node(pgdat_list[node], start, len);
274 
275 	return 0;
276 }
277 
278 /**
279  * reserve_pernode_space - reserve memory for per-node space
280  *
281  * Reserve the space used by the bootmem maps & per-node space in the boot
282  * allocator so that when we actually create the real mem maps we don't
283  * use their memory.
284  */
285 static void __init reserve_pernode_space(void)
286 {
287 	unsigned long base, size, pages;
288 	struct bootmem_data *bdp;
289 	int node;
290 
291 	for_each_online_node(node) {
292 		pg_data_t *pdp = pgdat_list[node];
293 
294 		if (node_isset(node, memory_less_mask))
295 			continue;
296 
297 		bdp = pdp->bdata;
298 
299 		/* First the bootmem_map itself */
300 		pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
301 		size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
302 		base = __pa(bdp->node_bootmem_map);
303 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
304 
305 		/* Now the per-node space */
306 		size = mem_data[node].pernode_size;
307 		base = __pa(mem_data[node].pernode_addr);
308 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
309 	}
310 }
311 
312 static void __meminit scatter_node_data(void)
313 {
314 	pg_data_t **dst;
315 	int node;
316 
317 	/*
318 	 * for_each_online_node() can't be used at here.
319 	 * node_online_map is not set for hot-added nodes at this time,
320 	 * because we are halfway through initialization of the new node's
321 	 * structures.  If for_each_online_node() is used, a new node's
322 	 * pg_data_ptrs will be not initialized. Instead of using it,
323 	 * pgdat_list[] is checked.
324 	 */
325 	for_each_node(node) {
326 		if (pgdat_list[node]) {
327 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
328 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
329 		}
330 	}
331 }
332 
333 /**
334  * initialize_pernode_data - fixup per-cpu & per-node pointers
335  *
336  * Each node's per-node area has a copy of the global pg_data_t list, so
337  * we copy that to each node here, as well as setting the per-cpu pointer
338  * to the local node data structure.  The active_cpus field of the per-node
339  * structure gets setup by the platform_cpu_init() function later.
340  */
341 static void __init initialize_pernode_data(void)
342 {
343 	int cpu, node;
344 
345 	scatter_node_data();
346 
347 #ifdef CONFIG_SMP
348 	/* Set the node_data pointer for each per-cpu struct */
349 	for_each_possible_early_cpu(cpu) {
350 		node = node_cpuid[cpu].nid;
351 		per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
352 	}
353 #else
354 	{
355 		struct cpuinfo_ia64 *cpu0_cpu_info;
356 		cpu = 0;
357 		node = node_cpuid[cpu].nid;
358 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
359 			((char *)&per_cpu__cpu_info - __per_cpu_start));
360 		cpu0_cpu_info->node_data = mem_data[node].node_data;
361 	}
362 #endif /* CONFIG_SMP */
363 }
364 
365 /**
366  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
367  * 	node but fall back to any other node when __alloc_bootmem_node fails
368  *	for best.
369  * @nid: node id
370  * @pernodesize: size of this node's pernode data
371  */
372 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
373 {
374 	void *ptr = NULL;
375 	u8 best = 0xff;
376 	int bestnode = -1, node, anynode = 0;
377 
378 	for_each_online_node(node) {
379 		if (node_isset(node, memory_less_mask))
380 			continue;
381 		else if (node_distance(nid, node) < best) {
382 			best = node_distance(nid, node);
383 			bestnode = node;
384 		}
385 		anynode = node;
386 	}
387 
388 	if (bestnode == -1)
389 		bestnode = anynode;
390 
391 	ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
392 		PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
393 
394 	return ptr;
395 }
396 
397 /**
398  * memory_less_nodes - allocate and initialize CPU only nodes pernode
399  *	information.
400  */
401 static void __init memory_less_nodes(void)
402 {
403 	unsigned long pernodesize;
404 	void *pernode;
405 	int node;
406 
407 	for_each_node_mask(node, memory_less_mask) {
408 		pernodesize = compute_pernodesize(node);
409 		pernode = memory_less_node_alloc(node, pernodesize);
410 		fill_pernode(node, __pa(pernode), pernodesize);
411 	}
412 
413 	return;
414 }
415 
416 /**
417  * find_memory - walk the EFI memory map and setup the bootmem allocator
418  *
419  * Called early in boot to setup the bootmem allocator, and to
420  * allocate the per-cpu and per-node structures.
421  */
422 void __init find_memory(void)
423 {
424 	int node;
425 
426 	reserve_memory();
427 
428 	if (num_online_nodes() == 0) {
429 		printk(KERN_ERR "node info missing!\n");
430 		node_set_online(0);
431 	}
432 
433 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
434 	min_low_pfn = -1;
435 	max_low_pfn = 0;
436 
437 	/* These actually end up getting called by call_pernode_memory() */
438 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
439 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
440 	efi_memmap_walk(find_max_min_low_pfn, NULL);
441 
442 	for_each_online_node(node)
443 		if (mem_data[node].bootmem_data.node_low_pfn) {
444 			node_clear(node, memory_less_mask);
445 			mem_data[node].min_pfn = ~0UL;
446 		}
447 
448 	efi_memmap_walk(filter_memory, register_active_ranges);
449 
450 	/*
451 	 * Initialize the boot memory maps in reverse order since that's
452 	 * what the bootmem allocator expects
453 	 */
454 	for (node = MAX_NUMNODES - 1; node >= 0; node--) {
455 		unsigned long pernode, pernodesize, map;
456 		struct bootmem_data *bdp;
457 
458 		if (!node_online(node))
459 			continue;
460 		else if (node_isset(node, memory_less_mask))
461 			continue;
462 
463 		bdp = &mem_data[node].bootmem_data;
464 		pernode = mem_data[node].pernode_addr;
465 		pernodesize = mem_data[node].pernode_size;
466 		map = pernode + pernodesize;
467 
468 		init_bootmem_node(pgdat_list[node],
469 				  map>>PAGE_SHIFT,
470 				  bdp->node_boot_start>>PAGE_SHIFT,
471 				  bdp->node_low_pfn);
472 	}
473 
474 	efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
475 
476 	reserve_pernode_space();
477 	memory_less_nodes();
478 	initialize_pernode_data();
479 
480 	max_pfn = max_low_pfn;
481 
482 	find_initrd();
483 }
484 
485 #ifdef CONFIG_SMP
486 /**
487  * per_cpu_init - setup per-cpu variables
488  *
489  * find_pernode_space() does most of this already, we just need to set
490  * local_per_cpu_offset
491  */
492 void __cpuinit *per_cpu_init(void)
493 {
494 	int cpu;
495 	static int first_time = 1;
496 
497 	if (first_time) {
498 		first_time = 0;
499 		for_each_possible_early_cpu(cpu)
500 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
501 	}
502 
503 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
504 }
505 #endif /* CONFIG_SMP */
506 
507 /**
508  * show_mem - give short summary of memory stats
509  *
510  * Shows a simple page count of reserved and used pages in the system.
511  * For discontig machines, it does this on a per-pgdat basis.
512  */
513 void show_mem(void)
514 {
515 	int i, total_reserved = 0;
516 	int total_shared = 0, total_cached = 0;
517 	unsigned long total_present = 0;
518 	pg_data_t *pgdat;
519 
520 	printk(KERN_INFO "Mem-info:\n");
521 	show_free_areas();
522 	printk(KERN_INFO "Node memory in pages:\n");
523 	for_each_online_pgdat(pgdat) {
524 		unsigned long present;
525 		unsigned long flags;
526 		int shared = 0, cached = 0, reserved = 0;
527 
528 		pgdat_resize_lock(pgdat, &flags);
529 		present = pgdat->node_present_pages;
530 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
531 			struct page *page;
532 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
533 				touch_nmi_watchdog();
534 			if (pfn_valid(pgdat->node_start_pfn + i))
535 				page = pfn_to_page(pgdat->node_start_pfn + i);
536 			else {
537 				i = vmemmap_find_next_valid_pfn(pgdat->node_id,
538 					 i) - 1;
539 				continue;
540 			}
541 			if (PageReserved(page))
542 				reserved++;
543 			else if (PageSwapCache(page))
544 				cached++;
545 			else if (page_count(page))
546 				shared += page_count(page)-1;
547 		}
548 		pgdat_resize_unlock(pgdat, &flags);
549 		total_present += present;
550 		total_reserved += reserved;
551 		total_cached += cached;
552 		total_shared += shared;
553 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
554 		       "shrd: %10d, swpd: %10d\n", pgdat->node_id,
555 		       present, reserved, shared, cached);
556 	}
557 	printk(KERN_INFO "%ld pages of RAM\n", total_present);
558 	printk(KERN_INFO "%d reserved pages\n", total_reserved);
559 	printk(KERN_INFO "%d pages shared\n", total_shared);
560 	printk(KERN_INFO "%d pages swap cached\n", total_cached);
561 	printk(KERN_INFO "Total of %ld pages in page table cache\n",
562 	       quicklist_total_size());
563 	printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
564 }
565 
566 /**
567  * call_pernode_memory - use SRAT to call callback functions with node info
568  * @start: physical start of range
569  * @len: length of range
570  * @arg: function to call for each range
571  *
572  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
573  * out to which node a block of memory belongs.  Ignore memory that we cannot
574  * identify, and split blocks that run across multiple nodes.
575  *
576  * Take this opportunity to round the start address up and the end address
577  * down to page boundaries.
578  */
579 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
580 {
581 	unsigned long rs, re, end = start + len;
582 	void (*func)(unsigned long, unsigned long, int);
583 	int i;
584 
585 	start = PAGE_ALIGN(start);
586 	end &= PAGE_MASK;
587 	if (start >= end)
588 		return;
589 
590 	func = arg;
591 
592 	if (!num_node_memblks) {
593 		/* No SRAT table, so assume one node (node 0) */
594 		if (start < end)
595 			(*func)(start, end - start, 0);
596 		return;
597 	}
598 
599 	for (i = 0; i < num_node_memblks; i++) {
600 		rs = max(start, node_memblk[i].start_paddr);
601 		re = min(end, node_memblk[i].start_paddr +
602 			 node_memblk[i].size);
603 
604 		if (rs < re)
605 			(*func)(rs, re - rs, node_memblk[i].nid);
606 
607 		if (re == end)
608 			break;
609 	}
610 }
611 
612 /**
613  * count_node_pages - callback to build per-node memory info structures
614  * @start: physical start of range
615  * @len: length of range
616  * @node: node where this range resides
617  *
618  * Each node has it's own number of physical pages, DMAable pages, start, and
619  * end page frame number.  This routine will be called by call_pernode_memory()
620  * for each piece of usable memory and will setup these values for each node.
621  * Very similar to build_maps().
622  */
623 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
624 {
625 	unsigned long end = start + len;
626 
627 	mem_data[node].num_physpages += len >> PAGE_SHIFT;
628 #ifdef CONFIG_ZONE_DMA
629 	if (start <= __pa(MAX_DMA_ADDRESS))
630 		mem_data[node].num_dma_physpages +=
631 			(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
632 #endif
633 	start = GRANULEROUNDDOWN(start);
634 	start = ORDERROUNDDOWN(start);
635 	end = GRANULEROUNDUP(end);
636 	mem_data[node].max_pfn = max(mem_data[node].max_pfn,
637 				     end >> PAGE_SHIFT);
638 	mem_data[node].min_pfn = min(mem_data[node].min_pfn,
639 				     start >> PAGE_SHIFT);
640 
641 	return 0;
642 }
643 
644 /**
645  * paging_init - setup page tables
646  *
647  * paging_init() sets up the page tables for each node of the system and frees
648  * the bootmem allocator memory for general use.
649  */
650 void __init paging_init(void)
651 {
652 	unsigned long max_dma;
653 	unsigned long pfn_offset = 0;
654 	unsigned long max_pfn = 0;
655 	int node;
656 	unsigned long max_zone_pfns[MAX_NR_ZONES];
657 
658 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
659 
660 	efi_memmap_walk(filter_rsvd_memory, count_node_pages);
661 
662 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
663 	sparse_init();
664 
665 #ifdef CONFIG_VIRTUAL_MEM_MAP
666 	vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
667 		sizeof(struct page));
668 	vmem_map = (struct page *) vmalloc_end;
669 	efi_memmap_walk(create_mem_map_page_table, NULL);
670 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
671 #endif
672 
673 	for_each_online_node(node) {
674 		num_physpages += mem_data[node].num_physpages;
675 		pfn_offset = mem_data[node].min_pfn;
676 
677 #ifdef CONFIG_VIRTUAL_MEM_MAP
678 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
679 #endif
680 		if (mem_data[node].max_pfn > max_pfn)
681 			max_pfn = mem_data[node].max_pfn;
682 	}
683 
684 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
685 #ifdef CONFIG_ZONE_DMA
686 	max_zone_pfns[ZONE_DMA] = max_dma;
687 #endif
688 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
689 	free_area_init_nodes(max_zone_pfns);
690 
691 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
692 }
693 
694 #ifdef CONFIG_MEMORY_HOTPLUG
695 pg_data_t *arch_alloc_nodedata(int nid)
696 {
697 	unsigned long size = compute_pernodesize(nid);
698 
699 	return kzalloc(size, GFP_KERNEL);
700 }
701 
702 void arch_free_nodedata(pg_data_t *pgdat)
703 {
704 	kfree(pgdat);
705 }
706 
707 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
708 {
709 	pgdat_list[update_node] = update_pgdat;
710 	scatter_node_data();
711 }
712 #endif
713 
714 #ifdef CONFIG_SPARSEMEM_VMEMMAP
715 int __meminit vmemmap_populate(struct page *start_page,
716 						unsigned long size, int node)
717 {
718 	return vmemmap_populate_basepages(start_page, size, node);
719 }
720 #endif
721